Manual for SOA Exam MLC.

 Chapter 10. Poisson processes. Section 10.2. Poisson processes.(C)2008. Miguel A. Arcones. All rights reserved.

Extract from:
"Arcones' Manual for SOA Exam MLC. Fall 2009 Edition", available at http://www.actexmadriver.com/

Poisson processes

Definition 1

A stochastic process $\{N(t): t \geq 0\}$ is said to be a counting process if $N(t)$ represents the total number of "events" that have occurred up to time t.
A counting process $N(t)$ must satisfy:
(i) $N(t) \geq 0$.
(ii) $N(t)$ is integer valued.
(iii) If $s<t$, then $N(s) \leq N(t)$.

For a counting process $\{N(t): t \geq 0\}$ and $s<t, N(t)-N(s)$ is the number of events occurring in the time interval $(s, t]$.

Definition 2

A counting process is said to possess independent increments if for each $0 \leq t_{1}<t_{2}<\cdots<t_{m}$, $N\left(t_{1}\right), N\left(t_{2}\right)-N\left(t_{1}\right), N\left(t_{3}\right)-N\left(t_{2}\right), \ldots, N\left(t_{m}\right)-N\left(t_{m-1}\right)$ are independent r.v.'s.
Notice that if $s<t, N(t)-N(s)$ is the increment of the process in the interval $[s, t]$.

Definition 3

A Poisson process is said to have stationary increments if for each $0 \leq t_{1} \leq t_{2}, N\left(t_{2}\right)-N\left(t_{1}\right)$ and $N\left(t_{2}-t_{1}\right)-N(0)$ have the same distribution.
In other words, a counting process has stationary increments if the distribution of an increment depends on its length, independently on its starting time.

Definition 4

An stochastic process $\{N(t): t \geq 0\}$ is said to be a Poisson process with rate $\lambda>0$, if:
(i) $N(0)=0$.
(ii) The process has independent increments.
(iii) For each $0 \leq s, t, N(s+t)-N(s)$ has a Poisson distribution with mean λt.

Definition 4

An stochastic process $\{N(t): t \geq 0\}$ is said to be a Poisson process with rate $\lambda>0$, if:
(i) $N(0)=0$.
(ii) The process has independent increments.
(iii) For each $0 \leq s, t, N(s+t)-N(s)$ has a Poisson distribution with mean λt.

Condition (iii) implies that a Poisson process has stationary increments.
In the previous definition, we may interpret $N(t)$ as the number of occurrences until time.
The rate of occurrences per unit of time is a constant. The average number of occurrences in the time interval $(s, s+t]$ is λt.

Theorem 1
Let $\{N(t): t \geq 0\}$ be a Poisson process with rate $\lambda>0$. Then, for each $0 \leq t_{1}<t_{2}<\cdots<t_{m}$ and each $0 \leq k_{1} \leq k_{2} \leq \cdots \leq k_{m}$,

$$
\begin{aligned}
& \mathbb{P}\left\{N\left(t_{1}\right)=k_{1}, N\left(t_{2}\right)=k_{2}, \ldots, N\left(t_{m}\right)=k_{m}\right\} \\
= & \frac{e^{-\lambda t_{1}}\left(\lambda t_{1}\right)^{k_{1}}}{k_{1}!} \frac{e^{-\lambda\left(t_{2}-t_{1}\right)}\left(\lambda\left(t_{2}-t_{1}\right)\right)^{k_{2}-k_{1}}}{\left(k_{2}-k_{1}\right)!} \cdots \\
& \cdots \frac{e^{-\lambda\left(t_{m}-t_{m-1}\right)}\left(\lambda\left(t_{m}-t_{m-1}\right)\right)^{k_{m}}}{k_{m}!}
\end{aligned}
$$

Proof:

$$
\begin{aligned}
& \mathbb{P}\left\{N\left(t_{1}\right)=k_{1}, N\left(t_{2}\right)=k_{2}, \ldots, N\left(t_{m}\right)=k_{m}\right\} \\
= & \mathbb{P}\left\{N\left(t_{1}\right)=k_{1}, N\left(t_{2}\right)-N\left(t_{1}\right)=k_{2}-k_{1}, \ldots\right. \\
& \left.\cdots, N\left(t_{m}\right)-N\left(t_{m-1}\right)=k_{m}-k_{m-1}\right\} \\
= & \mathbb{P}\left\{N\left(t_{1}\right)=k_{1}\right\} \mathbb{P}\left\{N\left(t_{2}\right)-N\left(t_{1}\right)=k_{2}-k_{1}\right\} \cdots \\
& \cdots \mathbb{P}\left\{N\left(t_{m}\right)-N\left(t_{m-1}\right)=k_{m}-k_{m-1}\right\} \\
= & e^{-\lambda t_{1}} \frac{\left(\lambda t_{1}\right)^{k_{1}}}{k_{1}!} e^{-\lambda\left(t_{2}-t_{1}\right)} \frac{\left(\lambda\left(t_{2}-t_{1}\right)\right)^{k_{2}-k_{1}}}{\left(k_{2}-k_{1}\right)!} \cdots \\
& \cdots e^{-\lambda\left(t_{m}-t_{m-1}\right)} \frac{\left(\lambda\left(t_{m}-t_{m-1}\right)\right)^{k_{m}}}{k_{m}!}
\end{aligned}
$$

Example 1

Let $\{N(t): t \geq 0\}$ be a Poisson process with rate $\lambda=2$. Compute:
(i) $\mathbb{P}\{N(5)=4\}$.
(ii) $\mathbb{P}\{N(5)=4, N(6)=9\}$.
(iii) $\mathbb{P}\{N(5)=4, N(6)=9, N(10)=15\}$.
(iv) $\mathbb{P}\{N(5)-N(2)=3\}$.
(v) $\mathbb{P}\{N(5)-N(2)=3, N(7)-N(6)=4\}$.
(vi) $\mathbb{P}\{N(2)+N(5)=4\}$.

Example 1

Let $\{N(t): t \geq 0\}$ be a Poisson process with rate $\lambda=2$. Compute:
(i) $\mathbb{P}\{N(5)=4\}$.
(ii) $\mathbb{P}\{N(5)=4, N(6)=9\}$.
(iii) $\mathbb{P}\{N(5)=4, N(6)=9, N(10)=15\}$.
(iv) $\mathbb{P}\{N(5)-N(2)=3\}$.
(v) $\mathbb{P}\{N(5)-N(2)=3, N(7)-N(6)=4\}$.
(vi) $\mathbb{P}\{N(2)+N(5)=4\}$.

Solution:

(i)

$$
\mathbb{P}\{N(5)=4\}=\mathbb{P}\{\operatorname{Poiss}(10)=4\}=\frac{e^{-10}(10)^{4}}{4!}
$$

Example 1

Let $\{N(t): t \geq 0\}$ be a Poisson process with rate $\lambda=2$. Compute:
(i) $\mathbb{P}\{N(5)=4\}$.
(ii) $\mathbb{P}\{N(5)=4, N(6)=9\}$.
(iii) $\mathbb{P}\{N(5)=4, N(6)=9, N(10)=15\}$.
(iv) $\mathbb{P}\{N(5)-N(2)=3\}$.
(v) $\mathbb{P}\{N(5)-N(2)=3, N(7)-N(6)=4\}$.
(vi) $\mathbb{P}\{N(2)+N(5)=4\}$.

Solution:

(ii)

$$
\begin{aligned}
& \mathbb{P}\{N(5)=4, N(6)=9\}=\mathbb{P}\{N(5)=4, N(6)-N(5)=5\} \\
= & \mathbb{P}\{N(5)=4\} \mathbb{P}(N(6)-N(5)=5\} \\
= & \mathbb{P}\{\operatorname{Poiss}(10)=4\} \mathbb{P}\{\operatorname{Poiss}(2)=5\}=\frac{e^{-10}(10)^{4}}{4!} \frac{e^{-2}(2)^{5}}{5!} .
\end{aligned}
$$

Example 1

Let $\{N(t): t \geq 0\}$ be a Poisson process with rate $\lambda=2$. Compute:
(i) $\mathbb{P}\{N(5)=4\}$.
(ii) $\mathbb{P}\{N(5)=4, N(6)=9\}$.
(iii) $\mathbb{P}\{N(5)=4, N(6)=9, N(10)=15\}$.
(iv) $\mathbb{P}\{N(5)-N(2)=3\}$.
(v) $\mathbb{P}\{N(5)-N(2)=3, N(7)-N(6)=4\}$.
(vi) $\mathbb{P}\{N(2)+N(5)=4\}$.

Solution:

(iii)

$$
\begin{aligned}
& \mathbb{P}\{N(5)=4, N(6)=9, N(10)=15\} \\
= & \mathbb{P}\{N(5)=4, N(6)-N(5)=5, N(10)-N(6)=6\} \\
= & \mathbb{P}\{N(5)=4\} \mathbb{P}\{N(6)-N(5)=5\} \mathbb{P}\{N(10)-N(6)=6\} \\
= & e^{-10} \frac{10^{4}}{4!} e^{-2} \frac{2^{5}}{5!} e^{-8} \frac{8^{6}}{6!} .
\end{aligned}
$$

Example 1

Let $\{N(t): t \geq 0\}$ be a Poisson process with rate $\lambda=2$. Compute:
(i) $\mathbb{P}\{N(5)=4\}$.
(ii) $\mathbb{P}\{N(5)=4, N(6)=9\}$.
(iii) $\mathbb{P}\{N(5)=4, N(6)=9, N(10)=15\}$.
(iv) $\mathbb{P}\{N(5)-N(2)=3\}$.
(v) $\mathbb{P}\{N(5)-N(2)=3, N(7)-N(6)=4\}$.
(vi) $\mathbb{P}\{N(2)+N(5)=4\}$.

Solution:

(iv)

$$
\mathbb{P}\{N(5)-N(2)=3\}=e^{-6} \frac{6^{3}}{3!}
$$

Example 1

Let $\{N(t): t \geq 0\}$ be a Poisson process with rate $\lambda=2$. Compute:
(i) $\mathbb{P}\{N(5)=4\}$.
(ii) $\mathbb{P}\{N(5)=4, N(6)=9\}$.
(iii) $\mathbb{P}\{N(5)=4, N(6)=9, N(10)=15\}$.
(iv) $\mathbb{P}\{N(5)-N(2)=3\}$.
(v) $\mathbb{P}\{N(5)-N(2)=3, N(7)-N(6)=4\}$.
(vi) $\mathbb{P}\{N(2)+N(5)=4\}$.

Solution:

(v)

$$
\begin{aligned}
& \mathbb{P}\{N(5)-N(2)=3, N(7)-N(6)=4\} \\
= & \mathbb{P}\{N(5)-N(2)=3\} \mathbb{P}\{N(7)-N(6)=4\}=e^{-6} \frac{6^{3}}{3!} e^{-2} \frac{2^{4}}{4!}
\end{aligned}
$$

Example 1

Let $\{N(t): t \geq 0\}$ be a Poisson process with rate $\lambda=2$. Compute:
(i) $\mathbb{P}\{N(5)=4\}$.
(ii) $\mathbb{P}\{N(5)=4, N(6)=9\}$.
(iii) $\mathbb{P}\{N(5)=4, N(6)=9, N(10)=15\}$.
(iv) $\mathbb{P}\{N(5)-N(2)=3\}$.
(v) $\mathbb{P}\{N(5)-N(2)=3, N(7)-N(6)=4\}$.
(vi) $\mathbb{P}\{N(2)+N(5)=4\}$.

Solution:

(vi)

$$
\begin{aligned}
& \mathbb{P}\{N(2)+N(5)=4\}=\mathbb{P}\{2 N(2)+(N(5)-N(2))=4\} \\
= & \mathbb{P}\{N(2)=0, N(5)-N(2)=4\}+\mathbb{P}\{N(2)=1, N(5)-N(2)=2\} \\
& +\mathbb{P}\{N(2)=2, N(5)-N(2)=0\} \\
= & e^{-4} e^{-4} \frac{4^{4}}{4!}+e^{-4} \frac{4^{1}}{1!} e^{-4} \frac{4^{2}}{2!}+e^{-4} \frac{4^{2}}{2!} e^{-4} .
\end{aligned}
$$

Theorem 2
For each $t \geq 0$,

$$
E[N(t)]=\lambda t \text { and } \operatorname{Var}(N(t))=\lambda t
$$

Proof.
$N(t)$ has a Poisson distribution with mean λt.

Theorem 3
For each $0 \leq s \leq t$,

$$
\operatorname{Cov}(N(s), N(t))=\lambda s
$$

Proof.

Since $N(s)$ and $N(t)-N(s)$ are independent, $\operatorname{Cov}(N(s), N(t)-N(s))=0$. So,

$$
\operatorname{Cov}(N(s), N(t))=\operatorname{Cov}(N(s), N(s)+N(t)-N(s))
$$

$$
=\operatorname{Cov}(N(s), N(s))+\operatorname{Cov}(N(s), N(t)-N(s))=\operatorname{Var}(N(s))=\lambda s
$$

Example 2

Let $\{N(t): t \geq 0\}$ be a Poisson process with rate $\lambda=2$. Compute:
(i) $E[2 N(3)-4 N(5)]$.
(ii) $\operatorname{Var}(2 N(3)-4 N(5))$.
(iii) $E[N(5)-2 N(6)+3 N(10)]$.
(iv) $\operatorname{Var}(N(5)-2 N(6)+3 N(10))$.
(v) $\operatorname{Cov}(N(5)-2 N(6), 3 N(10))$.

Example 2

Let $\{N(t): t \geq 0\}$ be a Poisson process with rate $\lambda=2$. Compute:
(i) $E[2 N(3)-4 N(5)]$.
(ii) $\operatorname{Var}(2 N(3)-4 N(5))$.
(iii) $E[N(5)-2 N(6)+3 N(10)]$.
(iv) $\operatorname{Var}(N(5)-2 N(6)+3 N(10))$.
(v) $\operatorname{Cov}(N(5)-2 N(6), 3 N(10))$.

Solution:

(i)

$$
\begin{aligned}
& E[2 N(3)-4 N(5)]=2 E[N(3)]-4 E[N(5)] \\
= & (2)(2)(3)-(4)(2)(5)=-28 .
\end{aligned}
$$

Example 2

Let $\{N(t): t \geq 0\}$ be a Poisson process with rate $\lambda=2$. Compute:
(i) $E[2 N(3)-4 N(5)]$.
(ii) $\operatorname{Var}(2 N(3)-4 N(5))$.
(iii) $E[N(5)-2 N(6)+3 N(10)]$.
(iv) $\operatorname{Var}(N(5)-2 N(6)+3 N(10))$.
(v) $\operatorname{Cov}(N(5)-2 N(6), 3 N(10))$.

Solution:

(ii)

$$
\begin{aligned}
& \operatorname{Var}(2 N(3)-4 N(5))=\operatorname{Var}(-2 N(3)-4(N(5)-N(3))) \\
= & (-2)^{2} \operatorname{Var}(N(3))+(-4)^{2} \operatorname{Var}(N(5)-N(3)) \\
= & (-2)^{2}(2)(3)+(-4)^{2}(2)(5-3)=88 .
\end{aligned}
$$

Example 2

Let $\{N(t): t \geq 0\}$ be a Poisson process with rate $\lambda=2$. Compute:
(i) $E[2 N(3)-4 N(5)]$.
(ii) $\operatorname{Var}(2 N(3)-4 N(5))$.
(iii) $E[N(5)-2 N(6)+3 N(10)]$.
(iv) $\operatorname{Var}(N(5)-2 N(6)+3 N(10))$.
(v) $\operatorname{Cov}(N(5)-2 N(6), 3 N(10))$.

Solution:

(iii)

$$
\begin{aligned}
& E[N(5)-2 N(6)+3 N(10)]=(5)(2)-(2)(6)(2)+(3)(10)(2) \\
= & 10-24+60=46 .
\end{aligned}
$$

Example 2

Let $\{N(t): t \geq 0\}$ be a Poisson process with rate $\lambda=2$. Compute:
(i) $E[2 N(3)-4 N(5)]$.
(ii) $\operatorname{Var}(2 N(3)-4 N(5))$.
(iii) $E[N(5)-2 N(6)+3 N(10)]$.
(iv) $\operatorname{Var}(N(5)-2 N(6)+3 N(10))$.
(v) $\operatorname{Cov}(N(5)-2 N(6), 3 N(10))$.

Solution:

(iv)

$$
\begin{aligned}
& \operatorname{Var}(N(5)-2 N(6)+3 N(10)) \\
= & \operatorname{Var}(2 N(5)+(N(6)-N(5))+3(N(10)-N(6))) \\
= & 4 \operatorname{Var}(N(5))+\operatorname{Var}(N(1))+9 \operatorname{Var}(N(4)) \\
= & (4)(5)(2)+(2)(1)+(9)(4)(2)=114 .
\end{aligned}
$$

Example 2

Let $\{N(t): t \geq 0\}$ be a Poisson process with rate $\lambda=2$. Compute:
(i) $E[2 N(3)-4 N(5)]$.
(ii) $\operatorname{Var}(2 N(3)-4 N(5))$.
(iii) $E[N(5)-2 N(6)+3 N(10)]$.
(iv) $\operatorname{Var}(N(5)-2 N(6)+3 N(10))$.
(v) $\operatorname{Cov}(N(5)-2 N(6), 3 N(10))$.

Solution:

(v)
$\operatorname{Cov}(N(5)-2 N(6), 3 N(10))=(3)(5)(2)-(6)(6)(2)=30-72-42$.

Theorem 4
Let $\{N(t): t \geq 0\}$ be a counting process such that:
(i) $N(0)=0$.
(ii) The process has independent stationary increments.
(iii) $\mathbb{P}\{N(h) \geq 2\}=o(h)$.
(iv) $\mathbb{P}\{N(h)=1\}=\lambda h+o(h)$, where $\lambda>0$.

Then, $\{N(t): t \geq 0\}$ is a Poisson process with rate $\lambda>0$.
Reciprocally, a Poisson process $\{N(t): t \geq 0\}$ with rate $\lambda>0$ is a counting process satisfying (i)-(iv).
Proof: See Arcones's manual.

Theorem 5
(Markov property of the Poisson process) Let $\{N(t): t \geq 0\}$ be a Poisson process with rate λ. Let $0 \leq t_{1}<t_{2}<\cdots<t_{m}<s$ and let $k_{1} \leq k_{2} \leq \cdots \leq k_{m} \leq j$. Then,

$$
\begin{aligned}
& \mathbb{P}\left\{N(s)=j \mid N\left(t_{1}\right)=k_{1}, \ldots, N\left(t_{m}\right)=k_{m}\right\} \\
= & \mathbb{P}\left\{N(s)=j \mid N\left(t_{m}\right)=k_{m}\right\} .
\end{aligned}
$$

Previous theorem says that a Poisson process is a Markov chain with continuous time and state space $E=\{0,1, \ldots\}$.

Proof.

Since $N\left(t_{1}\right), N\left(t_{2}\right)-N\left(t_{1}\right), \cdots, N\left(t_{m}\right)-N\left(t_{m-1}\right), N(s)-N\left(t_{m}\right)$ are independent,

$$
\begin{aligned}
& \mathbb{P}\left\{N(s)=j \mid N\left(t_{1}\right)=k_{1}, \ldots, N\left(t_{m}\right)=k_{m}\right\} \\
& =\frac{\mathbb{P}\left\{N\left(t_{1}\right)=k_{1}, \ldots, N\left(t_{m}\right)=k_{m}, N(s)=j\right\}}{\mathbb{P}\left\{N\left(t_{1}\right)=k_{1}, \ldots, N\left(t_{m}\right)=k_{m}\right\}} \\
& =\frac{\mathbb{P}\left\{N\left(t_{1}\right)=k_{1}, N\left(t_{2}\right)-N\left(t_{1}\right)=k_{2}-k_{1}, \ldots, N\left(t_{m}\right)-N\left(t_{m-1}\right)=k_{m}-k_{m-1}, N(s)-N\left(t_{m}\right)=j-k_{m}\right\}}{\mathbb{P}\left\{N\left(t_{1}\right)=k_{1}, N\left(t_{2}\right)-N\left(t_{1}\right)=k_{2}-k_{1} \ldots, N\left(t_{m}\right)-N\left(t_{m-1}\right)=k_{m}-k_{m}\right\}} \\
& =\frac{\mathbb{P}\left\{N\left(t_{1}\right)=k_{1}\right\} P\left\{N\left(t_{2}\right)-N\left(t_{1}\right)=k_{2}-k_{1}\right\} \cdots \cdots\left(\mathbb{P}\left\{N\left(t_{m}\right)-N\left(t_{m-1}\right)=k_{m}-k_{m-1}\right\} \mathbb{P}\left\{N(s)-N\left(t_{m}\right)=j-k_{m}\right\}\right.}{\mathbb{P}\left\{N\left(t_{1}\right)=k_{1}\right\} P\left\{N\left(t_{2}\right)-N\left(t_{1}\right)=k_{2}-k_{1}\right\} \cdots \mathbb{P}\left\{N\left(t_{m}\right)-N\left(t_{m-1}\right)=k_{m}-k_{m-1}\right\}} \\
& =\mathbb{P}\left\{N(s)-N\left(t_{m}\right)=j-k_{m}\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
& \mathbb{P}\left\{N(s)=j \mid N\left(t_{m}\right)=k_{m}\right\}=\mathbb{P}\left\{N(s)-N\left(t_{m}\right)=j-k_{m} \mid N\left(t_{m}\right)=k_{m}\right\} \\
= & \mathbb{P}\left\{N(s)-N\left(t_{m}\right)=j-k_{m}\right\}
\end{aligned}
$$

Previous theorem implies that for

$$
\begin{aligned}
& 0 \leq t_{1}<t_{2}<\cdots<t_{m}<s_{1}<s_{2}<\cdots s_{m} \text { and for } \\
& k_{1} \leq k_{2} \leq \cdots \leq k_{m} \leq j_{1} \leq \cdots j_{n}
\end{aligned}
$$

$$
\begin{aligned}
& \mathbb{P}\left\{N\left(s_{1}\right)=j_{1}, \ldots, N\left(s_{n}\right)=j_{n} \mid N\left(t_{1}\right)=k_{1}, \ldots, N\left(t_{m}\right)=k_{m}\right\} \\
= & \mathbb{P}\left\{N\left(s_{1}\right)=j_{1}, \ldots, N\left(s_{n}\right)=j_{n} \mid N\left(t_{m}\right)=k_{m}\right\}
\end{aligned}
$$

Theorem 6

Let $\{N(t): t \geq 0\}$ be a Poisson process with rate λ. Let $t_{0}>0$ and let $j \geq 0$. Then, the distribution of $\left\{N(t)-N\left(t_{0}\right): t \geq t_{0}\right\}$ conditional on $N\left(t_{0}\right)=j$ is that of a Poisson process with rate λ. In particular, for each $t_{0}<s_{1}<\cdots<s_{n}$ and each $j \leq k_{1} \leq \ldots, k_{m}$,

$$
\begin{aligned}
& \mathbb{P}\left\{N\left(s_{1}\right)=k_{1}, \ldots, N\left(s_{m}\right)=k_{m} \mid N\left(t_{0}\right)=j\right\} \\
= & \mathbb{P}\left\{N\left(s_{1}-t_{0}\right)=k_{1}-j, \ldots, N\left(s_{m}-t_{0}\right)=k_{m}-j\right\} .
\end{aligned}
$$

Proof: Since a Poisson process has independent stationary increments,

$$
\begin{aligned}
& \mathbb{P}\left\{N\left(s_{1}\right)=k_{1}, \ldots, N\left(s_{m}\right)=k_{m} \mid N\left(t_{0}\right)=j\right\} \\
= & \mathbb{P}\left\{N\left(s_{1}\right)-N\left(t_{0}\right)=k_{1}-j, N\left(s_{2}\right)-N\left(s_{1}\right)=k_{m}-k_{m-1}, \ldots,\right. \\
& \left.N\left(s_{m}\right)-N\left(s_{m-1}\right)=k_{m}-k_{m-1} \mid N\left(t_{0}\right)=j\right\} \\
= & \mathbb{P}\left\{N\left(s_{1}\right)-N\left(t_{0}\right)=k_{1}-j\right\} \mathbb{P}\left\{N\left(s_{2}\right)-N\left(s_{1}\right)=k_{2}-k_{1}\right\} \cdots \\
& \mathbb{P}\left\{N\left(s_{m}\right)-N\left(s_{m-1}\right)=k_{m}-k_{m-1}\right\} \\
= & \mathbb{P}\left\{\operatorname{Pois}\left(\lambda\left(s_{1}-t_{0}\right)\right)=k_{1}-j\right\} \mathbb{P}\left\{\operatorname{Pois}\left(\lambda\left(s_{2}-s_{1}\right)\right)=k_{2}-k_{1}\right\} \cdots \\
& \mathbb{P}\left\{\operatorname{Pois}\left(\lambda\left(s_{m}-s_{m-1}\right)\right)=k_{m}-k_{m-1}\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
& \mathbb{P}\left\{N\left(s_{1}-t_{0}\right)=k_{1}-j, \ldots, N\left(s_{m}-t_{0}\right)=k_{m}-j\right\} \\
= & \mathbb{P}\left\{N\left(s_{1}-t_{0}\right)=k_{1}-j, N\left(s_{2}-t_{0}\right)-N\left(s_{1}-t_{0}\right)=k_{2}-k_{1} \ldots,\right. \\
& \left.\quad N\left(s_{m}-t_{0}\right)-N\left(s_{m-1}-t_{0}\right)=k_{m}-k_{m-1}\right\} \\
= & \mathbb{P}\left\{N\left(s_{1}-t_{0}\right)=k_{1}-j\right\} \mathbb{P}\left\{N\left(s_{2}-t_{0}\right)-N\left(s_{1}-t_{0}\right)=k_{2}-k_{1}\right\} \cdots \\
& \mathbb{P}\left\{N\left(s_{m}-t_{0}\right)-N\left(s_{m-1}-t_{0}\right)=k_{m}-k_{m-1}\right\} \\
= & \mathbb{P}\left\{\operatorname{Pois}\left(\lambda\left(s_{1}-t_{0}\right)\right)=k_{1}-j\right\} \mathbb{P}\left\{\operatorname{Pois}\left(\lambda\left(s_{2}-s_{1}\right)\right)=k_{2}-k_{1}\right\} \cdots \\
& \mathbb{P}\left\{\operatorname{Pois}\left(\lambda\left(s_{m}-s_{m-1}\right)\right)=k_{m}-k_{m-1}\right\} .
\end{aligned}
$$

It follows from the previous theorem that the distribution of $N(s+t)$ given $N(s)=j$ is that $j+\operatorname{Poisson}(\lambda t)$. So, $E[N(s+t) \mid N(s)=j]=j+\lambda t$ and $\operatorname{Var}(N(s+t) \mid N(s)=j)=\lambda t$.

Previous theorem says that the number of occurrences from one moment on is a Poisson process. In some sense, the process starts anew at every time. Given a particular time, future occurrences from that time on follow a Poisson process with the same rate as the original process.

Example 3

Let $\{N(t): t \geq 0\}$ be a Poisson process with rate $\lambda=3$. Compute:
(i) $\mathbb{P}\{N(5)=7 \mid N(3)=2\}$.
(ii) $E[2 N(5)-3 N(7) \mid N(3)=2]$.
(iii) $\operatorname{Var}(N(5) \mid N(2)=3)$.
(iv) $\operatorname{Var}(N(5)-N(2) \mid N(2)=3)$.
(v) $\operatorname{Var}(2 N(5)-3 N(7) \mid N(3)=2)$.

Example 3

Let $\{N(t): t \geq 0\}$ be a Poisson process with rate $\lambda=3$. Compute:
(i) $\mathbb{P}\{N(5)=7 \mid N(3)=2\}$.
(ii) $E[2 N(5)-3 N(7) \mid N(3)=2]$.
(iii) $\operatorname{Var}(N(5) \mid N(2)=3)$.
(iv) $\operatorname{Var}(N(5)-N(2) \mid N(2)=3)$.
(v) $\operatorname{Var}(2 N(5)-3 N(7) \mid N(3)=2)$.

Solution:

(i) $\mathbb{P}\{N(5)=7 \mid N(3)=2\}=\mathbb{P}\{N(5)-N(3)=7-2 \mid N(3)=2\}=$ $\mathbb{P}\{N(2)=5\}=e^{-6} \frac{6^{5}}{5!}$.

Example 3

Let $\{N(t): t \geq 0\}$ be a Poisson process with rate $\lambda=3$. Compute:
(i) $\mathbb{P}\{N(5)=7 \mid N(3)=2\}$.
(ii) $E[2 N(5)-3 N(7) \mid N(3)=2]$.
(iii) $\operatorname{Var}(N(5) \mid N(2)=3)$.
(iv) $\operatorname{Var}(N(5)-N(2) \mid N(2)=3)$.
(v) $\operatorname{Var}(2 N(5)-3 N(7) \mid N(3)=2)$.

Solution:

(ii) $E[2 N(5)-3 N(7) \mid N(3)=2]=(2)(2+(3)(2))-(3)(2+(3)(4))=$ -26 .

Example 3

Let $\{N(t): t \geq 0\}$ be a Poisson process with rate $\lambda=3$. Compute:
(i) $\mathbb{P}\{N(5)=7 \mid N(3)=2\}$.
(ii) $E[2 N(5)-3 N(7) \mid N(3)=2]$.
(iii) $\operatorname{Var}(N(5) \mid N(2)=3)$.
(iv) $\operatorname{Var}(N(5)-N(2) \mid N(2)=3)$.
(v) $\operatorname{Var}(2 N(5)-3 N(7) \mid N(3)=2)$.

Solution:

(iii)

$$
\begin{aligned}
& \operatorname{Var}(N(5) \mid N(2)=3)=\operatorname{Var}(N(5)-N(2)+3 \mid N(2)=3) \\
= & \operatorname{Var}(N(5)-N(2) \mid N(2)=3)=\operatorname{Var}(N(3))=(3)(3)=9 .
\end{aligned}
$$

Example 3

Let $\{N(t): t \geq 0\}$ be a Poisson process with rate $\lambda=3$. Compute:
(i) $\mathbb{P}\{N(5)=7 \mid N(3)=2\}$.
(ii) $E[2 N(5)-3 N(7) \mid N(3)=2]$.
(iii) $\operatorname{Var}(N(5) \mid N(2)=3)$.
(iv) $\operatorname{Var}(N(5)-N(2) \mid N(2)=3)$.
(v) $\operatorname{Var}(2 N(5)-3 N(7) \mid N(3)=2)$.

Solution:

(iv) $\operatorname{Var}(N(5)-N(2) \mid N(2)=3)=\operatorname{Var}(N(5)-N(2))=(3)(5-2)=$ 9.

Example 3

Let $\{N(t): t \geq 0\}$ be a Poisson process with rate $\lambda=3$. Compute:
(i) $\mathbb{P}\{N(5)=7 \mid N(3)=2\}$.
(ii) $E[2 N(5)-3 N(7) \mid N(3)=2]$.
(iii) $\operatorname{Var}(N(5) \mid N(2)=3)$.
(iv) $\operatorname{Var}(N(5)-N(2) \mid N(2)=3)$.
(v) $\operatorname{Var}(2 N(5)-3 N(7) \mid N(3)=2)$.

Solution:

(v)

$$
\begin{aligned}
& \operatorname{Var}(2 N(5)-3 N(7) \mid N(3)=2)=\operatorname{Var}(2(N(2)+2)-3(N(4)+2)) \\
= & \operatorname{Var}(2 N(2)-3 N(4))=\operatorname{Var}(-N(2)-3(N(4)-N(2))) \\
= & \operatorname{Var}(-N(2))+\operatorname{Var}(3(N(4)-N(2)))=(2)(3)+(3)^{2}(3)(4-2)=60
\end{aligned}
$$

Theorem 7

Let $\{N(t): t \geq 0\}$ be a Poisson process with rate λ. Let $s, t \geq 0$. Then,

$$
P\{N(t)=k \mid N(s+t)=n\}=\binom{n}{k}\left(\frac{t}{t+s}\right)^{k}\left(\frac{s}{t+s}\right)^{n-k},
$$

i.e. the distribution of $N(t)$ given $N(s+t)=n$ is binomial with parameters n and $p=\frac{t}{t+s}$. So,

$$
E[N(t) \mid N(s+t)=n]=\frac{n t}{s+t}
$$

and

$$
\operatorname{Var}(N(t) \mid N(s+t)=n)=n \frac{t}{s+t} \frac{s}{s+t} .
$$

Proof:

$$
\begin{aligned}
& P\{N(t)=k \mid N(s+t)=n\}=\frac{\mathbb{P}\{N(t)=k, N(s+t)=n\}}{\mathbb{P}\{N(s+t)=n\}} \\
= & \frac{\mathbb{P}\{N(t)=k, N(s+t)-N(t)=n-k\}}{\mathbb{P}\{N(s+t)=n\}} \\
= & \frac{e^{-\lambda t} \frac{(\lambda t)^{k}}{k!} e^{-\lambda s} \frac{(\lambda s)^{n-k}}{(n-k)!}}{e^{-\lambda(s+t)} \frac{(\lambda(s+t))^{n}}{n!}}=\binom{n}{k}\left(\frac{t}{t+s}\right)^{k}\left(\frac{s}{t+s}\right)^{n-k} .
\end{aligned}
$$

Previous theorem says that knowing that n events are recorded until time $s+t$, each of these events is recorded before time t with probability $\frac{t}{s+t}$ independently of the rest of events.

Previous theorem says that knowing that n events are recorded until time $s+t$, each of these events is recorded before time t with probability $\frac{t}{s+t}$ independently of the rest of events. Previous theorem can be extended as follows, given $0 \leq t_{1}<t_{2}<\cdots<t_{m}$, the conditional distribution of $\left(N\left(t_{1}\right), N\left(t_{2}\right)-N\left(t_{1}\right), \ldots, N\left(t_{m}\right)-N\left(t_{m-1}\right)\right)$ given $N\left(t_{m}\right)=n$ is multinomial distribution with parameter $\left(\frac{t_{1}}{t_{m}}, \frac{t_{2}-t_{1}}{t_{m}}, \ldots, \frac{t_{m}-t_{m-1}}{t_{m}}\right)$. Given $N\left(t_{m}\right)=n$, we know that events happens in the interval [$0, t_{m}$], each of these events happens independently and the probability that one of these events happens in particular interval is the fraction of the total length of this interval.

Example 4

Customers arrive at a store according to a Poisson process with a rate 40 customers per hour. Assume that three customers arrived during the first 15 minutes. Calculate the probability that no customer arrived during the first five minutes.

Example 4

Customers arrive at a store according to a Poisson process with a rate 40 customers per hour. Assume that three customers arrived during the first 15 minutes. Calculate the probability that no customer arrived during the first five minutes.
Solution: Let $N(t)$ be the number of customers arriving in the first t minutes. $N(t)$ is a Poisson process with rate $2 / 3$. We have that

$$
\mathbb{P}\{N(5)=0 \mid N(15)=3\}=\binom{3}{0}\left(\frac{5}{15}\right)^{0}\left(\frac{10}{15}\right)^{3}=0.2962962963
$$

