1 Interest Theory

A(t) is the amount function. «a(t) is the accumulation function. a(t) = %.
Alt
k at time s = ®) at time t.
A(s)
vy = ﬁ, t > 0, is called the discount function discount function.
. kvy .
k at time s = at time t.
/US

Under compound interest v, = (1414)7".

¢ is the annual effective rate of interest. 1+

is the one year interest factor. v = 1 — d is the one year discount factor. d is the

annual rate of discount.

d 1—v 7 1
= d

i = , d = - =1-v, :
1—-4d v 1+ 1 1+

=1l—d=v,iv=d,1=(1—-d)(1+1).

i™ is the nominal rate of interest compounded m times a year. d(™ is the nominal

dm) ) -
The force of interest is

_d _d _ad(t) d A1)
oy = —Eln(vt) = %lna(t) =) %lnA(t) = .

rate of discount compounded m times a year.

i\ ™
1+i= (1+—> =(1-d™

m

—
|
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v = e Jo = a(t) = elo 0sds,
Annuities

The cashflow, present and future values of an annuity—due with level payments of one

are:
Contributions ‘ 1 1 1 -- 1 0
Time [0 1 2 -~ n—1 n
, 11— , (1+4)"—1
)i = d Spi = ——F—.
Q| d ana Sy d
The cashflow, present and future values of an annuity—immediate with level payments
of one:
Contributions | 0 1 1 --- 1
Time [0 1 2 - n

1
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,V andsmizﬂ.
1 1

The cashflow and present value of an perpetuity—due with level payments of one are:

Agml; =

Contributions ‘ 1 1 1
Time 0 1 2

3} 1
CL@“ = E

The cashflow and present value of a perpetuity—immediate with level payments of one
are:

Contributions ‘ 0 1 1
Time 01 2

1
-

il

The cashflow and present value of a geometric annuity—due with first payment of one

are:

Payments ‘ I 1+r (1472 -+ (147"t

Time ‘ 0 1 2 . n—1
and
(Gi)g, = | = -
The cashflow and present value of a geometric annuity—immediate with first payment
of one are:
Payments ‘ 1 1+7r (1472 -~ (147! ;
an
Time ‘ 1 2 3 n
1

(G@)apir = T iz
The cashflow and present value of a geometric perpetuity—due with first payment of

one are:

Payments‘l 1+7r (1—|—r)2 (1+T.)n—1
Time |0 1 2 .. n

and
I+i e
5 i if 1> T,
(Ga)%h‘m = oo
00 if ¢+ <r.
The cashflow and present value of a geometric perpetuity—immediate with first pay-
ment of one are:



Payments‘l 1+7r (1—|—r)2 (1+T.)n—1

Time |1 2 3 - n
and
1 . .
— ifi>r
(Ga)oo ir o
’ 00 if 4 <r.
The cashflow, present and future values of a due increasing annuity with first payment
of one are:
Payments ‘ 12 3 - n
Time |0 1 2 -+ n-—1
.. dmi —nv" .. §ﬁ\z‘ -—n
Ty = " and (1) = 1

The cashflow, present and future values of an immediate increasing annuity with first
payment of one are:

Payments ‘ 1 2 3 -+ n
Time [1 2 3 - n
)i — nv" Spli — M
(Ia)mi - and (Is)ﬁ\i -
The cashflow and present value of an increasing due perpetuity with first payment of
one are:
Payments ‘ 1 2 3
Time |0 1 2
and ([i)s, = -

The cashflow and present value of an increasing immediate perpetuity with first
payment of one are:

Payments ‘ 1 2 3
Time |1 2 3

and (la)y),; = <.
The cashflow, present and future values of a decreasing due annuity with first payment

of one are:

Payments‘n n—1 n—2 - 1
Time [0 1 2 - n—1

Qm)i

(Dd)..,. = ”_d and (D), = MEHD" = smi

mli n|i d

The cashflow, present and future values of a decreasing immediate annuity with first

payment of one are:



Payments‘n n—1 n—-2 --- 1

Time |1 2 3 - n
n— an|'L (1 + Z)n — Snli
(Da)mz = and (Ds)n\z - i :
The cashflow, present and future values of a due annuity paid m times a year are
Contributions ‘ % % % % % % 0
Time (in years) ‘ 0o + 2 m mil m—1  om
.(m) 1—v" m) (1 + Z)n —1
aml = and Sﬁ\z = am

The cashflow, present and future values of an immediate annuity paid m times a year

are
Contributions ‘ 0o - L i1 1
Time (in years) ‘ 0o L 2 m mil nm
(my _ 1L—1v" m  (1+i)n—1
aﬁ|l - 3(m) and s n\z - ;(m) :

The present value of a continuous annuity with rate C(t) is

/0 t C(s)v* ds.

The present value of a continuous annuity with constant unit rate is

n 1 — ™
Enzz/ 'Utdt: v .
0 )

The present value of an annually increasing continuous annuity is

A — NU"

(1) = /Dn[t + 1ot dt = 5

The present value of a continuously increasing annuity is

_ " Al — U™
(Ia)_ = / tof dt =
nli 0 )
The present value of an annually decreasing continuous annuity is
" n— Agl;
(D), _/ 41—t dt = — 1,
0 1)
The present value of a continuously decreasing continuous annuity with is

n_aﬁ‘

(56)@; = /On(n —t)' dt = TZ



2 Survival models.

The cumulative distribution function of the r.v. X is Fx(z) = P{X <z}, z € R.
The survival function of the nonnegative r.v. X is S,(z) = s(z) = Pr{X >z}, z > 0.

If h>0and H(x) = [ h(t)dt, z > 0, then E[H(X)] = [;° s(t)h(t)dt. In particular,

E[X] = /000 s(t)dt, E[XP] = /000 s(t)ptP~t dt, Emin(X,a)] = /Oas(t) dt.

If X is a discrete r.v.
E[H(X)] =Y Pr{X > k}(H(k) - H(k —1)).

In particular, for a positive integer a,

ZPr{X >k}, B[X ZPr{X > k}(2k — 1), E[min(X, a)] ZPr{X > k}.
k=1
(x) is called a life-age—x. T'(z) = T, = X — z is the future lifetime of (x)
The survival function of T'(z) is p, = S(TJF;) t > 0. The c.d.f. of T(x) is 1q, = W’
t > 0. We have that

tfe =1 = Doy Po = 1P, o = 1Ga; sltde = Pr{s <T(2) <541} = spo — s14Do = Do * tats
m+nPzr = mPz * nPz4+m> nPz = PzPz+1 - - - Pz4n—1,

z?zl njp:v = n1 Pz nyPrtny " ngPatnitng 'nkpx-&-Z?;ll n;

The force of mortality is p(z) = p, = —2 In Sx(z) =

Sx(z) = exp (_/ pu(t) dt) s pe = e B () = pap(a + 1)
0

2 = E[X] = / wodt, & = E[T(x)] = / pat,
0 0

(e}

m = Emin(T(x),n)] = /0 Padt, & = Eomt + nDririn

[t] is the least integer greater than or equal to ¢, [t] = kif k —1 <t < k. K, is the time
interval of death of a life age . K(z) is the curtate duration of death of a life aged z,
i.e. the number of complete years lived by this life.

K, = [T@)], K(z) = K, -1, K(z) = [T(x)] - 1,
e = EIK(@)] = 3 wpe, EI(K (@) = 32k = 1) - 4p,

e] o o
€ = pm(l + em—&—l), Com| = E kPx; €x = Cu:m) + nPzCatn, €x:mtn| — Cxim| + mPzxCrtm:ml-
k=1



For de Moivre’s law:

1 — 1
fx(m):;,Sx(x):wwx,u(a:):w_x, for 0 <z < w,
w—x—1
tPe = —————, tGx = 0<t<w-—ux,
Ww—z Ww—z
o — — 2 —x—1 — 2_]_
o= 2 Vet = U om0 (e = 2

Under constant force of mortality u:

SX(I) = 6_#17 Fx<l'> =1- B_Hr7 fX(x) = 'ue—ﬂm’ M('r> = My for z > 07
s(z+1) —

s(z)

T 1 s (1= pr \
y €xm| = —e,var(T<x>> = 5,6 = p_76x:ﬁ| = M,V&I‘(K(%)) = p_

1
wo 1 1 0 0 q?

3 Life tables.

D = Pr{T(z) >t} =

¢, denote the number of individuals alive at age x. The number of individuals which died
between ages x and = + t is ;d, = ¢, — {,14. The number of individuals which died between
ages r and x + 1is d, = ¢, — ;1. We have that

l, by — Uy
s(z) = % Fx(w) = = o (z) = == log((s),
€x+t _ gaz - €x+t _ & _ €z+1 _ g:p - €z+1 _ % ‘ _ €w+n - ngrner
tPx gw ; tdx gw gw y Pz gx y Gz gw &f n|mYz gw .
o > g:c o > g:c—&-t o " €x+t - gx—i—k . g:r:—&-k
- —d T — —dt, Tm| — dt, Tz — — > Cxm| — .
€o /0 fo X, e /0 fw e | A ex e Ew e ‘ éx

k=1 k=1

The expected number of years lived between age x and age = + n by the ¢, survivors at
age T is pL;.

o n o o 00 L R z+n—1 I
an - gl‘ex:ﬁ| = / E:L‘-i—t dt, LCC = 1LZ‘ = EIGI'T‘? €y = —Zk:z’ k’ ex:ﬁ| = Lok=z K k .
0 ' 0, l,
Interpolation Cory Dz L,

uniform distribution of deaths | £, + t({y11 — C;) | 1 — tq, Latlont

o1 : t t ds
exponential interpolation l.pl, 4 v
. . —L log p
Balducci assumption S A — Pe o+l OB Po
P (A-Dg t+(1—t)ps T
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Under uniform distribution of deaths:

4z

Ew-‘,—t = Eaz + t(fa:—ﬁ—l - éa:); Pz = 1- 1qz, fT(x)(t) = Gz Hpyt = q7 <t< 17
ly+ 0, o
Lx:%, ew:€x+§-

Under exponential interpolation:

lose = LoDy tD2 = Dy, f1.(t) = =P 108 Do, floie = —logps, 0 <t <1
Under (Balducci assumption) harmonic interpolation:

L _aoplg ! S
Ut G T o,

4 Life insurance.

type of insurance payment
whole life insurance 7, = v
n—year term life insurance Z;:ﬁl =08 I(K, <n)
n—year deferred life insurance w2y = 08 I(n < K,)
n—year pure endowment life insurance Zx:%‘ =v"I(n < K,)
n—year endowment life insurance Ly = pin(Kz.n)
m-—year deferred n—year term life insurance | ,,|,Z, = v5I(m < K, < m +n)

Whole life insurance paid at the end of the year:

Zx = /UKza A:c = E[Zx] = kakflpx *Qr+k—1, 2Aw = szkkflpx *Qrtk—1,
k=1 k=1

Var(Z,) = 2A, — Ai, Ap = vy + vppApia.

n—year term life insurance paid at the end of the year:

Z;:ﬁ\ = UKII<K:E < n)7 Aglc:ﬁ\ = E[Z;m] = ka ' kfl‘qcm 2Aglc:ﬁ| = ZUZk ’ kflyqxa
k=1 k=1

Var(Zhq) =2ALy — ALy’

x 7|

Azlnzm = U(Qx + Up$Ai+1:m|‘

n—year deferred life insurance paid at the end of the year:

0 0
n|Z:v - UKxI(n < K$)77Z‘A$ = E[n‘Zz] - Z Uk : k—1|q;tv 2n|A:v = Z U2k : k—1|q:1:a
k=n-+1 k=n+1

Var(n|Zm) = 2n|A$ - n’A127 n‘Ax = 'Unnflpm *Qr4n—1 + n+1‘A:r'



n—year pure endowment life insurance paid at the end of the year:

Z

$n|_

"I(n < K,), Awnl E[sz] wEy =" D,
2Axn| v*" - D, Var(Z n|) 2Axn| A L2

T |

n—year endowment life insurance paid at the end of the year:

n

Zx:m = vmin(KI,n), Axm =,b, = E[Zacm] = Z Uk ’ k*l’qgc + 'Unnpma
k=1

2A:p:m = Z U2k : kfl‘Qx + U2nnpx> Var(Zx:m) = 2Az:ﬁ| - A:v:ﬁ\Q-

n‘Az - E Aw—l—rnA - Aglpm + n|A - Ai«m + nExAm—Hu 2Am - 2Ai;ﬁ| + 2n|A:B7
Apm| = Al a T AL 7 Am‘ —=2AL _ 2A, L 7

Increasing/decreasing life insurance paid at the end of the year:

n

(1A), = Z ko - k—1/Ge, ([A)glc;m - Z ko - k1|4, (DA)i;m = Z(” +1- k)’Uk k1
k=1

k=1 k=1
Under de Moivre’s model with terminal age w, if w,x,n are a positive integers,

Q

w—z|t 1 Qp)
Ax = Ax:ﬁ\ =

wWw—r—n A —x=nli
1 n | — n Yw—z—nli
{4 |—U a’n,| x_/U

W—x w—x

Y

w— W —

Under constant force of mortality:

A, = CA L = e n+o), n|As = e_"(“”)L VAL = (1— e_"(“”))L.

%+ . G+ 0o+
type of insurance payment
whole life insurance 7., = vk
n—year term life insurance Zglml = o= (T, <n)
n—year deferred life insurance wlZe =0T I(n < T,)
n—year pure endowment life insurance ZK% =v"I(n <T,)
n—year endowment life insurance Z gy = vin(Ten)
m-year deferred n-year term life insurance | |, Z, = v"*I(m < T, < m +n)

Whole life insurance paid at the time of death:

Zy=v"A, = E[Z,] = / o' fr, (t) dt
0

[e.e]
— —2

A, = E[(Z,)?] = /0 v fr (t)dt, Var(Z,) =2?A, — A

T*



n—year term life insurance paid at the time of death:

7;%\ = UTﬁI(Tx < n))zclnm = E[Eim] = / Uthac (t) dta
0

1 —1 2

v = E[Zx:ﬁl | = /0 v fr (t)dt, Var(Z,. ) =2AL_ — Al

- 7 x| zm|

n—year deferred life insurance paid at the time of death:

2o =PI < T, A= BLIZ] = [ fntt)an

n

214, = E[,|Z,]] = / V2 fr (8) dt, Var(u|Zy) = 20| Ay — ol A,

n

n—year endowment life insurance:
Do = o) T E(Z ] = / o fr. (£) dt + 0" Pr{T, > n},
0

x| -

2Aaz:ﬁ| - E[(?sz)z] - / UthT"(: (t) dt + U2n PI‘{Tx > n}7 Var<7m:ﬁ|> = 2zaz:ﬁ| - Z ?
0

Zy = Z:v:ﬁ\ + n|7wv A, = zalc:m + n|Zm A, = 22315:5\ + 2n|zcc7

= 1 7 ! 1 271 271 24 1
Zrim = Za::ﬁ\ + Ex:ﬁ\? Aﬂﬂim = Ax:ﬁ\ + Ax:ﬁ|7 Ar:m = Az:ﬁ| + Az:ﬁ\?

Under de Moivre’s model with terminal age w,

— Ag=z|i —1 [ 1 1 W —x—Mn

vy —ns Yw—x—nli
= = = =M A =T ——.
w—1 x| w—1x x| w—x

Under constant force of mortality:

A, =t A

) ) A = et H 7;11

TR R TR

Continuously increasing whole life insurance: b, =t, ¢t > 0,

A2, = [ 0w
0

Annually increasing whole life insurance: b, = [t], ¢ > 0, present value is denoted
by

0k
(7, =3 [ kot it
— Jk—1

k=1



n—year term continuously increasing whole life insurance: b; =¢, 0 <t < n,

—_—— 1 n
(] A)m:ﬁl = / to' - tPrMz+t dt.
0
n—year term annually increasing whole life insurance: b, = [t], 0 <t < n,

noook
(1), =30 [ o
k=1 -

Continuously decreasing life insurance: b, =n —t, 0 <t <n,

(E Z)i:m = / (n —t)o" - (Pyflags dt.
0

Annually decreasing life insurance: b, = [n —t], 0 <t <n,

n k
(D Z)glc:ﬁl - Z/k (n+1- k)vt * tPaplaye dL.
k=1"k-1

Assuming a uniform distribution of deaths:

— l —1 (A — [ — U 1
Ax - SAGH Axm = SA:):W\’ ”|A$ = g ’ n|Ax7 Am:ﬁl = gAxﬁ\ + Az:ﬁ|’
) . ‘ .

(m) _ v (R m _ v (m) _ _t 41 1
Ax g(m) Am’ Aw:ﬁ\ - j(m) Az:mv n’Az - ;(m) n|A:B7 Am:m - Sm) Awm + Aw:ﬁl'
Life annuities.

due annuities present value APV

. C . 1—Z, . o 1,AI
whole life YI": g, = — gy = —
n—year deferred life insurance | ,,|Y, = Vg L (Kz >n) | p|de = nErlgin
C ) o 1_Zz:ﬁ\ . . 1_Aa;:ﬁ\
n-year term Yom = Uin(Kom)| = —d dgm| = —
immediate annuities present value APV
whole life Y, = ag— = © a, =
n—year deferred life insurance | ,|Y, = vz L (Ky >n+1) | play = nFy - pyn
V=2 7 | v—A )
n—year term Yom = Ui (Ka—tm)| = 7 Ugm| = —F——
continuous annuities present value APV
whole life Y, = gy = % a, = 1_6Az
n-year deferred life insurance | ,|Y, = V" a1 (T, >n) nl|@e = nEy - Qpin
- _ 1 —pmin(Tz,n) _ 172&%\
n-year term Yom = U = 5 | Qo = —5

10




Discrete whole life due annuity:

1-Z, . 1-A,

24, — A2
a T Ty

- i

Y, = iig, = = vps, Var(Y;) =
k=0

Whole life immediate annuity:

v—Z v—A >
Yx:am|:}/$_]—: 5177 Ay = mzzvkkpxa

d d
k=1
2A, — A2 .
Var(Y,) = T’ Ay = UPzlzs1 = VPz(1 + Gpy1).
Whole life continuous annuity:
- 1-Z, _ _1-A4, [ — . A, - A
Y, =ap = 5 y = 5= /0 o' pe dt, Var(Y,) = 5
n—year deferred discrete due annuity:
Ve =" = (K > n), pld, = Zv = W Eilgin.

n—year deferred discrete immediate annuity:
n|Ya3 - n+1|§/;u n|am - n+1|dm = UVPsx * n—1|a33+1'
n—year deferred continuous annuity:
o0
N n— — t —
n’ch:U am‘I(Tx>n), n|az:/ ) .tpxdt:nEm.a,ern.
n

n—year term due discrete annuity:

n—1
Vo = G = —1 = Zom| v ps = —Am‘
7| min(K,,n)| kPz = )
k=0
L P (Aum)? ” ”
Var(Ym:m) = il d2( xn\) 5 dx:n—&-m\ = Qg7 + nEoc * Qg

Ay = Qg7 + n|az = Qg7 + nExax—i-n‘

n—year term discrete immediate annuity:

. U — xn+1|
szm = Oin(Ko—1n)| — }/;c:r-i-ﬂ —1= ’
— Ay
Up| = Qg — 1 = ZU d
24 (A _ )2
z:n+1| T+l
Var(lfac nl) d2 ’

Ay = nla':c + Qg7 = n’a'a: + nExax—H"m

11

Ay = 1+ Upmdz—‘rl‘



n—year term continuous annuity:

LV — 1— Umin(Tm,n) 11— Ex:ﬁ\ _ " s 1 - Zm:m

Yx:ﬁ\ = amin(Tx,n)| = 5 = 5 y Qum| = /0 U sPx ds = T?
v ) 2Aa::ﬁ| - (Azzﬁ\)z _ = — = = _

Var(Yx:m) - Uz:ingm| = Azl + nEx Aginim|, Gz = Qg + n|aa:-

92 ’

Under constant force of mortality:

1 141 1 VD 1—gq, e~ (0+H) 1

d:l:: = = a:B: = = az:—

l—wpe qo+i 1—e 0t 1—vp, quti 1—e 0t [+ 0

Annuities paid m times a year.

For a whole life unity annuity—due to (z) paid m times a year:

QA (Agcm))Q
WWV

T d(m) y Yy d(m )

For a whole life unity annuity—immediate to (x) paid m times a year:

yom _ g _ L _ =2
T

1/m (m)

e . 1 &
R Ry R SLL T
k=

2A(m) (Agjm))z
(dm)2

For a n—year unity annuity—due to (z) paid m times a year:

Var(Y,™) =

1_Z() 1_A() 1nm—l
-(m) zn|  ..(m) | 1
Yorl = gm0 Goml = " gem .~ o, D v P
k=0

. Var(Z™)
(m)y x|
Var(Y, 7/) = @y
For a n—year unity annuity—due to (z) paid m times a year:

1—z™ 1— A Var(Z™)

o) _ LT Lam] ) _ "k (m v
}/ac:m - dm az:ﬁ| d(m - kz %p.’ﬂ7 Var(Yx nl) (d(m))2 .

For a n—year unity annuity—immediate to (z) paid m times a year:

m

) _ym 11 ot — g _

(m
Yx:ﬁ | x: n|7 al a;p;m : nEx

1 1
m - m

12



For a n—year deferred unity annuity—due to (z) paid m times a year:

AR

) AT &

m :J:nl - (m xn\ n| = a\m

WV = = ’=d<—m—a D v kpe =B il
k=nm

Q0 = Q) 4 il =l + B,

For a n—year deferred unity annuity—immediate to (z) paid m times a year:

n|}/;:(m) :n|Y;r:( an\’ n|a (m) _nEx'agc+)n :n|ag(cm) __nEsw
m m
(Zg:m) = CLS?% + n|a§cm) (m)| + E &gﬁm

Under an uniform distribution of deaths within each year:

i 1/m _ _i_ _ L
o _ LA oy LV A 1G4
: gm0 % TG T qm T Ty

6 Benefit Premiums.
Fully discrete insurance

Whole life insurance:

P

d) d
Var(L,) = (1 + 5)2 Var(Z,) = (1 + 5)2 (A, — A7) .

Under the equivalence principle:

P, === =——d,
a, 1—A,

A, — A2 2A,— A2 A,
Var(L ) 2 . ) tpx =

(1 - Ax) (da:p) Ay 1|

n—year term insurance:
1 1 - Zx:ﬁ\
Lx n| T an| PYVZ m = Zx:ﬁ| _PTa
As Ass

x: n| ( T n|) dx:m » U4 x| (t ;Bn|> ax .

13



n—year pure endowment:

1 1 Y, 1 1 me
Lmﬁ| - me — PYym = Zmn| - P d )
A l‘ AL |
1 1 . rn 1 1 o xrn
Px:ﬁ| - P(Axm) - dﬂﬁ ) tng;m — P(tAx;m) = (lxﬂ

n—year endowment:

min(n,K; o
L:)::m =v ( ) — Pa’min(Kx,n)l

d d

Var(Ly.q ) = (1 + S)Q Var(Zyq) = (1 + g) 2 (* A — (Aem))?)

Ax:ﬁ Ax:ﬁ
P:c:ﬁ| - P(Axm) = = | ath:ﬁ\ - P(tAx:ﬁ\) = i Ia
Tn z:t
Pz'ﬁ ? QACC'H - Az'ﬁ 2 ZAJ:% - Ax'ﬁ 2
Var(Lyz) = (1 + T) (ZAM\ _ Ax;mQ) — 7| -2\ — : l.. - L
(1 - Am:ﬁ|) (da:pm)
n—year deferred insurance:
— PY A — nl Az A — n| Az
Qg Qg7

Properties:
P = Plsm + P :ﬁ1|7 nPr = Pag:m + Px:ﬁl|Am+n-

T x

Semicontinuous annual benefit premiums

Whole life insurance:

o A, - A,
Pa::P(Am):__ath:tP(A;t):_ .
Qg Q.|
n—year term insurance:
1 Al
;lc:m = =3 tPglc:m = P(Aym) = i
n—year pure endowment:
1 A l‘ 1 A x
Pa::ﬁ| = P(Ax%) = _x'" ) th:ﬁ = tP(Az%\) = —w.n‘ :
a/IEZﬁ| awﬂ

" 1-— Zx:ﬁ\ P
= Zx:ﬁ\ - Per:m = Zx:ﬁ| —P———= |1+ Zx:m -

P

37



n—year endowment:

P:c:ﬁ| - P(Axm) - ‘7 th:ﬁ\ - tP(Az:ﬁ\) = ‘

n—year deferred insurance:

7 Qg7

P(lA,) = 24 P14, =

Fully continuous insurance

Whole life insurance:

—1 —1
1 4 -/l A:L‘:m - /7l Ax:ﬁ\
L = an| Pan|, P<A:Eﬁ| = 5 tp Axﬁ‘) = —
' Qg7 . Ag:7|
n—year pure endowment:
— 1 — 1
- 1 — /7 1 Az:ﬁ| -7 1 Aazﬁ\
L= Zz-ﬁ| — PYomy, P(Az'ﬁ|> ) tP(A;z-m) = =
' ' Q7| . Qg7
n—year endowment:
L=Z,— PV, = Z, —Pp——2x7 _ (DY _ 27
P _ _
Var(L) = (1 + E) (QAx;m — (Ax:m)2> ,
ESTars Zczzzﬁ 1- 56:{::% 6Zz:ﬁ QZQC:H - zac:ﬁ 2 ESYars A:c:n
P(Az:ﬁl) == = - L= i , Var(L) = l— 2| 5 tP(Az:ﬁl) == 3
Qg7 Qg7 1-— Ax:m (1 — Amn|) Qg

n—year deferred insurance:




n—year deferred annuities

n—year deferred due annuity:

Q7

n—year deferred immediate annuity:

Qg7

n—year deferred continuous annuity funded discretely:

Qg7

n—year deferred continuous annuity funded continuously:

Qg7
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