Manual for SOA Exam MLC.

Chapter 10. Poisson processes. Section 10.5. Nonhomogenous Poisson processes

©2009. Miguel A. Arcones. All rights reserved.

Extract from: "Arcones' Manual for SOA Exam MLC. Fall 2009 Edition", available at http://www.actexmadriver.com/

Nonhomogenous Poisson processes

Definition 1

The counting process $\{N(t) : t \ge 0\}$ is said to be a nonhomogenous Poisson process with intensity function $\lambda(t)$, $t \ge 0$, if (i) N(0) = 0. (ii) For each t > 0, N(t) has a Poisson distribution with mean $m(t) = \int_0^t \lambda(s) ds$. (iii) For each $0 \le t_1 < t_2 < \cdots < t_m$, $N(t_1), N(t_2) - N(t_1), \ldots, N(t_m) - N(t_{m-1})$ are independent r.v.'s.

Nonhomogenous Poisson processes

Definition 1

The counting process $\{N(t) : t \ge 0\}$ is said to be a nonhomogenous Poisson process with intensity function $\lambda(t)$, $t \ge 0$, if (i) N(0) = 0. (ii) For each t > 0, N(t) has a Poisson distribution with mean $m(t) = \int_0^t \lambda(s) ds$. (iii) For each $0 \le t_1 < t_2 < \cdots < t_m$, $N(t_1), N(t_2) - N(t_1), \ldots, N(t_m) - N(t_{m-1})$ are independent r.v.'s.

An nonhomogeneous Poisson process with λ(t) = λ, for each t ≥ 0, is a regular Poisson process.

Nonhomogenous Poisson processes

Definition 1

The counting process $\{N(t) : t \ge 0\}$ is said to be a nonhomogenous Poisson process with intensity function $\lambda(t)$, $t \ge 0$, if (i) N(0) = 0. (ii) For each t > 0, N(t) has a Poisson distribution with mean $m(t) = \int_0^t \lambda(s) ds$. (iii) For each $0 \le t_1 < t_2 < \cdots < t_m$, $N(t_1), N(t_2) - N(t_1), \ldots, N(t_m) - N(t_{m-1})$ are independent r.v.'s.

- An nonhomogeneous Poisson process with λ(t) = λ, for each t ≥ 0, is a regular Poisson process.
- ► m(t) is the mean value function of the non homogeneous Poisson process.

The increments of an nonhomogeneous Poisson process are independent, but not necessarily stationary.

- The increments of an nonhomogeneous Poisson process are independent, but not necessarily stationary.
- A nonhomogeneous Poisson process is a Markov process.

- The increments of an nonhomogeneous Poisson process are independent, but not necessarily stationary.
- A nonhomogeneous Poisson process is a Markov process.
- For each 0 ≤ s < t, N(t) − N(s) has Poisson distribution with mean m(t) − m(s) = ∫_s^t λ(x) dx.

- The increments of an nonhomogeneous Poisson process are independent, but not necessarily stationary.
- A nonhomogeneous Poisson process is a Markov process.
- For each $0 \le s < t$, N(t) N(s) has Poisson distribution with mean $m(t) m(s) = \int_{s}^{t} \lambda(x) dx$.
- For each $0 \le t_1 < t_2 < \cdots < t_m$ and each integers $k_1, \ldots, k_m \ge 0$,

$$\mathbb{P}\{N(t_1) = k_1, N(t_2) = k_2, \dots, N(t_m) = k_m\}$$

$$= \mathbb{P}\{N(t_1) = k_1, N(t_2) - N(t_1) = k_1 - k_1, \dots,$$

$$N(t_m) - N(t_{m-1}) = k_m - k_{m-1}\}$$

$$= \frac{e^{-m(t_1)}(m(t_1))^{k_1}}{k_1!} \frac{e^{-(m(t_2) - m(t_1))}(m(t_2) - (m(t_1))^{k_2 - k_1}}{(k_2 - k_1)!} \cdots$$

$$\frac{e^{-(m(t_m) - m(t_{m-1}))}(m(t_m) - m(t_{m-1}))^{k_m - k_{m-1}}}{(k_m - k_{m-1})!},$$

For a nonhomogenous Poisson process the intensity function is given by

$$\lambda(t) = \begin{cases} 5 & \text{if } t \text{ is in } (1,2], (3,4], \dots \\ 3 & \text{if } t \text{ is in } (0,1], (2,3], \dots \end{cases}$$

Find the probability that the number number of observed occurrences in the time period (1.25,3] is more than two.

For a nonhomogenous Poisson process the intensity function is given by

$$\lambda(t) = \begin{cases} 5 & \text{if } t \text{ is in } (1,2], (3,4], \dots \\ 3 & \text{if } t \text{ is in } (0,1], (2,3], \dots \end{cases}$$

Find the probability that the number number of observed occurrences in the time period (1.25, 3] is more than two. Solution: N(3) - N(1.25) has a Poisson distribution with mean

$$m(3) - m(1.25) = \int_{1.25}^{3} \lambda(t) dt = \int_{1.25}^{2} 5 dt + \int_{2}^{3} 3 dt = 6.75.$$

Hence,

$$\mathbb{P}{N(3) - N(1.25) > 2} = 1 - e^{-6.75}(1 + 6.75 + (6.75)^2/2)$$

=0.9642515816.

Let S_n be the time of the *n*-th occurrence. S_n is an extended r.v. with values in $[0, \infty]$. Then,

$$\mathbb{P}\{S_n > t\} = \mathbb{P}\{N(t) \le n - 1\} = \sum_{j=0}^{n-1} \frac{e^{-m(t)}(m(t))^j}{j!}$$

= $\mathbb{P}\{\text{Gamma}(n, 1) \ge m(t)\}.$

If $\lim_{t \to \infty} m(t) = \infty$, then

$$\mathbb{P}\{S_n = \infty\} = \lim_{t \to \infty} \mathbb{P}\{S_n > t\} = \mathbb{P}\{\operatorname{Gamma}(n, 1) \ge \lim_{t \to \infty} m(t)\} = 0$$

and S_n is a r.v. The density of S_n is

$$f_{S_n}(t) = e^{-m(t)} rac{(m(t))^{n-1} m'(t)}{(n-1)!} = e^{-m(t)} rac{(m(t))^{n-1} \lambda(t)}{(n-1)!}, t \geq 0.$$

If $\lim_{t \to \infty} m(t) < \infty$, then S_n is a mixed r.v. with

$$\mathbb{P}\{S_n = \infty\} = \mathbb{P}\{\operatorname{Gamma}(n, 1) \ge \lim_{t \to \infty} m(t)\} > 0$$

and density of its continuous part $f_{S_n}(t) = \frac{e^{-m(t)}(m(t))^{n-1}\lambda(t)}{(n-1)!}, t \ge 0.$

Let $T_n = S_n - S_{n-1}$ be the *n*-th interarrival time. For a non-homogeneous Poisson process $\{T_n\}_{n=1}^{\infty}$ are not necessarily independent r.v.'s. For $0 \le s \le t$,

$$\mathbb{P}\{T_{n+1} > t | S_n = s\} = \mathbb{P}\{S_{n+1} > s + t | S_n = t\}$$

= $\mathbb{P}\{N(s+t) = n+1 | S_n = t\} = \mathbb{P}\{N(s+t) - N(s) = 1 | S_n = t\}$
= $\mathbb{P}\{N(s+t) - N(s) = 1\} = e^{-(m(s+t) - m(s))}.$

Notice $S_n = t$ depends on the non-homogeneous Poisson process until time t. Hence, $\{N(s+t) - N(s) = 1\}$ and $\{S_n = t\}$ are independent.

For a non-homogenous Poisson process, the intensity function is given by

$$\lambda(t) = egin{cases} t & ext{for } 0 < t \leq 4, \ 4 & ext{for } 10 < t. \end{cases}$$

If $S_5 = 2$, calculate the probability that $S_6 > 5$.

For a non-homogenous Poisson process, the intensity function is given by

$$\lambda(t) = egin{cases} t & ext{for } 0 < t \leq 4, \ 4 & ext{for } 10 < t. \end{cases}$$

If $S_5 = 2$, calculate the probability that $S_6 > 5$. Solution: We have that

$$\mathbb{P}\{S_6 > 5 | S_5 = 2\} = \mathbb{P}\{N(5) = 5 | S_5 = 2\}$$
$$= \mathbb{P}\{N(5) - N(2) = 0 | S_5 = 2\} = P\{N(5) - N(2) = 0\}$$

and

$$m(5) - m(2) = \int_{2}^{5} \lambda(t) dt = \int_{2}^{4} t dt + \int_{4}^{5} 4 dt = 10.$$

Hence, $\mathbb{P}\{S_{6} > 5 | S_{5} = 2\} = P\{N(5) - N(2) = 0\} = e^{-10}.$