Manual for SOA Exam MLC.

Chapter 10. Markov chains.
Section 10.2. Markov chains.

(C)2008. Miguel A. Arcones. All rights reserved.

Extract from:
"'Arcones' Manual for SOA Exam MLC. Fall 2009 Edition", available at http://www.actexmadriver.com/

Markov chains

Definition 1

A discrete time Markov chain $\left\{X_{n}: n=0,1,2, \ldots\right\}$ is a stochastic process with values in the countable space E such that for each $i_{0}, i_{1}, \ldots, i_{n}, j \in E$,

$$
=\begin{gather*}
\mathbb{P}\left\{X_{n+1}=j \mid X_{0}=i_{0}, X_{1}=i_{1}, \ldots, X_{n-1}=i_{n-1}, X_{n}=i_{n}\right\} \tag{1}\\
\mathbb{P}\left\{X_{n+1}=j \mid X_{n}=i_{n}\right\} .
\end{gather*}
$$

Markov chains

Definition 1

A discrete time Markov chain $\left\{X_{n}: n=0,1,2, \ldots\right\}$ is a stochastic process with values in the countable space E such that for each $i_{0}, i_{1}, \ldots, i_{n}, j \in E$,

$$
=\begin{gather*}
\mathbb{P}\left\{X_{n+1}=j \mid X_{0}=i_{0}, X_{1}=i_{1}, \ldots, X_{n-1}=i_{n-1}, X_{n}=i_{n}\right\} \tag{1}\\
\mathbb{P}\left\{X_{n+1}=j \mid X_{n}=i_{n}\right\} .
\end{gather*}
$$

Since X_{n} takes values in the countable set E, X_{n} has a discrete distribution.

Markov chains

Definition 1

A discrete time Markov chain $\left\{X_{n}: n=0,1,2, \ldots\right\}$ is a stochastic process with values in the countable space E such that for each $i_{0}, i_{1}, \ldots, i_{n}, j \in E$,

$$
=\begin{gather*}
\mathbb{P}\left\{X_{n+1}=j \mid X_{0}=i_{0}, X_{1}=i_{1}, \ldots, X_{n-1}=i_{n-1}, X_{n}=i_{n}\right\} \tag{1}\\
\mathbb{P}\left\{X_{n+1}=j \mid X_{n}=i_{n}\right\} .
\end{gather*}
$$

Since X_{n} takes values in the countable set E, X_{n} has a discrete distribution.
The set E in the previous definition is called the state space. Usually, $E=\{0,1,2, \ldots\}$ or $E=\{1,2, \ldots, m\}$. We will assume that $E=\{0,1,2, \ldots\}$. Each element of E is called a state. If $X_{n}=k$, where $k \in E$, we say that the Markov chain $\left\{X_{n}\right\}_{n=0}^{\infty}$ is at state k at stage n.

For a Markov chain the conditional distribution of any future state X_{n+1} given the past states $X_{0}, X_{1}, \ldots, X_{n-1}$ and the present state X_{n} is independent of the past values and depends only on the present state. Having observed the process until time n, the distribution of the process after time n on depends only on the value of the process at time n. The interpretation of

$$
\begin{aligned}
& \mathbb{P}\left\{X_{n+1}=j \mid X_{0}=i_{0}, X_{1}=i_{1}, \ldots, X_{n-1}=i_{n-1}, X_{n}=i_{n}\right\} \\
= & \mathbb{P}\left\{X_{n+1}=j \mid X_{n}=i_{n}\right\} .
\end{aligned}
$$

is that given the present the future is independent of the past. In order words, the evolution of the process depends only on the present and not in the past.

Definition 2

Given events A, B and C such that $\mathbb{P}\{C\}>0$, we say that A and B are independent given C if

$$
\mathbb{P}\{A \cap B \mid C\}=\mathbb{P}\{A \mid C\} \mathbb{P}\{B \mid C\} .
$$

Theorem 1

Given events A, B and C such that $\mathbb{P}\{B \cap C\}>0$, we have that A and B are independent given C if and only if

$$
\mathbb{P}\{A \mid B \cap C\}=\mathbb{P}\{A \mid C\} .
$$

Proof: A and B are independent given C if and only if $\frac{\mathbb{P}\{A \cap B \cap C\}}{\mathbb{P}\{C\}}=\frac{\mathbb{P}\{A \cap C\}}{\mathbb{P}(C\}} \frac{\mathbb{P}\{B \cap C\}}{\mathbb{P}\{C\}} . \mathbb{P}\{A \mid B \cap C\}=\mathbb{P}(A \mid C\}$ if and only if $\frac{\mathbb{P}\{A \cap B \cap C\}}{\mathbb{P}\{B \cap C\}}=\frac{\mathbb{P}\{A \cap C\}}{\mathbb{P}\{C\}}$.

By the previous theorem, for a Markov chain $\left\{X_{n}: n=0,1,2, \ldots\right\}$, for each $i_{0}, \ldots, i_{n+1} \in E$, given that $X_{n}=i_{n},\left(X_{0}, X_{1}, \ldots, X_{n-1}\right)=\left(i_{0}, \ldots, i_{n-1}\right)$ and $X_{n+1}=i_{n+1}$ are independent.

Example 1

A fair coin is thrown out repeatedly. Let X_{n} be the total number of heads obtained in the first n throws, $n=0,1,2 \ldots$. Notice that $X_{0}=0 . X_{n}$ has a binomial distribution with parameters n and $\frac{1}{2}$. The state space is $E=\{0,1,2, \ldots$,$\} . \left\{X_{n}\right\}_{n=0}^{\infty}$ is a Markov chain because for each $i_{0}, i_{1}, \ldots, i_{n}, j \in E$,

$$
\begin{aligned}
& \mathbb{P}\left\{X_{n+1}=j \mid X_{0}=i_{0}, X_{1}=i_{1}, \ldots, X_{n-1}=i_{n-1}, X_{n}=i_{n}\right\} \\
= & \mathbb{P}\left\{X_{n+1}=j \mid X_{n}=i_{n}\right\}, \\
= & \begin{cases}\frac{1}{2} \quad \text { if } j=i_{n}, \\
\frac{1}{2} & \text { if } j=i_{n}+1, \\
0 & \text { else. }\end{cases}
\end{aligned}
$$

Let $\alpha_{n}(i)=\mathbb{P}\left\{X_{n}=i\right\}, i \in E$.
$\left(\alpha_{0}(i)\right)_{i \in E}$ is called the initial distribution of the Markov chain.
$\left(\alpha_{n}(i)\right)_{i \in E}$ is called the distribution of the Markov chain at time n.
Notice that $\alpha_{n}(i) \geq 0$ and $\sum_{i \in E} \alpha_{n}(i)=1$.
We will denote to the row vector $\left(\alpha_{n}(i)\right)_{i \in E}$ by α_{n}. For example, if $E=\{0,1, \ldots, k\}$,

$$
\alpha_{n}=\left(\alpha_{n}(0), \alpha_{n}(1), \ldots, \alpha_{n}(k)\right)
$$

Let $\alpha_{n}(i)=\mathbb{P}\left\{X_{n}=i\right\}, i \in E$.
$\left(\alpha_{0}(i)\right)_{i \in E}$ is called the initial distribution of the Markov chain.
$\left(\alpha_{n}(i)\right)_{i \in E}$ is called the distribution of the Markov chain at time n.
Notice that $\alpha_{n}(i) \geq 0$ and $\sum_{i \in E} \alpha_{n}(i)=1$.
We will denote to the row vector $\left(\alpha_{n}(i)\right)_{i \in E}$ by α_{n}. For example, if $E=\{0,1, \ldots, k\}$,

$$
\alpha_{n}=\left(\alpha_{n}(0), \alpha_{n}(1), \ldots, \alpha_{n}(k)\right)
$$

Theorem 2

$$
\alpha_{n}(i) \geq 0 \text { and } \sum_{i \in E} \alpha_{n}(i)=1
$$

Let $\alpha_{n}(i)=\mathbb{P}\left\{X_{n}=i\right\}, i \in E$.
$\left(\alpha_{0}(i)\right)_{i \in E}$ is called the initial distribution of the Markov chain.
$\left(\alpha_{n}(i)\right)_{i \in E}$ is called the distribution of the Markov chain at time n.
Notice that $\alpha_{n}(i) \geq 0$ and $\sum_{i \in E} \alpha_{n}(i)=1$.
We will denote to the row vector $\left(\alpha_{n}(i)\right)_{i \in E}$ by α_{n}. For example, if $E=\{0,1, \ldots, k\}$,

$$
\alpha_{n}=\left(\alpha_{n}(0), \alpha_{n}(1), \ldots, \alpha_{n}(k)\right)
$$

Theorem 2

$$
\alpha_{n}(i) \geq 0 \text { and } \sum_{i \in E} \alpha_{n}(i)=1
$$

Proof: $\alpha_{n}(i)=\mathbb{P}\left\{X_{n}=i\right\} \geq 0$. We also have that

$$
\sum_{i \in E} \alpha_{n}(i)=\sum_{i \in E} \mathbb{P}\left\{X_{n}=i\right\}=\mathbb{P}\left\{X_{n} \in E\right\}=1
$$

Let $Q_{n}(i, j)=\mathbb{P}\left\{X_{n+1}=j \mid X_{n}=i\right\}$, where $i, j \in E . Q_{n}(i, j)$ is called the one-step transition probability from state i into state j at stage n. We have that $\left(Q_{n}(i, j)\right)_{i, j \in E}$ is a matrix. If $E=\{0,1,, \ldots, k\}$, then

$$
\left(Q_{n}(i, j)\right)_{i, j \in E}=\left(\begin{array}{cccc}
Q_{n}(0,0) & Q_{n}(0,1) & \cdots & Q_{n}(0, k) \\
Q_{n}(1,0) & Q_{n}(1,1) & \cdots & Q_{n}(1, k) \\
\cdots & \cdots & \cdots & \cdots \\
Q_{n}(k, 0) & Q_{n}(k, 1) & \cdots & Q_{n}(k, k)
\end{array}\right)
$$

The row of the matrix Q_{n} for the i entry is formed by conditional probabilities given $X_{n}=i$, the departing state. The column of the matrix Q_{n} for the j entry consists of conditional probabilities for $X_{n}=j$, the arriving state. If we write the states in the matrix Q_{n}, we have

	arriving states					
departing states	\cdot	0	1	\cdots	k	
	\cdot					
	\cdot					
\cdot	\cdot					
k						

Q_{n}(1,0) \& Q_{n}(1,1) \& \cdots \& Q_{n}(1, k)

\cdot \& \cdot \& \cdot \& \cdot

Q_{n}(k, 0) \& Q_{n}(k, 1) \& \cdot \& Q_{n}(k, k)\end{array}\right)\)

To find $Q_{n}(i, j)$ in this matrix, we need to look for i in the rows and j in the columns.

Example 2
Consider a Markov chain with $E=\{0,1,2\}$ and

$$
Q_{6}=\left(\begin{array}{lll}
0.2 & 0.3 & 0.5 \\
0.3 & 0.5 & 0.2 \\
0.1 & 0.1 & 0.8
\end{array}\right) .
$$

Find:
(i) $\mathbb{P}\left\{X_{7}=j \mid X_{6}=0\right\}, j=0,1,2$.
(ii) $\mathbb{P}\left\{X_{7}=1 \mid X_{6}=j\right\}, j=0,1,2$.

Solution: (i) We have that

$$
\begin{aligned}
& \mathbb{P}\left\{X_{7}=0 \mid X_{6}=0\right\}=0.2, \mathbb{P}\left\{X_{7}=1 \mid X_{6}=0\right\}=0.3 \\
& \text { and } \mathbb{P}\left\{X_{7}=2 \mid X_{6}=0\right\}=0.5
\end{aligned}
$$

(ii) We have that

$$
\begin{aligned}
& \mathbb{P}\left\{X_{7}=1 \mid X_{6}=0\right\}=0.3, \mathbb{P}\left\{X_{7}=1 \mid X_{6}=1\right\}=0.5 \\
& \text { and } \mathbb{P}\left\{X_{7}=1 \mid X_{6}=2\right\}=0.1 .
\end{aligned}
$$

In the previous example, $\mathbb{P}\left\{X_{7}=j \mid X_{6}=0\right\}, j=0,1,2$, are all the transition probabilities from state 0 at time 6 to another state at time 7. In the previous problem, $\mathbb{P}\left\{X_{7}=j \mid X_{6}=0\right\}, j=0,1,2$, are all the transition probabilities from time 6 to time 7 arriving at state 1.

Theorem 3
The one-step transition probabilities $Q_{n}(i, j)$ satisfy that

$$
Q_{n}(i, j) \geq 0 \text { and } \sum_{j \in E} Q_{n}(i, j)=1,
$$

i.e. the sum of the elements in each row is one.

Theorem 3
The one-step transition probabilities $Q_{n}(i, j)$ satisfy that

$$
Q_{n}(i, j) \geq 0 \text { and } \sum_{j \in E} Q_{n}(i, j)=1,
$$

i.e. the sum of the elements in each row is one.

Proof.
Since $Q_{n}(i, j)$ is a conditional probability, $Q_{n}(i, j) \geq 0$. We also have that
$\sum_{j \in E} Q_{n}(i, j)=\sum_{j \in E} \mathbb{P}\left\{X_{n+1}=j \mid X_{n}=i\right\}=\mathbb{P}\left\{X_{n+1} \in E \mid X_{n}=i\right\}=1$.

Example 3

Which of the following are legitime one-step transition probability matrices
(i) $Q_{0}=\left(\begin{array}{cc}-1 & 2 \\ 0.5 & 0.5\end{array}\right)$.
(ii) $Q_{0}=\left(\begin{array}{ll}0.3 & 0.7 \\ 0.4 & 0.7\end{array}\right)$.

Example 3

Which of the following are legitime one-step transition probability matrices
(i) $Q_{0}=\left(\begin{array}{cc}-1 & 2 \\ 0.5 & 0.5\end{array}\right)$.
(ii) $Q_{0}=\left(\begin{array}{ll}0.3 & 0.7 \\ 0.4 & 0.7\end{array}\right)$.

Solution: (i) The matrix is not a legitime transition probability because the entry $(1,1)$ is negative.
(ii) The matrix is not a legitime transition probability because the elements of the second row do not add to one.

We define $Q_{n}^{(k)}(i, j)=P\left\{X_{n+k}=j \mid X_{n}=i\right\} . Q_{n}^{(k)}(i, j)$ is called the k-step transition probability from state i into state j at time n.
Theorem 4

$$
Q_{n}^{(k)}(i, j) \geq 0 \text { and } \sum_{j \in E} Q_{n}^{(k)}(i, j)=1 .
$$

Lemma 1

Successive conditioning rule. For each $B, A_{1}, A_{2}, \ldots, A_{n} \subset \Omega$,

$$
\begin{aligned}
& \mathbb{P}\left\{A_{1} \cap A_{2} \cap \cdots \cap A_{n} \mid B\right\} \\
= & \mathbb{P}\left\{A_{1} \mid B\right\} \mathbb{P}\left\{A_{2} \mid B \cap A_{1}\right\} \cdots \mathbb{P}\left\{A_{n} \mid B \cap A_{1} \cap A_{2} \cap \cdots \cap A_{n-1}\right\} .
\end{aligned}
$$

Lemma 1

Successive conditioning rule. For each $B, A_{1}, A_{2}, \ldots, A_{n} \subset \Omega$,

$$
\begin{aligned}
& \mathbb{P}\left\{A_{1} \cap A_{2} \cap \cdots \cap A_{n} \mid B\right\} \\
= & \mathbb{P}\left\{A_{1} \mid B\right\} \mathbb{P}\left\{A_{2} \mid B \cap A_{1}\right\} \cdots \mathbb{P}\left\{A_{n} \mid B \cap A_{1} \cap A_{2} \cap \cdots \cap A_{n-1}\right\} .
\end{aligned}
$$

Proof:

$$
\begin{aligned}
& \mathbb{P}\left\{A_{1} \mid B\right\} \mathbb{P}\left\{A_{2} \mid B \cap A_{1}\right\} \cdots \mathbb{P}\left\{A_{n} \mid B \cap A_{1} \cap A_{2} \cap \cdots \cap A_{n-1}\right\} \\
= & \frac{\mathbb{P}\left\{B \cap A_{1}\right\}}{\mathbb{P}\{B\}} \frac{\mathbb{P}\left\{B \cap A_{1} \cap A_{2}\right\}}{\mathbb{P}\left\{B \cap A_{1}\right\}} \cdots \frac{\mathbb{P}\left\{B \cap A_{1} \cap A_{2} \cap \cdots \cap A_{n-1} \cap A_{n}\right\}}{\mathbb{P}\left\{B \cap A_{1} \cap A_{2} \cap \cdots \cap A_{n-1}\right\}} \\
= & \frac{\mathbb{P}\left\{B \cap A_{1} \cap A_{2} \cap \cdots \cap A_{n-1} \cap A_{n}\right\}}{\mathbb{P}\{B\}} \\
= & \mathbb{P}\left\{A_{1} \cap A_{2} \cap \cdots \cap A_{n} \mid B\right\} .
\end{aligned}
$$

Corollary 1

For each $A_{1}, A_{2}, \ldots, A_{n} \subset \Omega$,

$$
\begin{aligned}
& \mathbb{P}\left\{A_{1} \cap A_{2} \cap \cdots \cap A_{n}\right\} \\
= & \mathbb{P}\left\{A_{1}\right\} \mathbb{P}\left\{A_{2} \mid A_{1}\right\} \cdots \mathbb{P}\left[A_{n} \mid A_{1} \cap A_{2} \cap \cdots \cap A_{n-1}\right\} .
\end{aligned}
$$

Corollary 1

For each $A_{1}, A_{2}, \ldots, A_{n} \subset \Omega$,

$$
\begin{aligned}
& \mathbb{P}\left\{A_{1} \cap A_{2} \cap \cdots \cap A_{n}\right\} \\
= & \mathbb{P}\left\{A_{1}\right\} \mathbb{P}\left\{A_{2} \mid A_{1}\right\} \cdots \mathbb{P}\left[A_{n} \mid A_{1} \cap A_{2} \cap \cdots \cap A_{n-1}\right\} .
\end{aligned}
$$

Proof: By Lemma 1,

$$
\begin{aligned}
& \mathbb{P}\left\{A_{1} \cap A_{2} \cap \cdots \cap A_{n} \mid B\right\} \\
= & \mathbb{P}\left\{A_{1} \mid B\right\} \mathbb{P}\left\{A_{2} \mid B \cap A_{1}\right\} \cdots \mathbb{P}\left\{A_{n} \mid B \cap A_{1} \cap A_{2} \cap \cdots \cap A_{n-1}\right\} .
\end{aligned}
$$

Taking $B=\Omega$, we get

$$
\begin{aligned}
& \mathbb{P}\left\{A_{1} \cap A_{2} \cap \cdots \cap A_{n}\right\} \\
= & \mathbb{P}\left\{A_{1}\right\} \mathbb{P}\left\{A_{2} \mid A_{1}\right\} \cdots \mathbb{P}\left\{A_{n} \mid A_{1} \cap A_{2} \cap \cdots \cap A_{n-1}\right\} .
\end{aligned}
$$

Example 1

From a deck of 52 cards, you withdraw three cards one after another. Find the probability that the first two cards are spades and the third one is a club.

Example 1

From a deck of 52 cards, you withdraw three cards one after another. Find the probability that the first two cards are spades and the third one is a club.
Solution: Let $A_{1}=\{$ first card is a spade $\}$, let
$A_{2}=\{$ second card is a spade $\}$ and let
$A_{3}=\{$ third card is a club $\}$. We have that

$$
\begin{aligned}
& \mathbb{P}\left\{A_{1} \cap A_{2} \cap A_{3}\right\}=\mathbb{P}\left\{A_{1}\right\} \mathbb{P}\left\{A_{2} \mid A_{1}\right\} \mathbb{P}\left\{A_{3} \mid A_{1} \cap A_{2}\right\} \\
= & \frac{13}{52} \frac{12}{51} \frac{13}{50}=0.01529411765
\end{aligned}
$$

Theorem 5

(Basic theorem for Markov chains)
(i)

$$
\begin{aligned}
& P\left\{X_{0}=i_{0}, X_{1}=i_{1}, \ldots, X_{n-1}=i_{n-1}, X_{n}=i_{n}\right\} \\
= & \alpha_{0}\left(i_{0}\right) Q_{0}\left(i_{0}, i_{1}\right) Q_{1}\left(i_{1}, i_{2}\right) \cdots Q_{n-1}\left(i_{n-1}, i_{n}\right)
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& \alpha_{n}\left(i_{n}\right)=P\left\{X_{n}=i_{n}\right\} \\
= & \sum_{i_{0}, i_{1}, \ldots, i_{n-1} \in E} \alpha_{0}\left(i_{0}\right) Q_{0}\left(i_{0}, i_{1}\right) Q_{1}\left(i_{1}, i_{2}\right) \cdots Q_{n-1}\left(i_{n-1}, i_{n}\right) .
\end{aligned}
$$

Proof: (i) Using Corollary 1 and the Markov property,

$$
\begin{aligned}
& \mathbb{P}\left\{X_{0}=i_{0}, X_{1}=i_{1}, \ldots, X_{n-1}=i_{n-1}, X_{n}=i_{n}\right\} \\
= & \mathbb{P}\left\{X_{0}=i_{0}\right\} \mathbb{P}\left\{X_{1}=i_{1} \mid X_{0}=i_{0}\right\} \mathbb{P}\left\{X_{2}=i_{2} \mid X_{0}=i_{0}, X_{1}=i_{1}\right\} \\
& \cdots \mathbb{P}\left\{X_{n}=i_{n} \mid X_{0}=i_{0}, X_{1}=i_{1}, \ldots, X_{n-1}=i_{n-1}\right\} \\
= & \mathbb{P}\left\{X_{0}=i_{0}\right\} \mathbb{P}\left\{X_{1}=i_{1} \mid X_{0}=i_{0}\right\} \mathbb{P}\left\{X_{2}=i_{2} \mid X_{1}=i_{1}\right\} \\
& \cdots \mathbb{P}\left\{X_{n}=i_{n} \mid X_{n-1}=i_{n-1}\right\} \\
= & \alpha_{0}\left(i_{0}\right) Q_{0}\left(i_{0}, i_{1}\right) Q_{1}\left(i_{1}, i_{2}\right) \cdots Q_{n-1}\left(i_{n-1}, i_{n}\right) .
\end{aligned}
$$

(ii) Notice that

$$
\begin{aligned}
& \left\{X_{n}=i_{n}\right\} \\
= & \cup_{i_{0}, i_{1}, \ldots, i_{n-1} \in E}\left\{X_{0}=i_{0}, X_{1}=i_{1}, \ldots, X_{n-1}=i_{n-1}, X_{n}=i_{n}\right\},
\end{aligned}
$$

where the union is over disjoint events. Hence,

$$
\begin{aligned}
& \alpha_{n}\left(i_{n}\right)=\mathbb{P}\left\{X_{n}=i_{n}\right\} \\
= & \sum_{i_{0}, i_{1}, \ldots, i_{n-1} \in E} \mathbb{P}\left\{X_{0}=i_{0}, X_{1}=i_{1}, \ldots, X_{n-1}=i_{n-1}, X_{n}=i_{n}\right\} \\
= & \sum_{i_{0}, i_{1}, \ldots, i_{n-1} \in E} \alpha_{0}\left(i_{0}\right) Q_{0}\left(i_{0}, i_{1}\right) Q_{1}\left(i_{1}, i_{2}\right) \cdots Q_{n-1}\left(i_{n-1}, i_{n}\right) .
\end{aligned}
$$

$$
\alpha_{n}\left(i_{n}\right)=\sum_{i_{0}, i_{1}, \ldots, i_{n-1} \in E} \alpha_{0}\left(i_{0}\right) Q_{0}\left(i_{0}, i_{1}\right) Q_{1}\left(i_{1}, i_{2}\right) \cdots Q_{n-1}\left(i_{n-1}, i_{n}\right)
$$

implies that

$$
\alpha_{n}=\alpha_{0} Q_{0} Q_{1} \cdots Q_{n-1} .
$$

Matrix multiplication is used in the previous formula. For example, if $E=\{0,1, \ldots, k\}$,
$\alpha_{0} Q_{0}$
$=\left(\alpha_{0}(0), \alpha_{0}(1), \ldots, \alpha_{0}(k)\right)\left(\begin{array}{cccc}Q_{0}(0,0) & Q_{0}(0,1) & \cdots & Q_{0}(0, k) \\ Q_{0}(1,0) & Q_{0}(1,1) & \cdots & Q_{0}(1, k) \\ \cdots & \cdots & \cdots & \cdots \\ Q_{0}(k, 0) & Q_{0}(k, 1) & \cdots & Q_{0}(k, k)\end{array}\right)$
$\left.=\left(\sum_{i=0}^{k} \alpha_{0}(i) Q_{0}(i, 0), \sum_{i=0}^{k} \alpha_{0}(i) Q_{0}(i, 1), \ldots, \sum_{i=0}^{k} \alpha_{n}(i) Q_{0}(i, k)\right)\right)$
$=\alpha_{1}$,

$$
\begin{aligned}
& \alpha_{0} Q_{0} Q_{1}=\alpha_{1} Q_{1} \\
= & \left.\left(\sum_{i=0}^{k} \alpha_{0}(i) Q_{0}(i, 0), \ldots, \sum_{i=0}^{k} \alpha_{0}(i) Q_{0}(i, k)\right)\right) \\
& \times\left(\begin{array}{ccc}
Q_{1}(0,0) & \cdots & Q_{1}(0, k) \\
Q_{1}(1,0) & \cdots & Q_{1}(1, k) \\
\cdots & \cdots & \cdots \\
Q_{1}(k, 0) & \cdots & Q_{1}(k, k)
\end{array}\right) \\
= & \left(\sum_{i=0}^{k} \sum_{j=0}^{k} \alpha_{n}(i) Q_{0}(i, j) Q_{1}(j, 0), \ldots, \sum_{i=0}^{k} \alpha_{n}(i) Q_{0}(i, j) Q_{1}(j, k)\right) \\
= & \alpha_{2} .
\end{aligned}
$$

Example 4

Consider a Markov chain with $E=\{0,1,2\}, \alpha_{0}=(0.3,0.4,0.3)$,

$$
Q_{0}=\left(\begin{array}{lll}
0.2 & 0.3 & 0.5 \\
0.3 & 0.5 & 0.2 \\
0.1 & 0.1 & 0.8
\end{array}\right), Q_{1}=\left(\begin{array}{lll}
0.1 & 0.1 & 0.8 \\
0.3 & 0.5 & 0.2 \\
0.3 & 0.5 & 0.2
\end{array}\right) .
$$

Example 4

Consider a Markov chain with $E=\{0,1,2\}, \alpha_{0}=(0.3,0.4,0.3)$,

$$
Q_{0}=\left(\begin{array}{lll}
0.2 & 0.3 & 0.5 \\
0.3 & 0.5 & 0.2 \\
0.1 & 0.1 & 0.8
\end{array}\right), Q_{1}=\left(\begin{array}{ccc}
0.1 & 0.1 & 0.8 \\
0.3 & 0.5 & 0.2 \\
0.3 & 0.5 & 0.2
\end{array}\right) .
$$

(i) $\mathbb{P}\left\{X_{0}=1\right\}$.

Example 4

Consider a Markov chain with $E=\{0,1,2\}, \alpha_{0}=(0.3,0.4,0.3)$,

$$
Q_{0}=\left(\begin{array}{lll}
0.2 & 0.3 & 0.5 \\
0.3 & 0.5 & 0.2 \\
0.1 & 0.1 & 0.8
\end{array}\right), Q_{1}=\left(\begin{array}{ccc}
0.1 & 0.1 & 0.8 \\
0.3 & 0.5 & 0.2 \\
0.3 & 0.5 & 0.2
\end{array}\right) .
$$

(i) $\mathbb{P}\left\{X_{0}=1\right\}$.

Solution: (i) $\mathbb{P}\left\{X_{0}=1\right\}=0.4$.

Example 4

Consider a Markov chain with $E=\{0,1,2\}, \alpha_{0}=(0.3,0.4,0.3)$,

$$
Q_{0}=\left(\begin{array}{lll}
0.2 & 0.3 & 0.5 \\
0.3 & 0.5 & 0.2 \\
0.1 & 0.1 & 0.8
\end{array}\right), Q_{1}=\left(\begin{array}{ccc}
0.1 & 0.1 & 0.8 \\
0.3 & 0.5 & 0.2 \\
0.3 & 0.5 & 0.2
\end{array}\right) .
$$

(ii) $\mathbb{P}\left\{X_{1}=1\right\}$.

Example 4
Consider a Markov chain with $E=\{0,1,2\}, \alpha_{0}=(0.3,0.4,0.3)$,

$$
Q_{0}=\left(\begin{array}{lll}
0.2 & 0.3 & 0.5 \\
0.3 & 0.5 & 0.2 \\
0.1 & 0.1 & 0.8
\end{array}\right), Q_{1}=\left(\begin{array}{ccc}
0.1 & 0.1 & 0.8 \\
0.3 & 0.5 & 0.2 \\
0.3 & 0.5 & 0.2
\end{array}\right) .
$$

(ii) $\mathbb{P}\left\{X_{1}=1\right\}$.

Solution: (ii) We have that
$\mathbb{P}\left\{X_{1}=1\right\}=\sum_{j=0}^{2} \alpha_{0}(j) Q_{1}(j, 1)=(0.3)(0.3)+(0.4)(0.5)+(0.3)(0.1)$,
$=0.32$, which is the second entry in the vector

$$
(0.3,0.4,0.3)\left(\begin{array}{lll}
0.2 & 0.3 & 0.5 \\
0.3 & 0.5 & 0.2 \\
0.1 & 0.1 & 0.8
\end{array}\right)=(0.21,0.32,0.47)
$$

Example 4

Consider a Markov chain with $E=\{0,1,2\}, \alpha_{0}=(0.3,0.4,0.3)$,

$$
Q_{0}=\left(\begin{array}{lll}
0.2 & 0.3 & 0.5 \\
0.3 & 0.5 & 0.2 \\
0.1 & 0.1 & 0.8
\end{array}\right), Q_{1}=\left(\begin{array}{lll}
0.1 & 0.1 & 0.8 \\
0.3 & 0.5 & 0.2 \\
0.3 & 0.5 & 0.2
\end{array}\right)
$$

(iii) $\mathbb{P}\left\{X_{2}=1\right\}$.

Example 4
Consider a Markov chain with $E=\{0,1,2\}, \alpha_{0}=(0.3,0.4,0.3)$,

$$
Q_{0}=\left(\begin{array}{lll}
0.2 & 0.3 & 0.5 \\
0.3 & 0.5 & 0.2 \\
0.1 & 0.1 & 0.8
\end{array}\right), Q_{1}=\left(\begin{array}{ccc}
0.1 & 0.1 & 0.8 \\
0.3 & 0.5 & 0.2 \\
0.3 & 0.5 & 0.2
\end{array}\right) .
$$

(iii) $\mathbb{P}\left\{X_{2}=1\right\}$.

Solution: (iii) We have that

$$
\begin{aligned}
& (0.3,0.4,0.3)\left(\begin{array}{lll}
0.2 & 0.3 & 0.5 \\
0.3 & 0.5 & 0.2 \\
0.1 & 0.1 & 0.8
\end{array}\right)\left(\begin{array}{lll}
0.1 & 0.1 & 0.8 \\
0.3 & 0.5 & 0.2 \\
0.3 & 0.5 & 0.2
\end{array}\right) \\
= & (0.21,0.32,0.47)\left(\begin{array}{lll}
0.1 & 0.1 & 0.8 \\
0.3 & 0.5 & 0.2 \\
0.3 & 0.5 & 0.2
\end{array}\right) \\
= & (0.258,0.416,0.326), \text { and } \mathbb{P}\left\{X_{2}=1\right\}=0.416 .
\end{aligned}
$$

Example 4

Consider a Markov chain with $E=\{0,1,2\}, \alpha_{0}=(0.3,0.4,0.3)$,

$$
Q_{0}=\left(\begin{array}{lll}
0.2 & 0.3 & 0.5 \\
0.3 & 0.5 & 0.2 \\
0.1 & 0.1 & 0.8
\end{array}\right), Q_{1}=\left(\begin{array}{ccc}
0.1 & 0.1 & 0.8 \\
0.3 & 0.5 & 0.2 \\
0.3 & 0.5 & 0.2
\end{array}\right) .
$$

(iv) $\mathbb{P}\left\{X_{0}=1, X_{1}=2\right\}$.

Example 4

Consider a Markov chain with $E=\{0,1,2\}, \alpha_{0}=(0.3,0.4,0.3)$,

$$
Q_{0}=\left(\begin{array}{lll}
0.2 & 0.3 & 0.5 \\
0.3 & 0.5 & 0.2 \\
0.1 & 0.1 & 0.8
\end{array}\right), Q_{1}=\left(\begin{array}{lll}
0.1 & 0.1 & 0.8 \\
0.3 & 0.5 & 0.2 \\
0.3 & 0.5 & 0.2
\end{array}\right)
$$

(iv) $\mathbb{P}\left\{X_{0}=1, X_{1}=2\right\}$.

Solution: (iv) $1 \mapsto 2$,

$$
\mathbb{P}\left\{X_{0}=1, X_{1}=2\right\}=\alpha_{0}(1) Q_{0}(1,2)=(0.4)(0.2)=0.08
$$

Example 4

Consider a Markov chain with $E=\{0,1,2\}, \alpha_{0}=(0.3,0.4,0.3)$,

$$
Q_{0}=\left(\begin{array}{lll}
0.2 & 0.3 & 0.5 \\
0.3 & 0.5 & 0.2 \\
0.1 & 0.1 & 0.8
\end{array}\right), Q_{1}=\left(\begin{array}{lll}
0.1 & 0.1 & 0.8 \\
0.3 & 0.5 & 0.2 \\
0.3 & 0.5 & 0.2
\end{array}\right) .
$$

(v) $\mathbb{P}\left\{X_{0}=1, X_{1}=0\right\}$.

Example 4

Consider a Markov chain with $E=\{0,1,2\}, \alpha_{0}=(0.3,0.4,0.3)$,

$$
Q_{0}=\left(\begin{array}{lll}
0.2 & 0.3 & 0.5 \\
0.3 & 0.5 & 0.2 \\
0.1 & 0.1 & 0.8
\end{array}\right), Q_{1}=\left(\begin{array}{lll}
0.1 & 0.1 & 0.8 \\
0.3 & 0.5 & 0.2 \\
0.3 & 0.5 & 0.2
\end{array}\right) .
$$

(v) $\mathbb{P}\left\{X_{0}=1, X_{1}=0\right\}$.

Solution: (v) $1 \mapsto 0$,

$$
\mathbb{P}\left\{X_{0}=1, X_{1}=0\right\}=\alpha_{0}(1) Q_{0}(1,0)=(0.4)(0.3)=0.12
$$

Example 4

Consider a Markov chain with $E=\{0,1,2\}, \alpha_{0}=(0.3,0.4,0.3)$,

$$
Q_{0}=\left(\begin{array}{lll}
0.2 & 0.3 & 0.5 \\
0.3 & 0.5 & 0.2 \\
0.1 & 0.1 & 0.8
\end{array}\right), Q_{1}=\left(\begin{array}{lll}
0.1 & 0.1 & 0.8 \\
0.3 & 0.5 & 0.2 \\
0.3 & 0.5 & 0.2
\end{array}\right) .
$$

(vi) $\mathbb{P}\left\{X_{0}=1, X_{1}=2, X_{2}=2\right\}$.

Example 4

Consider a Markov chain with $E=\{0,1,2\}, \alpha_{0}=(0.3,0.4,0.3)$,

$$
Q_{0}=\left(\begin{array}{lll}
0.2 & 0.3 & 0.5 \\
0.3 & 0.5 & 0.2 \\
0.1 & 0.1 & 0.8
\end{array}\right), Q_{1}=\left(\begin{array}{lll}
0.1 & 0.1 & 0.8 \\
0.3 & 0.5 & 0.2 \\
0.3 & 0.5 & 0.2
\end{array}\right) .
$$

(vi) $\mathbb{P}\left\{X_{0}=1, X_{1}=2, X_{2}=2\right\}$.

Solution: (vi)

$$
\begin{aligned}
& \mathbb{P}\left\{X_{0}=1, X_{1}=2, X_{2}=2\right\}=\alpha_{0}(1) Q_{0}(1,2) Q_{1}(2,2) \\
= & (0.4)(0.2)(0.2)=0.016 .
\end{aligned}
$$

Example 4

Consider a Markov chain with $E=\{0,1,2\}, \alpha_{0}=(0.3,0.4,0.3)$,

$$
Q_{0}=\left(\begin{array}{lll}
0.2 & 0.3 & 0.5 \\
0.3 & 0.5 & 0.2 \\
0.1 & 0.1 & 0.8
\end{array}\right), Q_{1}=\left(\begin{array}{ccc}
0.1 & 0.1 & 0.8 \\
0.3 & 0.5 & 0.2 \\
0.3 & 0.5 & 0.2
\end{array}\right)
$$

(vii) $\mathbb{P}\left\{X_{0}=2, X_{1}=1, X_{2}=0\right\}$.

Example 4

Consider a Markov chain with $E=\{0,1,2\}, \alpha_{0}=(0.3,0.4,0.3)$,

$$
Q_{0}=\left(\begin{array}{lll}
0.2 & 0.3 & 0.5 \\
0.3 & 0.5 & 0.2 \\
0.1 & 0.1 & 0.8
\end{array}\right), Q_{1}=\left(\begin{array}{lll}
0.1 & 0.1 & 0.8 \\
0.3 & 0.5 & 0.2 \\
0.3 & 0.5 & 0.2
\end{array}\right)
$$

(vii) $\mathbb{P}\left\{X_{0}=2, X_{1}=1, X_{2}=0\right\}$.

Solution: (vii) $2 \mapsto 1 \mapsto 0$,

$$
\begin{aligned}
& \mathbb{P}\left\{X_{0}=2, X_{1}=1, X_{2}=0\right\}=\alpha_{0}(2) Q_{0}(2,1) Q_{1}(1,0) \\
= & (0.3)(0.1)(0.3)=0.009 .
\end{aligned}
$$

Example 4

Consider a Markov chain with $E=\{0,1,2\}, \alpha_{0}=(0.3,0.4,0.3)$,

$$
Q_{0}=\left(\begin{array}{lll}
0.2 & 0.3 & 0.5 \\
0.3 & 0.5 & 0.2 \\
0.1 & 0.1 & 0.8
\end{array}\right), Q_{1}=\left(\begin{array}{ccc}
0.1 & 0.1 & 0.8 \\
0.3 & 0.5 & 0.2 \\
0.3 & 0.5 & 0.2
\end{array}\right) .
$$

(viii) $\mathbb{P}\left\{X_{0}=1, X_{2}=2\right\}$.

Example 4

Consider a Markov chain with $E=\{0,1,2\}, \alpha_{0}=(0.3,0.4,0.3)$,

$$
Q_{0}=\left(\begin{array}{lll}
0.2 & 0.3 & 0.5 \\
0.3 & 0.5 & 0.2 \\
0.1 & 0.1 & 0.8
\end{array}\right), Q_{1}=\left(\begin{array}{ccc}
0.1 & 0.1 & 0.8 \\
0.3 & 0.5 & 0.2 \\
0.3 & 0.5 & 0.2
\end{array}\right) .
$$

(viii) $\mathbb{P}\left\{X_{0}=1, X_{2}=2\right\}$.

Solution: (viii)

$$
\begin{aligned}
& \mathbb{P}\left\{X_{0}=1, X_{2}=2\right\}=\sum_{j=0}^{2} \mathbb{P}\left\{X_{0}=1, X_{1}=j, X_{3}=2\right\} \\
= & (0.4)(0.3)(0.8)+(0.4)(0.5)(0.2)+(0.4)(0.2)(0.2)=0.152
\end{aligned}
$$

Suppose that the annual effective rate of interest is i. Consider the cashflow

payments	C_{1}	C_{2}	\cdots	C_{n}
Time (in years)	t_{1}	t_{2}	\cdots	t_{n}

The present value of the former cashflow at time t is

$$
\sum_{j=1}^{n} C_{j}(1+i)^{t-t_{j}}
$$

If the time at which the present value is omitted, we assume that the time is time zero. The present value of the former cashflow is

$$
\sum_{j=1}^{n} C_{j}(1+i)^{-t_{j}}
$$

The annual interest factor is $1+i$.
The annual discount factor is $\nu=(1+i)^{-1}$.
The annual effective rate of discount is $d=1-\nu=\frac{i}{1+i}$.

Suppose that the payments in a cashflow happen with certain probability. We have

Probability that a payment is made	p_{1}	p_{2}	\cdots	p_{n}
payments	C_{1}	C_{2}	\cdots	C_{n}
Time (in years)	t_{1}	t_{2}	\cdots	t_{n}

Then, the actuarial present value of the former cashflow is

$$
\sum_{j=1}^{n} C_{j} p_{j}(1+i)^{-t_{j}}
$$

Example 5

An actuary models the life status of an individual with lung cancer using a non-homogenous Markov chain model with states: State 1: life; and State 2: dead. The transition probability matrices are

$$
\begin{aligned}
& Q_{0}=\left(\begin{array}{cc}
0.6 & 0.4 \\
0 & 1
\end{array}\right), Q_{1}=\left(\begin{array}{cc}
0.4 & 0.6 \\
0 & 1
\end{array}\right), Q_{2}=\left(\begin{array}{cc}
0.2 & 0.8 \\
0 & 1
\end{array}\right), \\
& Q_{3}=\left(\begin{array}{ll}
0 & 1 \\
0 & 1
\end{array}\right)
\end{aligned}
$$

Suppose that changes in state occur at the end of the year. A death benefit of 100000 is paid at the end of the year of death. The annual effective rate of interest is 5%. The insured is alive at the beginning of year zero. Calculate the actuarial present value of this life insurance.

Solution: Since at the beginning the individual is alive, $\alpha_{0}=(1,0)$. We have that

$$
\begin{aligned}
& \alpha_{0}=\alpha_{0} Q_{0}=(1,0)\left(\begin{array}{cc}
0.6 & 0.4 \\
0 & 1
\end{array}\right)=(0.6,0.4), \\
& \alpha_{1}=\alpha_{0} Q_{0} Q_{1}=(0.6,0.4)\left(\begin{array}{cc}
0.4 & 0.6 \\
0 & 1
\end{array}\right)=(0.24,0.76), \\
& \alpha_{2}=\alpha_{0} Q_{0} Q_{1} Q_{2}=(0.24,0.76)\left(\begin{array}{cc}
0.2 & 0.8 \\
0 & 1
\end{array}\right)=(0.048,0.952), \\
& \alpha_{3}=\alpha_{0} Q_{0} Q_{1} Q_{2} Q_{3}=(0.048,0.952)\left(\begin{array}{ll}
0 & 1 \\
0 & 1
\end{array}\right)=(0,1) .
\end{aligned}
$$

The probability that an individual dies in the n-th year is $\mathbb{P}\left\{X_{n}=2\right\}-\mathbb{P}\left\{X_{n-1}=2\right\}$.

Hence,

dead happens at the end of year	1	2	3	4
Probab.	0.4	$0.76-0.4$	$0.952-0.76$	$1-0.952$
	0.4	$=0.36$	$=0.192$	$=0.048$

The actuarial present value of this life insurance is

$$
\begin{aligned}
& 100000(0.4)(1.05)^{-1}+100000(0.36)(1.05)^{-2} \\
& +100000(0.192)(1.05)^{-3}+100000(0.048)(1.05)^{-4} \\
= & 91282.95309 .
\end{aligned}
$$

Theorem 6
(i)

$$
\begin{aligned}
& P\left\{X_{1}=i_{1}, \ldots, X_{n-1}=i_{n-1}, X_{n}=i_{n} \mid X_{0}=i_{0}\right\} \\
= & Q_{0}\left(i_{0}, i_{1}\right) Q_{1}\left(i_{1}, i_{2}\right) \cdots Q_{n-1}\left(i_{n-1}, i_{n}\right)
\end{aligned}
$$

(ii)

$$
Q_{0}^{(n)}\left(i_{0}, i_{n}\right)=\sum_{i_{1}, \ldots, i_{n-1} \in E} Q_{0}\left(i_{0}, i_{1}\right) Q_{1}\left(i_{1}, i_{2}\right) \cdots Q_{n-1}\left(i_{n-1}, i_{n}\right)
$$

Proof.

(i) Using Theorem 5, we have that

$$
\begin{aligned}
& P\left\{X_{1}=i_{1}, \ldots, X_{n-1}=i_{n-1}, X_{n}=i_{n} \mid X_{0}=i_{0}\right\} \\
= & \frac{P\left\{X_{0}=i_{0}, X_{1}=i_{1}, \ldots, X_{n-1}=i_{n-1}, X_{n}=i_{n}\right\}}{\mathbb{P}\left\{X_{0}=i_{0}\right\}} \\
= & \frac{\alpha_{0}\left(i_{0}\right) Q_{0}\left(i_{0}, i_{1}\right) Q_{1}\left(i_{1}, i_{2}\right) \cdots Q_{n-1}\left(i_{n-1}, i_{n}\right)}{\alpha_{0}\left(i_{0}\right)} \\
= & Q_{0}\left(i_{0}, i_{1}\right) Q_{1}\left(i_{1}, i_{2}\right) \cdots Q_{n-1}\left(i_{n-1}, i_{n}\right) .
\end{aligned}
$$

(ii) Noticing that

$$
\left\{X_{n}=i_{n}\right\}=\cup_{i_{1}, \ldots, i_{n-1} \in E}\left\{X_{1}=i_{1}, \ldots, X_{n-1}=i_{n-1}, X_{n}=i_{n}\right\}
$$

where the union is over disjoint events, we get that

$$
Q_{0}^{(n)}\left(i_{0}, i_{n}\right)=\sum_{i_{1}, \ldots, i_{n-1} \in E} Q_{0}\left(i_{0}, i_{1}\right) Q_{1}\left(i_{1}, i_{2}\right) \cdots Q_{n-1}\left(i_{n-1}, i_{n}\right) .
$$

Using matrix notation, Theorem 6 (ii) states that

$$
\begin{equation*}
Q_{0}^{(n)}=Q_{0} Q_{1} \cdots Q_{n-1} \tag{2}
\end{equation*}
$$

This equation is one of the Kolmogorov-Chapman equations of a Markov chain.
For example, $Q_{0}^{(2)}=Q_{0} Q_{1}$. Notice that

$$
\begin{aligned}
& Q_{0} Q_{1} \\
&=\left(\begin{array}{ccc}
Q_{0}(0,0) & \cdots & Q_{0}(0, k) \\
Q_{0}(1,0) & \cdots & Q_{0}(1, k) \\
\cdots & \cdots & \cdots \\
Q_{0}(k, 0) & \cdots & Q_{0}(k, k)
\end{array}\right)\left(\begin{array}{ccc}
Q_{1}(0,0) & \cdots & Q_{1}(0, k) \\
Q_{1}(1,0) & \cdots & Q_{0}(1, k) \\
\cdots & \cdots & \cdots \\
Q_{1}(k, 0) & \cdots & Q_{1}(k, k)
\end{array}\right) \\
&=\left(\begin{array}{ccc}
\sum_{i=0}^{k} Q_{0}(0, i) Q_{1}(i, 0) & \cdots & \left.\sum_{i=0}^{k} Q_{0}(0, i) Q_{0}(i, k)\right) \\
\cdots & \cdots & \cdots \\
\sum_{i=0}^{k} Q_{0}(k, i)(i) Q_{1}(i, 0) & \cdots & \left.\sum_{i=0}^{k} \alpha_{n}(i) Q_{0}(k, k)\right)
\end{array}\right) \\
&= Q_{0}^{(2)} .
\end{aligned}
$$

Example 6

Consider a Markov chain with $E=\{1,2\}$,

$$
Q_{0}=\left(\begin{array}{ll}
0.5 & 0.5 \\
0.3 & 0.7
\end{array}\right), Q_{1}=\left(\begin{array}{ll}
0.2 & 0.8 \\
0.6 & 0.4
\end{array}\right) .
$$

Suppose that $X_{0}=1$.

Example 6

Consider a Markov chain with $E=\{1,2\}$,

$$
Q_{0}=\left(\begin{array}{ll}
0.5 & 0.5 \\
0.3 & 0.7
\end{array}\right), Q_{1}=\left(\begin{array}{ll}
0.2 & 0.8 \\
0.6 & 0.4
\end{array}\right) .
$$

Suppose that $X_{0}=1$.
(i) Find the probability that at stage 2 the chain is in state 2.

Example 6
Consider a Markov chain with $E=\{1,2\}$,

$$
Q_{0}=\left(\begin{array}{ll}
0.5 & 0.5 \\
0.3 & 0.7
\end{array}\right), Q_{1}=\left(\begin{array}{ll}
0.2 & 0.8 \\
0.6 & 0.4
\end{array}\right) .
$$

Suppose that $X_{0}=1$.
(i) Find the probability that at stage 2 the chain is in state 2. Solution: (i) The Markov chain can be at stage 2 in state 1 , if any of the following transitions occur

$$
1 \mapsto 1 \mapsto 2,1 \mapsto 2 \mapsto 2 .
$$

The probabilities of the previous occurrences are

$$
(0.5)(0.8)=0.4 \text { and }(0.5)(0.4)=0.2
$$

The probability that at stage 2 the chain is in state 1 is $0.4+0.2=$ 0.6.

Example 6
Consider a Markov chain with $E=\{1,2\}$,

$$
Q_{0}=\left(\begin{array}{ll}
0.5 & 0.5 \\
0.3 & 0.7
\end{array}\right), Q_{1}=\left(\begin{array}{ll}
0.2 & 0.8 \\
0.6 & 0.4
\end{array}\right) .
$$

Suppose that $X_{0}=1$.
(i) Find the probability that at stage 2 the chain is in state 2 .

Solution: (i) We need to find $Q_{0}^{(2)}(1,2)=\mathbb{P}\left\{X_{2}=1 \mid X_{0}=1\right\}$, which is the element $(1,2)$ of the matrix:

$$
Q_{0} Q_{1}=\left(\begin{array}{ll}
0.5 & 0.5 \\
0.3 & 0.7
\end{array}\right)\left(\begin{array}{ll}
0.2 & 0.8 \\
0.6 & 0.4
\end{array}\right)=\left(\begin{array}{cc}
0.4 & 0.6 \\
0.48 & 0.52
\end{array}\right)
$$

The answer is 0.6 .

Example 6

Consider a Markov chain with $E=\{1,2\}$,

$$
Q_{0}=\left(\begin{array}{ll}
0.5 & 0.5 \\
0.3 & 0.7
\end{array}\right), Q_{1}=\left(\begin{array}{ll}
0.2 & 0.8 \\
0.6 & 0.4
\end{array}\right) .
$$

Suppose that $X_{0}=1$.
(ii) Find the probability that the first time the chain is in state 2 is stage 2.

Example 6
Consider a Markov chain with $E=\{1,2\}$,

$$
Q_{0}=\left(\begin{array}{ll}
0.5 & 0.5 \\
0.3 & 0.7
\end{array}\right), Q_{1}=\left(\begin{array}{ll}
0.2 & 0.8 \\
0.6 & 0.4
\end{array}\right) .
$$

Suppose that $X_{0}=1$.
(ii) Find the probability that the first time the chain is in state 2 is stage 2.
Solution: (ii) If the first time the chain is in state 1 is stage 2 , then the Markov chain does $1 \mapsto 1 \mapsto 2$, which happens with probability

$$
\mathbb{P}\left\{X_{1}=1, X_{2}=2 \mid X_{0}=1\right\}=Q_{0}(1,1) Q_{1}(1,2)=(0.5)(0.8)=0.4
$$

Theorem 7

(i)

$$
\begin{aligned}
& P\left\{X_{n}=i_{n}, X_{n+1}=i_{n+1}, \ldots, X_{n}=i_{n+m}\right\} \\
= & \alpha_{n}\left(i_{n}\right) Q_{n}\left(i_{n}, i_{n+1}\right) Q_{n+1}\left(i_{n+1}, i_{n+2}\right) \cdots Q_{n+m-1}\left(i_{n+m-1}, i_{n+m}\right) .
\end{aligned}
$$

(ii)

$$
=\sum_{i_{n}, i_{n+1}, \ldots, i_{n+m-1} \in E} \alpha_{n+m}\left(i_{n+m}\right) \alpha_{n}\left(i_{n}\right) Q_{n}\left(i_{n}, i_{n+1}\right) \cdots Q_{n+m-1}\left(i_{n+m-1}, i_{n+m}\right) .
$$

Proof: (i) Using Theorem 5,

$$
\begin{aligned}
& P\left\{X_{n}=i_{n}, X_{n+1}=i_{n+1}, \ldots, X_{n}=i_{n+m}\right\} \\
= & \sum_{i_{0}, i_{1}, \ldots, i_{n-1}} P\left\{X_{0}=i_{0}, \ldots, X_{n-1}=i_{n-1}, X_{n+1}=i_{n+1}, \ldots, X_{n}=i_{n+m}\right\} \\
= & \sum_{i_{0}, i_{1}, \ldots, i_{n-1}} \alpha_{0}\left(i_{0}\right) Q_{0}\left(i_{0}, i_{1}\right) \cdots Q_{n-1}\left(i_{n-1}, i_{n}\right) \\
& \times Q_{n}\left(i_{n}, i_{n+1}\right) Q_{n+1}\left(i_{n+1}, i_{n+2}\right) \cdots Q_{n+m-1}\left(i_{n+m-1}, i_{n+m}\right) \\
= & \alpha_{n}\left(i_{n}\right) Q_{n}\left(i_{n}, i_{n+1}\right) Q_{n+1}\left(i_{n+1}, i_{n+2}\right) \cdots Q_{n+m-1}\left(i_{n+m-1}, i_{n+m}\right) .
\end{aligned}
$$

(ii) follows noticing that

$$
\begin{aligned}
& \left\{X_{n+m}=i_{n+m}\right\} \\
= & \cup_{i_{n}, i_{n+1}, \ldots, i_{n+m-1} \in E}\left\{X_{n}=i_{n}, X_{n+1}=i_{n+1}, \ldots, X_{n+m}=i_{n+m}\right\},
\end{aligned}
$$

where the union is over disjoint events.

In matrix notation

$$
=\sum_{i_{n}, i_{n+1}, \ldots, i_{n+m-1} \in E}^{\alpha_{n+m}\left(i_{n+m}\right)} \alpha_{n}\left(i_{n}\right) Q_{n}\left(i_{n}, i_{n+1}\right) \cdots Q_{n+m-1}\left(i_{n+m-1}, i_{n+m}\right) .
$$

says that

$$
\alpha_{n+m}=\alpha_{n} Q_{n} Q_{n+1} \cdots Q_{n+m-1}
$$

Example 7

Consider a Markov chain with $E=\{1,2\}, \alpha_{3}=(0.2,0.8)$,

$$
Q_{3}=\left(\begin{array}{ll}
0.6 & 0.4 \\
0.3 & 0.7
\end{array}\right), Q_{4}=\left(\begin{array}{ll}
0.2 & 0.8 \\
0.7 & 0.3
\end{array}\right) .
$$

Find:

Example 7

Consider a Markov chain with $E=\{1,2\}, \alpha_{3}=(0.2,0.8)$,

$$
Q_{3}=\left(\begin{array}{ll}
0.6 & 0.4 \\
0.3 & 0.7
\end{array}\right), Q_{4}=\left(\begin{array}{ll}
0.2 & 0.8 \\
0.7 & 0.3
\end{array}\right) .
$$

Find:
(i) $\mathbb{P}\left\{X_{3}=2, X_{4}=1\right\}$.

Example 7

Consider a Markov chain with $E=\{1,2\}, \alpha_{3}=(0.2,0.8)$,

$$
Q_{3}=\left(\begin{array}{ll}
0.6 & 0.4 \\
0.3 & 0.7
\end{array}\right), Q_{4}=\left(\begin{array}{ll}
0.2 & 0.8 \\
0.7 & 0.3
\end{array}\right) .
$$

Find:
(i) $\mathbb{P}\left\{X_{3}=2, X_{4}=1\right\}$.

Solution: (i)

$$
\mathbb{P}\left\{X_{3}=2, X_{4}=1\right\}=\alpha_{3}(2) Q_{3}(2,1)=(0.8)(0.3)=0.24
$$

Example 7

Consider a Markov chain with $E=\{1,2\}, \alpha_{3}=(0.2,0.8)$,

$$
Q_{3}=\left(\begin{array}{ll}
0.6 & 0.4 \\
0.3 & 0.7
\end{array}\right), Q_{4}=\left(\begin{array}{ll}
0.2 & 0.8 \\
0.7 & 0.3
\end{array}\right) .
$$

Find:
(ii) $\mathbb{P}\left\{X_{3}=1, X_{4}=1, X_{5}=2\right\}$.

Example 7

Consider a Markov chain with $E=\{1,2\}, \alpha_{3}=(0.2,0.8)$,

$$
Q_{3}=\left(\begin{array}{ll}
0.6 & 0.4 \\
0.3 & 0.7
\end{array}\right), Q_{4}=\left(\begin{array}{cc}
0.2 & 0.8 \\
0.7 & 0.3
\end{array}\right) .
$$

Find:
(ii) $\mathbb{P}\left\{X_{3}=1, X_{4}=1, X_{5}=2\right\}$.

Solution: (ii)

$$
\begin{aligned}
& \mathbb{P}\left\{X_{3}=1, X_{4}=1, X_{5}=2\right\}=\alpha_{3}(1) Q_{3}(1,1) Q_{4}(1,2) \\
= & (0.2)(0.6)(0.8)=0.096 .
\end{aligned}
$$

Example 7

Consider a Markov chain with $E=\{1,2\}, \alpha_{3}=(0.2,0.8)$,

$$
Q_{3}=\left(\begin{array}{ll}
0.6 & 0.4 \\
0.3 & 0.7
\end{array}\right), Q_{4}=\left(\begin{array}{ll}
0.2 & 0.8 \\
0.7 & 0.3
\end{array}\right) .
$$

Find:
(iii) $\mathbb{P}\left\{X_{5}=2\right\}$.

Example 7
Consider a Markov chain with $E=\{1,2\}, \alpha_{3}=(0.2,0.8)$,

$$
Q_{3}=\left(\begin{array}{ll}
0.6 & 0.4 \\
0.3 & 0.7
\end{array}\right), Q_{4}=\left(\begin{array}{ll}
0.2 & 0.8 \\
0.7 & 0.3
\end{array}\right) .
$$

Find:
(iii) $\mathbb{P}\left\{X_{5}=2\right\}$.

Solution: (iii) We have that

$$
\begin{aligned}
& \alpha_{5}=\alpha_{3} Q_{3} Q_{4}=(0.2,0.8)\left(\begin{array}{ll}
0.6 & 0.4 \\
0.3 & 0.7
\end{array}\right)\left(\begin{array}{ll}
0.2 & 0.8 \\
0.7 & 0.3
\end{array}\right) \\
= & (0.36,0.64)\left(\begin{array}{ll}
0.2 & 0.8 \\
0.7 & 0.3
\end{array}\right)=(0.52,0.48) .
\end{aligned}
$$

Hence, $\mathbb{P}\left\{X_{5}=2\right\}=\alpha_{5}(2)=0.48$.

Next theorem shows that for a Markov chain, given the present, the future is independent of the past, where future means events involving X_{n+1}, \ldots, X_{n+m}, present means events involving X_{n}, and past means events involving X_{0}, \ldots, X_{n-1}.

Theorem 8

Let $\left\{X_{n}: n=0,1,2, \ldots\right\}$ be Markov chain such that for each $i_{0}, i_{1}, \ldots, i_{n}, j_{1}, \ldots, j_{m} \in E$,

$$
\begin{aligned}
& \mathbb{P}\left\{X_{n+1}=j_{1}, X_{n+2}=j_{2}, \ldots, X_{n+m}=j_{m} \mid X_{0}=i_{0}, \ldots, X_{n}=i_{n}\right\} \\
= & Q_{n}\left(i_{n}, i_{n+1}\right) Q_{n+1}\left(i_{n+1}, i_{n+2}\right) \cdots Q_{n+m-1}\left(i_{n+m-1}, i_{n+m}\right) \\
= & \mathbb{P}\left\{X_{n+1}=j_{1}, X_{n+2}=j_{2}, \ldots, X_{n+m}=j_{m} \mid X_{n}=i_{n}\right\} .
\end{aligned}
$$

Proof: By Lemma 1 and the definition of Markov chain, we have that

$$
\begin{aligned}
& \mathbb{P}\left\{X_{n+1}=j_{1}, X_{n+2}=j_{2}, \ldots, X_{n+m}=j_{m} \mid X_{0}=i_{0}, \ldots, X_{n}=i_{n}\right\} \\
= & \mathbb{P}\left\{X_{n+1}=j_{1} \mid X_{0}=i_{0}, X_{1}=i_{1}, \ldots, X_{n}=i_{n}\right\} \\
& \times \mathbb{P}\left\{X_{n+2}=j_{2} \mid X_{0}=i_{0}, X_{1}=i_{1}, \ldots, X_{n}=i_{n}, X_{n+1}=j_{1}\right\} \\
& \times \cdots \\
& \times \mathbb{P}\left\{X_{n+m}=j_{m} \mid X_{0}=i_{0}, X_{1}=i_{1}, \ldots, X_{n+m-1}=j_{m-1}\right\} \\
= & \mathbb{P}\left\{X_{n+1}=j_{1} \mid X_{n}=i_{n}\right\} \mathbb{P}\left\{X_{n+2}=j_{2} \mid X_{n+1}=j_{1}\right\} \cdots \\
& \times \mathbb{P}\left\{X_{n+m}=j_{m} \mid X_{n+m-1}=j_{m-1}\right\} \\
= & Q_{n}\left(i_{n}, i_{n+1}\right) Q_{n+1}\left(i_{n+1}, i_{n+2}\right) \cdots Q_{n+m-1}\left(i_{n+m-1}, i_{n+m}\right) .
\end{aligned}
$$

By Theorem 7,

$$
\begin{aligned}
& \mathbb{P}\left\{X_{n+1}=j_{1}, X_{n+2}=j_{2}, \ldots, X_{n+m}=j_{m} \mid X_{n}=i_{n}\right\} \\
= & \frac{\mathbb{P}\left\{X_{n}=i_{n}, X_{n+1}=j_{1}, X_{n+2}=j_{2}, \ldots, X_{n+m}=j_{m}\right\}}{\mathbb{P}\left\{X_{n}=i_{n}\right\}} \\
= & \frac{\alpha_{n}\left(i_{n}\right) Q_{n}\left(i_{n}, i_{n+1}\right) Q_{n+1}\left(i_{n+1}, i_{n+2}\right) \cdots Q_{n+m-1}\left(i_{n+m-1}, i_{n+m}\right)}{\alpha_{n}\left(i_{n}\right)} \\
= & Q_{n}\left(i_{n}, i_{n+1}\right) Q_{n+1}\left(i_{n+1}, i_{n+2}\right) \cdots Q_{n+m-1}\left(i_{n+m-1}, i_{n+m}\right) .
\end{aligned}
$$

Previous theorem implies that:

Theorem 9

$$
\begin{aligned}
& \mathbb{P}\left\{X_{n+m}=j_{m} \mid X_{n}=i_{n}\right\} \\
= & \sum_{j_{1}, \ldots, j_{m-1} \in E} Q_{n}\left(i_{n}, j_{1}\right) Q_{n+1}\left(j_{1}, j_{2}\right) \cdots Q_{n+m-1}\left(j_{m-1}, j_{m}\right) .
\end{aligned}
$$

Proof:

$$
\begin{aligned}
& \mathbb{P}\left\{X_{n+m}=j_{m} \mid X_{n}=i_{n}\right\} \\
= & \sum_{j_{1}, \ldots, j_{m-1} \in E} \mathbb{P}\left\{X_{n+1}=j_{1}, X_{n+2}=j_{2}, \ldots, X_{n+m}=j_{m} \mid X_{n}=i_{n}\right\} \\
= & \sum_{j_{1}, \ldots, j_{m-1} \in E} Q_{n}\left(i_{n}, j_{1}\right) Q_{n+1}\left(j_{1}, j_{2}\right) \cdots Q_{n+m-1}\left(j_{m-1}, j_{m}\right) .
\end{aligned}
$$

Previous theorem in matrix notation says that:
Theorem 10

$$
Q_{n}^{(m)}=Q_{n} Q_{n+1} \cdots Q_{n+m-1} .
$$

Proof.

We have that

$$
\begin{aligned}
& Q_{n}^{(m)}(i, j)=\mathbb{P}\left\{X_{n+m}=j \mid X_{n}=i\right\} \\
= & \sum_{j_{1}, \ldots, j_{m-1} \in E} Q_{n}\left(i, j_{1}\right) Q_{n+1}\left(j_{1}, j_{2}\right) \cdots Q_{n+m-1}\left(j_{m-1}, j\right) .
\end{aligned}
$$

So, $Q_{n}^{(m)}=Q_{n} Q_{n+1} \cdots Q_{n+m-1}$.

Equation

$$
Q_{n}^{(m)}=Q_{n} Q_{n+1} \cdots Q_{n+m-1}
$$

is one of the Kolmogorov-Chapman equations.

Example 8

Consider a Markov chain with $E=\{1,2\}$,

$$
Q_{3}=\left(\begin{array}{ll}
0.6 & 0.4 \\
0.3 & 0.7
\end{array}\right), Q_{4}=\left(\begin{array}{ll}
0.2 & 0.8 \\
0.7 & 0.3
\end{array}\right) .
$$

Find:

Example 8

Consider a Markov chain with $E=\{1,2\}$,

$$
Q_{3}=\left(\begin{array}{ll}
0.6 & 0.4 \\
0.3 & 0.7
\end{array}\right), Q_{4}=\left(\begin{array}{ll}
0.2 & 0.8 \\
0.7 & 0.3
\end{array}\right) .
$$

Find:
(i) $\mathbb{P}\left\{X_{4}=2 \mid X_{3}=1\right\}$.

Example 8

Consider a Markov chain with $E=\{1,2\}$,

$$
Q_{3}=\left(\begin{array}{ll}
0.6 & 0.4 \\
0.3 & 0.7
\end{array}\right), Q_{4}=\left(\begin{array}{cc}
0.2 & 0.8 \\
0.7 & 0.3
\end{array}\right) .
$$

Find:
(i) $\mathbb{P}\left\{X_{4}=2 \mid X_{3}=1\right\}$.

Solution: (i) $\mathbb{P}\left\{X_{4}=2 \mid X_{3}=1\right\}=Q_{3}(1,2)=0.4$.

Example 8

Consider a Markov chain with $E=\{1,2\}$,

$$
Q_{3}=\left(\begin{array}{ll}
0.6 & 0.4 \\
0.3 & 0.7
\end{array}\right), Q_{4}=\left(\begin{array}{ll}
0.2 & 0.8 \\
0.7 & 0.3
\end{array}\right) .
$$

Find:
(ii) $\mathbb{P}\left\{X_{4}=2, X_{5}=1 \mid X_{3}=1\right\}$.

Example 8

Consider a Markov chain with $E=\{1,2\}$,

$$
Q_{3}=\left(\begin{array}{ll}
0.6 & 0.4 \\
0.3 & 0.7
\end{array}\right), Q_{4}=\left(\begin{array}{ll}
0.2 & 0.8 \\
0.7 & 0.3
\end{array}\right) .
$$

Find:
(ii) $\mathbb{P}\left\{X_{4}=2, X_{5}=1 \mid X_{3}=1\right\}$.

Solution: (ii)
$\mathbb{P}\left\{X_{4}=2, X_{5}=1 \mid X_{3}=1\right\}=Q_{3}(1,2) Q_{4}(2,1)=(0.4)(0.7)=0.28$.

Example 8

Consider a Markov chain with $E=\{1,2\}$,

$$
Q_{3}=\left(\begin{array}{ll}
0.6 & 0.4 \\
0.3 & 0.7
\end{array}\right), Q_{4}=\left(\begin{array}{ll}
0.2 & 0.8 \\
0.7 & 0.3
\end{array}\right) .
$$

Find:
(iii) $\mathbb{P}\left\{X_{5}=1 \mid X_{3}=1\right\}$.

Example 8
Consider a Markov chain with $E=\{1,2\}$,

$$
Q_{3}=\left(\begin{array}{ll}
0.6 & 0.4 \\
0.3 & 0.7
\end{array}\right), Q_{4}=\left(\begin{array}{cc}
0.2 & 0.8 \\
0.7 & 0.3
\end{array}\right) .
$$

Find:
(iii) $\mathbb{P}\left\{X_{5}=1 \mid X_{3}=1\right\}$.

Solution: (iii) We have that

$$
Q_{3}^{(2)}=Q_{3} Q_{4}=\left(\begin{array}{ll}
0.6 & 0.4 \\
0.3 & 0.7
\end{array}\right)\left(\begin{array}{ll}
0.2 & 0.8 \\
0.7 & 0.3
\end{array}\right)=\left(\begin{array}{ll}
0.40 & 0.60 \\
0.55 & 0.45
\end{array}\right)
$$

and

$$
\mathbb{P}\left\{X_{5}=1 \mid X_{3}=1\right\}=Q_{3}^{(2)}(1,1)=0.4
$$

For a Markov chain, given the present, the future is independent of the past, where present means X_{n}, past means events involving X_{0}, \ldots, X_{n-1} and future means events involving X_{n+1}, \ldots, X_{n+m}.

Theorem 11
Let $\left\{X_{n}: n=0,1,2, \ldots\right\}$ be Markov chain. Then, for each $A \in \mathbb{R}^{n}$ and $B \in \mathbb{R}^{m}$

$$
\begin{aligned}
& \mathbb{P}\left\{\left(X_{n+1}, \ldots, X_{n+m}\right) \in B \mid\left(X_{0}, \ldots, X_{n-1}\right) \in A, X_{n}=i_{n}\right\} \\
= & \mathbb{P}\left\{\left(X_{n+1}, \ldots, X_{n+m}\right) \in B \mid X_{n}=i_{n}\right\}
\end{aligned}
$$

The proof of the previous theorem is in Arcones' manual.

Example 9

Consider a Markov chain with $E=\{1,2\}$,

$$
Q_{7}=\left(\begin{array}{ll}
0.4 & 0.6 \\
0.1 & 0.8
\end{array}\right), Q_{8}=\left(\begin{array}{ll}
0.3 & 0.7 \\
0.6 & 0.4
\end{array}\right) .
$$

Find $\mathbb{P}\left\{X_{9}=1 \mid X_{5}=2, X_{7}=1\right\}$.

Example 9

Consider a Markov chain with $E=\{1,2\}$,

$$
Q_{7}=\left(\begin{array}{ll}
0.4 & 0.6 \\
0.1 & 0.8
\end{array}\right), Q_{8}=\left(\begin{array}{ll}
0.3 & 0.7 \\
0.6 & 0.4
\end{array}\right) .
$$

Find $\mathbb{P}\left\{X_{9}=1 \mid X_{5}=2, X_{7}=1\right\}$.
Solution: We have that

$$
Q_{7}^{(2)}=Q_{7} Q_{8}=\left(\begin{array}{ll}
0.4 & 0.6 \\
0.1 & 0.8
\end{array}\right)\left(\begin{array}{ll}
0.3 & 0.7 \\
0.6 & 0.4
\end{array}\right)=\left(\begin{array}{ll}
0.48 & 0.52 \\
0.51 & 0.39
\end{array}\right)
$$

and
$\mathbb{P}\left\{X_{9}=1 \mid X_{5}=2, X_{7}=1\right\}=\mathbb{P}\left\{X_{9}=1 \mid X_{7}=1\right\}=Q_{7}^{(2)}(1,1)=0.48$.

A Markov chain satisfying that $P\left(X_{n+1}=j \mid X_{n}=i\right)$ is independent of n is called an homogeneous Markov chain. We define $P(i, j)=\mathbb{P}\left\{X_{n+1}=j \mid X_{n}=i\right\} . P(i, j)$ is called the one-step transition probability from state i into state j. Notice that $P(i, j)$ does not depend on n.
We denote $P=(P(i, j))_{i, j \in E}$ the matrix consisting of the one-step transition probabilities. The matrix P must satisfy that
(i) for each $i, j \in E, P(i, j) \geq 0$.
(ii) for each $i \in E, \sum_{j \in E} P(i, j)=1$.

We define $P^{(n)}(i, j)=\mathbb{P}\left\{X_{k+n}=j \mid X_{k}=i\right\} . P(i, j)$ is called the n-step transition probability from state i into state j. Notice that $P(i, j)$ does not depend on k. We denote $P^{(n)}=\left(P^{(n)}(i, j)\right)_{i, j \in E}$ the matrix consisting of the n-step transition probabilities. We have that $P^{(1)}=P$. The matrix $P^{(n)}$ must satisfy that:
(i) for each $i, j \in E, P^{(n)}(i, j) \geq 0$.
(ii) for each $i \in E, \sum_{j \in E} P^{(n)}(i, j)=1$.

Theorem 12
For an homogeneous Markov chain, we have
(i)

$$
\begin{aligned}
& \mathbb{P}\left\{X_{n}=i_{n}, X_{n+1}=i_{n+1}, \ldots, X_{n+m-1}=i_{n+m-1}, X_{n+m}=i_{n+m}\right\} \\
= & \alpha_{n}\left(i_{n}\right) P\left(i_{n}, i_{n+1}\right) P\left(i_{n+1}, i_{n+2}\right) \cdots P\left(i_{n+m-1}, i_{n+m}\right) .
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& \mathbb{P}\left\{X_{n+1}=i_{n+1}, \ldots, X_{n+m-1}=i_{n+m-1}, X_{n+m}=i_{n+m} \mid X_{n}=i_{n}\right\} \\
= & P\left(i_{n}, i_{n+1}\right) P\left(i_{n+1}, i_{n+2}\right) \cdots P\left(i_{n+m-1}, i_{n+m}\right) .
\end{aligned}
$$

(iii)

$$
P^{(n)}=P^{n}
$$

(iv)

$$
\alpha_{m+n}=\alpha_{m} P^{n}
$$

Example 10

Suppose that an homogeneous Markov chain has state space $E=\{1,2,3\}$, transition matrix

$$
P=\left(\begin{array}{ccc}
1 / 3 & 2 / 3 & 0 \\
1 / 2 & 0 & 1 / 2 \\
1 / 4 & 1 / 4 & 1 / 2
\end{array}\right)
$$

and initial distribution $\alpha_{0}=(1 / 2,1 / 3,1 / 6)$. Find:

Example 10

Suppose that an homogeneous Markov chain has state space $E=\{1,2,3\}$, transition matrix

$$
P=\left(\begin{array}{ccc}
1 / 3 & 2 / 3 & 0 \\
1 / 2 & 0 & 1 / 2 \\
1 / 4 & 1 / 4 & 1 / 2
\end{array}\right)
$$

and initial distribution $\alpha_{0}=(1 / 2,1 / 3,1 / 6)$. Find:
(i) $P^{(2)}$.

Example 10

Suppose that an homogeneous Markov chain has state space $E=\{1,2,3\}$, transition matrix

$$
P=\left(\begin{array}{ccc}
1 / 3 & 2 / 3 & 0 \\
1 / 2 & 0 & 1 / 2 \\
1 / 4 & 1 / 4 & 1 / 2
\end{array}\right)
$$

and initial distribution $\alpha_{0}=(1 / 2,1 / 3,1 / 6)$. Find:
(i) $P^{(2)}$.

Solution: (i)

$$
\begin{aligned}
& P^{(2)}=\left(\begin{array}{ccc}
1 / 3 & 2 / 3 & 0 \\
1 / 2 & 0 & 1 / 2 \\
1 / 4 & 1 / 4 & 1 / 2
\end{array}\right)\left(\begin{array}{ccc}
1 / 3 & 2 / 3 & 0 \\
1 / 2 & 0 & 1 / 2 \\
1 / 4 & 1 / 4 & 1 / 2
\end{array}\right) \\
&=\left(\begin{array}{lll}
0.4444444 & 0.2222222 & 0.3333333 \\
0.2916667 & 0.4583333 & 0.2500000 \\
0.3333333 & 0.2916667 & 0.3750000
\end{array}\right)
\end{aligned}
$$

Example 10

Suppose that an homogeneous Markov chain has state space $E=\{1,2,3\}$, transition matrix

$$
P=\left(\begin{array}{ccc}
1 / 3 & 2 / 3 & 0 \\
1 / 2 & 0 & 1 / 2 \\
1 / 4 & 1 / 4 & 1 / 2
\end{array}\right)
$$

and initial distribution $\alpha_{0}=(1 / 2,1 / 3,1 / 6)$. Find:
(ii) $P^{(3)}$.

Example 10

Suppose that an homogeneous Markov chain has state space $E=\{1,2,3\}$, transition matrix

$$
P=\left(\begin{array}{ccc}
1 / 3 & 2 / 3 & 0 \\
1 / 2 & 0 & 1 / 2 \\
1 / 4 & 1 / 4 & 1 / 2
\end{array}\right),
$$

and initial distribution $\alpha_{0}=(1 / 2,1 / 3,1 / 6)$. Find:
(ii) $P^{(3)}$.

Solution: (ii)

$$
\begin{aligned}
& P^{(3)}=\left(\begin{array}{ccc}
1 / 3 & 2 / 3 & 0 \\
1 / 2 & 0 & 1 / 2 \\
1 / 4 & 1 / 4 & 1 / 2
\end{array}\right)\left(\begin{array}{lll}
0.4444444 & 0.2222222 & 0.3333333 \\
0.2916667 & 0.4583333 & 0.2500000 \\
0.3333333 & 0.2916667 & 0.3750000
\end{array}\right) \\
= & \left(\begin{array}{lll}
0.3425926 & 0.3796296 & 0.2777778 \\
0.3888889 & 0.2569444 & 0.3541667 \\
0.3506944 & 0.3159722 & 0.3333333
\end{array}\right)
\end{aligned}
$$

Example 10

Suppose that an homogeneous Markov chain has state space $E=\{1,2,3\}$, transition matrix

$$
P=\left(\begin{array}{ccc}
1 / 3 & 2 / 3 & 0 \\
1 / 2 & 0 & 1 / 2 \\
1 / 4 & 1 / 4 & 1 / 2
\end{array}\right)
$$

and initial distribution $\alpha_{0}=(1 / 2,1 / 3,1 / 6)$. Find:
(iii) $\mathbb{P}\left\{X_{2}=2\right\}$.

Example 10

Suppose that an homogeneous Markov chain has state space $E=\{1,2,3\}$, transition matrix

$$
P=\left(\begin{array}{ccc}
1 / 3 & 2 / 3 & 0 \\
1 / 2 & 0 & 1 / 2 \\
1 / 4 & 1 / 4 & 1 / 2
\end{array}\right),
$$

and initial distribution $\alpha_{0}=(1 / 2,1 / 3,1 / 6)$. Find:
(iii) $\mathbb{P}\left\{X_{2}=2\right\}$.

Solution: (iii)

$$
\begin{aligned}
& \alpha_{0} P^{(2)}=(1 / 2,1 / 3,1 / 6)\left(\begin{array}{lll}
0.4444444 & 0.2222222 & 0.3333333 \\
0.2916667 & 0.4583333 & 0.2500000 \\
0.3333333 & 0.2916667 & 0.3750000
\end{array}\right) \\
= & (0.375,0.3125,0.3125) .
\end{aligned}
$$

So, $\mathbb{P}\left\{X_{2}=2\right\}=0.3125$.

Example 10

Suppose that an homogeneous Markov chain has state space $E=\{1,2,3\}$, transition matrix

$$
P=\left(\begin{array}{ccc}
1 / 3 & 2 / 3 & 0 \\
1 / 2 & 0 & 1 / 2 \\
1 / 4 & 1 / 4 & 1 / 2
\end{array}\right),
$$

and initial distribution $\alpha_{0}=(1 / 2,1 / 3,1 / 6)$. Find:
(iv) $\mathbb{P}\left\{X_{0}=1, X_{3}=3\right\}$.

Example 10

Suppose that an homogeneous Markov chain has state space $E=\{1,2,3\}$, transition matrix

$$
P=\left(\begin{array}{ccc}
1 / 3 & 2 / 3 & 0 \\
1 / 2 & 0 & 1 / 2 \\
1 / 4 & 1 / 4 & 1 / 2
\end{array}\right)
$$

and initial distribution $\alpha_{0}=(1 / 2,1 / 3,1 / 6)$. Find:
(iv) $\mathbb{P}\left\{X_{0}=1, X_{3}=3\right\}$.

Solution: (iv)

$$
\begin{aligned}
& \mathbb{P}\left\{X_{0}=1, X_{3}=3\right\}=\mathbb{P}\left\{X_{0}=1\right\} \mathbb{P}\left\{X_{3}=3 \mid X_{0}=1\right\} \\
= & \alpha_{0}(1) P^{(3)}(1,3)=(0.5)(0.2777778)=0.1388889
\end{aligned}
$$

Example 10

Suppose that an homogeneous Markov chain has state space $E=\{1,2,3\}$, transition matrix

$$
P=\left(\begin{array}{ccc}
1 / 3 & 2 / 3 & 0 \\
1 / 2 & 0 & 1 / 2 \\
1 / 4 & 1 / 4 & 1 / 2
\end{array}\right),
$$

and initial distribution $\alpha_{0}=(1 / 2,1 / 3,1 / 6)$. Find:
(v) $\mathbb{P}\left\{X_{1}=2, X_{2}=3, X_{3}=1 \mid X_{0}=1\right\}$.

Example 10

Suppose that an homogeneous Markov chain has state space $E=\{1,2,3\}$, transition matrix

$$
P=\left(\begin{array}{ccc}
1 / 3 & 2 / 3 & 0 \\
1 / 2 & 0 & 1 / 2 \\
1 / 4 & 1 / 4 & 1 / 2
\end{array}\right),
$$

and initial distribution $\alpha_{0}=(1 / 2,1 / 3,1 / 6)$. Find:
(v) $\mathbb{P}\left\{X_{1}=2, X_{2}=3, X_{3}=1 \mid X_{0}=1\right\}$.

Solution: (v)

$$
\begin{aligned}
& \mathbb{P}\left\{X_{1}=2, X_{2}=3, X_{3}=1 \mid X_{0}=1\right\} \\
= & P(1,2) P(2,3) P(3,1)=(2 / 3)(1 / 2)(1 / 4)=1 / 12 .
\end{aligned}
$$

Example 10

Suppose that an homogeneous Markov chain has state space $E=\{1,2,3\}$, transition matrix

$$
P=\left(\begin{array}{ccc}
1 / 3 & 2 / 3 & 0 \\
1 / 2 & 0 & 1 / 2 \\
1 / 4 & 1 / 4 & 1 / 2
\end{array}\right),
$$

and initial distribution $\alpha_{0}=(1 / 2,1 / 3,1 / 6)$. Find:
(vi) $\mathbb{P}\left\{X_{2}=3 \mid X_{1}=3\right\}$.

Example 10

Suppose that an homogeneous Markov chain has state space $E=\{1,2,3\}$, transition matrix

$$
P=\left(\begin{array}{ccc}
1 / 3 & 2 / 3 & 0 \\
1 / 2 & 0 & 1 / 2 \\
1 / 4 & 1 / 4 & 1 / 2
\end{array}\right),
$$

and initial distribution $\alpha_{0}=(1 / 2,1 / 3,1 / 6)$. Find:
(vi) $\mathbb{P}\left\{X_{2}=3 \mid X_{1}=3\right\}$.

Solution: (vi)

$$
\mathbb{P}\left\{X_{2}=3 \mid X_{1}=3\right\}=P(3,3)=1 / 2
$$

Example 10

Suppose that an homogeneous Markov chain has state space $E=\{1,2,3\}$, transition matrix

$$
P=\left(\begin{array}{ccc}
1 / 3 & 2 / 3 & 0 \\
1 / 2 & 0 & 1 / 2 \\
1 / 4 & 1 / 4 & 1 / 2
\end{array}\right),
$$

and initial distribution $\alpha_{0}=(1 / 2,1 / 3,1 / 6)$. Find: (vii) $\mathbb{P}\left\{X_{12}=1 \mid X_{5}=3, X_{10}=1\right\}$.

Example 10

Suppose that an homogeneous Markov chain has state space $E=\{1,2,3\}$, transition matrix

$$
P=\left(\begin{array}{ccc}
1 / 3 & 2 / 3 & 0 \\
1 / 2 & 0 & 1 / 2 \\
1 / 4 & 1 / 4 & 1 / 2
\end{array}\right),
$$

and initial distribution $\alpha_{0}=(1 / 2,1 / 3,1 / 6)$. Find:
(vii) $\mathbb{P}\left\{X_{12}=1 \mid X_{5}=3, X_{10}=1\right\}$.

Solution: (vii)

$$
\begin{aligned}
& \mathbb{P}\left\{X_{12}=1 \mid X_{5}=3, X_{10}=1\right\}=\mathbb{P}\{X(12)=1 \mid X(10)=1\} \\
= & P^{(2)}(1,1)=0.444444
\end{aligned}
$$

Example 10

Suppose that an homogeneous Markov chain has state space $E=\{1,2,3\}$, transition matrix

$$
P=\left(\begin{array}{ccc}
1 / 3 & 2 / 3 & 0 \\
1 / 2 & 0 & 1 / 2 \\
1 / 4 & 1 / 4 & 1 / 2
\end{array}\right),
$$

and initial distribution $\alpha_{0}=(1 / 2,1 / 3,1 / 6)$. Find: (viii) $\mathbb{P}\left\{X_{3}=3, X_{5}=1 \mid X_{0}=1\right\}$.

Example 10

Suppose that an homogeneous Markov chain has state space $E=\{1,2,3\}$, transition matrix

$$
P=\left(\begin{array}{ccc}
1 / 3 & 2 / 3 & 0 \\
1 / 2 & 0 & 1 / 2 \\
1 / 4 & 1 / 4 & 1 / 2
\end{array}\right),
$$

and initial distribution $\alpha_{0}=(1 / 2,1 / 3,1 / 6)$. Find:
(viii) $\mathbb{P}\left\{X_{3}=3, X_{5}=1 \mid X_{0}=1\right\}$.

Solution: (viii)

$$
\begin{aligned}
& \mathbb{P}\left\{X_{3}=3, X_{5}=1 \mid X_{0}=1\right\}=\mathbb{P}\left\{X_{3}=3 \mid X_{0}=1\right\} \mathbb{P}\left\{X_{5}=1 \mid X_{3}=3\right\} \\
= & P^{(3)}(1,3) P^{(2)}(3,1)=(0.277778)(0.3333)=0.09258341
\end{aligned}
$$

Example 10

Suppose that an homogeneous Markov chain has state space $E=\{1,2,3\}$, transition matrix

$$
P=\left(\begin{array}{ccc}
1 / 3 & 2 / 3 & 0 \\
1 / 2 & 0 & 1 / 2 \\
1 / 4 & 1 / 4 & 1 / 2
\end{array}\right),
$$

and initial distribution $\alpha_{0}=(1 / 2,1 / 3,1 / 6)$. Find:
(ix) $\mathbb{P}\left\{X_{3}=3 \mid X_{0}=1\right\}$.

Example 10

Suppose that an homogeneous Markov chain has state space $E=\{1,2,3\}$, transition matrix

$$
P=\left(\begin{array}{ccc}
1 / 3 & 2 / 3 & 0 \\
1 / 2 & 0 & 1 / 2 \\
1 / 4 & 1 / 4 & 1 / 2
\end{array}\right),
$$

and initial distribution $\alpha_{0}=(1 / 2,1 / 3,1 / 6)$. Find:
(ix) $\mathbb{P}\left\{X_{3}=3 \mid X_{0}=1\right\}$.

Solution: (ix)

$$
\mathbb{P}\left\{X_{3}=3 \mid X_{0}=1\right\}=P^{(3)}(1,3)=0.277778
$$

