Manual for SOA Exam MLC.

Chapter 10. Markov chains. Section 10.1. Stochastic processes.

©2008. Miguel A. Arcones. All rights reserved.

Extract from: "Arcones' Manual for SOA Exam MLC. Fall 2009 Edition", available at http://www.actexmadriver.com/

Definition 1

A stochastic process is a collection of r.v.'s $\{X(t) : t \in T\}$ defined in the same sample space Ω , where T is a set.

Definition 1

A stochastic process is a collection of r.v.'s $\{X(t) : t \in T\}$ defined in the same sample space Ω , where T is a set.

T is called the **parameter set**. Usually, T is called the time set.

Definition 1

A stochastic process is a collection of r.v.'s $\{X(t) : t \in T\}$ defined in the same sample space Ω , where T is a set.

T is called the **parameter set**. Usually, *T* is called the time set. If *T* is discrete, $\{X(t) : t \in T\}$ is called a **discrete-time process**. Usually, $T = \{0, 1, ..., \}$.

Definition 1

A stochastic process is a collection of r.v.'s $\{X(t) : t \in T\}$ defined in the same sample space Ω , where T is a set.

T is called the **parameter set**. Usually, *T* is called the time set. If *T* is discrete, $\{X(t) : t \in T\}$ is called a **discrete-time process**. Usually, $T = \{0, 1, ..., \}$. If *T* is an interval, $\{X(t) : t \in T\}$ is called a **continuous-time process**. Usually, $T = [0, \infty)$. Let \mathbb{R}^T be the collection of functions from T into \mathbb{R} . A stochastic process $\{X(t) : t \in T\}$ defines a function from Ω into \mathbb{R}^T as follows $\omega \in \Omega \mapsto X(\cdot)(\omega) \in \mathbb{R}^T$. A stochastic processes associates a function to each outcome ω . In some sense a stochastic process is a **random function**. The distribution of a stochastic process $\{X(t) : t \in T\}$ is the probability measure

 $\mathbb{P}\{\{X(t):t\in T\}\in A\}, A\subset \mathbb{R}^T.$