Manual for SOA Exam MLC. Chapter 11. Poisson processes. Section 11.3. Interarrival times.

(C)2008. Miguel A. Arcones. All rights reserved.

Extract from:
"Arcones' Manual for SOA Exam MLC. Fall 2009 Edition", available at http://www.actexmadriver.com/

Arrival time

For $n \geq 1$, let S_{n} be the arrival time of the n-th event, i.e.

$$
S_{n}=\inf \{t \geq 0: N(t)=n\} .
$$

Notice that $N\left(S_{n}\right)=n$ and $N(t)<n$, for $t<S_{n}$.

An useful relation between $N(t)$ and S_{n} is

$$
\begin{aligned}
& \left\{S_{n} \leq t\right\} \\
= & \{\text { the } n-\text { th occurrence happens before time } t\} \\
= & \{\text { there are } n \text { or more occurrences in the interval }[0, t]\} \\
= & \{N(t) \geq n\} .
\end{aligned}
$$

Since $\left\{S_{n} \leq t\right\}=\{N(t) \geq n\}$,

$$
\left\{S_{n}>t\right\}=\{N(t)<n\}
$$

and

$$
\begin{aligned}
& \{N(t)=n\}=\{N(t) \geq n\} \cap\{N(t)<n+1\} \\
= & \left\{S_{n} \leq t\right\} \cap\left\{S_{n+1}>t\right\}=\left\{S_{n} \leq t<S_{n+1}\right\} .
\end{aligned}
$$

Theorem 1

For each integer $n \geq 1$ and each $t \geq 0$,

$$
\mathbb{P}\{\operatorname{Gamma}(n, 1)>t\}=\mathbb{P}\{\operatorname{Poisson}(t) \leq n-1\} .
$$

Proof.

Using that $\int \frac{x^{n}}{n!} e^{-x} d x=-e^{-x} \sum_{j=0}^{n} \frac{x^{j}}{j!}+c$,

$$
\begin{aligned}
& \mathbb{P}\{\operatorname{Gamma}(n, 1)>t\}=\int_{t}^{\infty} \frac{x^{n}}{n!} e^{-x} d x=-\left.e^{-x} \sum_{j=0}^{n} \frac{x^{j}}{j!}\right|_{t} ^{\infty} \\
= & -e^{-t} \sum_{j=0}^{n} \frac{t^{j}}{j!}=\mathbb{P}\{\operatorname{Poiss}(t) \leq n-1\} .
\end{aligned}
$$

Theorem 2
S_{n} has a gamma distribution with parameters $\alpha=n$ and $\beta=\frac{1}{\lambda}$.
Proof.
By Theorem 1,

$$
\begin{aligned}
& \mathbb{P}\left\{S_{n}>t\right\}=\mathbb{P}\{N(t)<n\}=\mathbb{P}\{\operatorname{Poiss}(\lambda t) \leq n-1\} \\
= & \mathbb{P}\{\operatorname{Gamma}(n, 1)>\lambda t\}=\mathbb{P}\left\{\operatorname{Gamma}\left(n, \frac{1}{\lambda}\right)>t\right\} .
\end{aligned}
$$

Since S_{n} has a gamma distribution with parameters $\alpha=n$ and $\beta=\frac{1}{\lambda}, S_{n}$ has density function

$$
f_{S_{n}}(t)=\frac{\lambda^{n} t^{n-1} e^{-\lambda t}}{(n-1)!}, t \geq 0
$$

$E\left[S_{n}\right]=\frac{n}{\lambda}$ and $\operatorname{Var}\left(S_{n}\right)=\frac{n}{\lambda^{2}}$.
The c.d.f. of S_{n} is

$$
F_{S_{n}}(t)=\mathbb{P}\left\{S_{n} \leq t\right\}=\mathbb{P}\{N(t) \geq n\}=\sum_{j=n}^{\infty} e^{-\lambda t} \frac{(\lambda t)^{j}}{j!} .
$$

Example 1

Let $\{N(t): t \geq 0\}$ be a Poisson process with rate $\lambda=3$. Let S_{n} denote the time of the occurrence of the n-th event. Calculate: (i) $\mathbb{P}\left\{S_{3}>5\right\}$.
(ii) The density of S_{3}.
(iii) Find the expected value and the variance of S_{3}.
(iv) $\mathbb{P}\left\{S_{2}>3, S_{5}>7\right\}$.

Example 1

Let $\{N(t): t \geq 0\}$ be a Poisson process with rate $\lambda=3$. Let S_{n} denote the time of the occurrence of the $n-t h$ event. Calculate:
(i) $\mathbb{P}\left\{S_{3}>5\right\}$.
(ii) The density of S_{3}.
(iii) Find the expected value and the variance of S_{3}.
(iv) $\mathbb{P}\left\{S_{2}>3, S_{5}>7\right\}$.

Solution:

(i)

$$
\begin{aligned}
& \mathbb{P}\left\{S_{3}>5\right\}=\mathbb{P}\{N(5) \leq 2\}=e^{-15}\left(1+15+\frac{15^{2}}{2}\right) \\
= & 0.00003930844818
\end{aligned}
$$

Example 1
Let $\{N(t): t \geq 0\}$ be a Poisson process with rate $\lambda=3$. Let S_{n} denote the time of the occurrence of the $n-t h$ event. Calculate:
(i) $\mathbb{P}\left\{S_{3}>5\right\}$.
(ii) The density of S_{3}.
(iii) Find the expected value and the variance of S_{3}.
(iv) $\mathbb{P}\left\{S_{2}>3, S_{5}>7\right\}$.

Solution:

(ii) S_{3} has a gamma distribution with $\alpha=3$ and $\beta=\frac{1}{3}$. Hence, the density of S_{3} is

$$
f_{S_{3}}(t)=\frac{3^{3} t^{2} e^{-3 t}}{3!}=\frac{9 t^{2} e^{-3 t}}{2}, t \geq 0
$$

Example 1

Let $\{N(t): t \geq 0\}$ be a Poisson process with rate $\lambda=3$. Let S_{n} denote the time of the occurrence of the n-th event. Calculate:
(i) $\mathbb{P}\left\{S_{3}>5\right\}$.
(ii) The density of S_{3}.
(iii) Find the expected value and the variance of S_{3}.
(iv) $\mathbb{P}\left\{S_{2}>3, S_{5}>7\right\}$.

Solution:

(iii)

$$
E\left[S_{3}\right]=3(1 / 3)=1 \operatorname{and} \operatorname{Var}\left(S_{3}\right)=3(1 / 3)^{2}=1 / 3 .
$$

(iv)

$$
\begin{aligned}
& \mathbb{P}\left\{S_{2}>3, S_{5}>7\right\}=\mathbb{P}\{N(3) \leq 1, N(7) \leq 4\} \\
= & \mathbb{P}\{N(3)=0, N(7) \leq 4\}+\mathbb{P}\{N(3)=1, N(7) \leq 4\} \\
= & \mathbb{P}\{N(3)=0\} \mathbb{P}\{N(7)-N(3) \leq 4\} \\
& +\mathbb{P}\{N(3)=1\} \mathbb{P}\{N(7)-N(3) \leq 3\} \\
= & e^{-9} e^{-12}\left(1+12+\frac{12^{2}}{2}+\frac{12^{3}}{6}+\frac{12^{4}}{24}\right) \\
& +e^{-9}(9) e^{-12}\left(1+12+\frac{12^{2}}{2}+\frac{12^{3}}{6}\right) \\
= & e^{-21}(1237)+e^{-21}(3357)=(3.483428261) 10^{-6} .
\end{aligned}
$$

Theorem 3
The joint density of $\left(S_{1}, \ldots, S_{n}\right)$ is

$$
f_{S_{1}, \ldots, s_{n}}\left(s_{1}, \ldots, s_{n}\right)=\lambda^{n} e^{-\lambda s_{n}}, \text { if } 0<s_{1}<s_{2}<\cdots<s_{n} .
$$

Proof: Given $0<s_{1}<s_{2}<\cdots<s_{n}$, take $h>0$ small enough.
Then,

$$
\begin{aligned}
& \mathbb{P}\left\{S_{1} \in\left(s_{1}, s_{1}+h\right], \ldots, S_{n} \in\left(s_{n}, s_{n}+h\right]\right\} \\
= & \mathbb{P}\left\{N\left(s_{1}\right)=0, N\left(s_{1}+h\right)-N\left(s_{1}\right)=1, N\left(s_{2}\right)-N\left(s_{1}+h\right)=0, \ldots,\right. \\
& \left.N\left(s_{n}\right)-N\left(s_{n-1}+h\right)=0, N\left(s_{n}+h\right)-N\left(s_{n}\right)=1\right\} \\
= & e^{-\lambda s_{1}} e^{-\lambda h} \lambda h e^{-\lambda\left(s_{2}-s_{1}-h\right)} \cdots e^{-\lambda\left(s_{n}-s_{n-1}-h\right)} e^{-\lambda h} \lambda h \\
= & \lambda^{n} h^{n} e^{-\lambda s_{n}} \\
& f_{S_{1}, \ldots, S_{n}}\left(s_{1}, \ldots, s_{n}\right) \\
= & \lim _{h \rightarrow 0+} \frac{\mathbb{P}\left\{S_{1} \in\left(s_{1}, s_{1}+h\right], \ldots, S_{n} \in\left(s_{n}, s_{n}+h\right]\right\}}{h^{n}}=\lambda^{n} e^{-\lambda s_{n}} .
\end{aligned}
$$

The distribution of $\left(S_{1}, \ldots, S_{n-1}\right)$ given S_{n} is uniform on $0<s_{1}<s_{2}<\cdots<s_{n}$, i.e.

$$
\begin{aligned}
& f_{S_{1}, \ldots, S_{n-1} \mid S_{n}}\left(s_{1}, \ldots, s_{n-1} \mid s_{n}\right)=\frac{f_{S_{1}, \ldots, S_{n}}\left(s_{1}, \ldots, s_{n}\right)}{f_{S_{n}}\left(s_{n}\right)} \\
= & \frac{\lambda^{n} e^{-\lambda s_{n}}}{\frac{\lambda^{n} s_{n}^{n-1} e^{-\lambda s_{n}}}{(n-1)!}}=\frac{(n-1)!}{s_{n}^{n-1}}, \text { for } 0<s_{1}<s_{2}<\cdots<s_{n} .
\end{aligned}
$$

Since a Poisson process is a stationary process, we should expect this distribution.

Let $T_{n}=S_{n}-S_{n-1}$ be the time elapsed between the ($n-1$)-th and the n-th event. T_{n} is called the interarrival between the ($n-1$)-th and the n-th event.

Theorem 4
$\left\{T_{n}\right\}_{n=1}^{\infty}$, are independent identically distributed exponential random variables having mean $\frac{1}{\lambda}$.
Theorem 4 says that if the rate of events is λ events per unit of time, then the expected waiting time between events is $\frac{1}{\lambda}$.
Theorem 4 implies that $E\left[T_{n}\right]=\frac{1}{\lambda}, \operatorname{Var}\left(T_{n}\right)=\frac{1}{\lambda^{2}}$ and T_{n} has density function

$$
f_{T_{n}}(t)=\lambda e^{-\lambda t}, t \geq 0
$$

Theorem 4 implies that for $k_{1}<k_{2}<\cdots<k_{m}$,

$$
S_{k_{1}}, S_{k_{2}}-S_{k_{1}}, S_{k_{m}}-S_{k_{m-1}}
$$

are independent r.v.'s.

Proof.

We have that $\left(S_{1}, \ldots, S_{n}\right)=\left(T_{1}, T_{1}+T_{2}, \ldots, T_{1}+\cdots+T_{n}\right)$. This transformation has Jacobian one. Hence, the density of $\left(T_{1}, \ldots, T_{n}\right)$ is

$$
\begin{aligned}
& f_{T_{1}, \ldots, T_{n}}\left(t_{1}, \ldots, t_{n}\right)=f_{S_{1}, \ldots, S_{n}}\left(t_{1}, t_{1}+t_{2}, \ldots, t_{1}+\cdots+t_{n}\right) \\
= & \lambda^{n} e^{-\lambda\left(t_{1}+\cdots+t_{n}\right)}=\prod_{j=1}^{n} \lambda e^{-\lambda t_{j}} .
\end{aligned}
$$

Given a sequence of independent identically distributed r.v.'s $\left\{T_{n}\right\}_{n=1}^{\infty}$ with an exponential distribution with mean $\frac{1}{\lambda}$, define

$$
N(t)=\sup \left\{n \geq 0: S_{n} \leq t\right\}, t \geq 0
$$

where $S_{n}=\sum_{j=1}^{n} T_{j}, n \geq 1, S_{n}=0$. It is possible to prove that $\{N(t): t \geq 0\}$ is a Poisson process with rate λ. Hence, from a Poisson process we can obtain a sequence of independent identically distributed r.v.'s with an exponential distribution, and reciprocally from a sequence of independent identically distributed r.v.'s with an exponential distribution, we can obtain a Poisson process.

Example 2

Let $\{N(t): t \geq 0\}$ be a Poisson process with rate $\lambda=3$. Let S_{n} denote the time of the occurrence of the $n-t h$ event. Let $T_{n}=S_{n}-S_{n-1}$ be the elapsed time between the ($n-1$)-th and the n-th event. Calculate:
(i) The density of T_{6}.
(ii) Find the expected value and the variance of T_{6}.
(iii) Find $\operatorname{Cov}\left(T_{3}, T_{8}\right)$.
(iv) Find $\operatorname{Cov}\left(S_{2}, S_{9}\right)$.

Example 2

Let $\{N(t): t \geq 0\}$ be a Poisson process with rate $\lambda=3$. Let S_{n} denote the time of the occurrence of the $n-t h$ event. Let $T_{n}=S_{n}-S_{n-1}$ be the elapsed time between the $(n-1)$-th and the n-th event. Calculate:
(i) The density of T_{6}.
(ii) Find the expected value and the variance of T_{6}.
(iii) Find $\operatorname{Cov}\left(T_{3}, T_{8}\right)$.
(iv) Find $\operatorname{Cov}\left(S_{2}, S_{9}\right)$.

Solution:

(i) T_{6} has an exponential distribution with mean $\frac{1}{3}$. Hence, the density of T_{6} is

$$
f_{T_{6}}(t)=3 e^{-3 t}, t \geq 0 .
$$

Example 2

Let $\{N(t): t \geq 0\}$ be a Poisson process with rate $\lambda=3$. Let S_{n} denote the time of the occurrence of the $n-t h$ event. Let $T_{n}=S_{n}-S_{n-1}$ be the elapsed time between the ($n-1$)-th and the n-th event. Calculate:
(i) The density of T_{6}.
(ii) Find the expected value and the variance of T_{6}.
(iii) Find $\operatorname{Cov}\left(T_{3}, T_{8}\right)$.
(iv) Find $\operatorname{Cov}\left(S_{2}, S_{9}\right)$.

Solution:
(ii)

$$
E\left[T_{6}\right]=(1 / 3), \operatorname{Var}\left(T_{6}\right)=(1 / 3)^{2}=1 / 9 .
$$

Example 2

Let $\{N(t): t \geq 0\}$ be a Poisson process with rate $\lambda=3$. Let S_{n} denote the time of the occurrence of the n-th event. Let $T_{n}=S_{n}-S_{n-1}$ be the elapsed time between the ($n-1$)-th and the n-th event. Calculate:
(i) The density of T_{6}.
(ii) Find the expected value and the variance of T_{6}.
(iii) Find $\operatorname{Cov}\left(T_{3}, T_{8}\right)$.
(iv) Find $\operatorname{Cov}\left(S_{2}, S_{9}\right)$.

Solution:
(iii) $\operatorname{Cov}\left(T_{3}, T_{8}\right)=0$.

Example 2

Let $\{N(t): t \geq 0\}$ be a Poisson process with rate $\lambda=3$. Let S_{n} denote the time of the occurrence of the $n-t h$ event. Let $T_{n}=S_{n}-S_{n-1}$ be the elapsed time between the ($n-1$)-th and the n-th event. Calculate:
(i) The density of T_{6}.
(ii) Find the expected value and the variance of T_{6}.
(iii) Find $\operatorname{Cov}\left(T_{3}, T_{8}\right)$.
(iv) Find $\operatorname{Cov}\left(S_{2}, S_{9}\right)$.

Solution:

(iv)
$\operatorname{Cov}\left(S_{2}, S_{9}\right)=\operatorname{Cov}\left(S_{2}, S_{2}+S_{9}-S_{2}\right)=\operatorname{Cov}\left(S_{2}, S_{2}\right)=2(1 / 3)^{2}=2 / 9$.

Theorem 5
Given $0 \leq n<m$ and $t>0$,

$$
\mathbb{P}\left\{S_{m}-t>s \mid N(t)=n\right\}=\mathbb{P}\left\{S_{m-n}>s\right\}, s>0,
$$

and

$$
E\left[S_{m} \mid N(t)=n\right]=t+E\left[S_{n-m}\right]
$$

Theorem 5
Given $0 \leq n<m$ and $t>0$,

$$
\mathbb{P}\left\{S_{m}-t>s \mid N(t)=n\right\}=\mathbb{P}\left\{S_{m-n}>s\right\}, s>0
$$

and

$$
E\left[S_{m} \mid N(t)=n\right]=t+E\left[S_{n-m}\right] .
$$

Proof: We have that

$$
\begin{aligned}
& \mathbb{P}\left\{S_{m}-t>s \mid N(t)=n\right\}=\mathbb{P}\left\{S_{m}>t+s \mid N(s)=n\right\} \\
= & \mathbb{P}\{N(t+s)<m \mid N(t)=n\} \\
= & \mathbb{P}\{N(t+s)-N(t)<m-n \mid N(t)=n\} \\
= & \mathbb{P}\{N(t+s)-N(t)<m-n\}=\mathbb{P}\{N(s)<m-n\}=P\left\{S_{m-n}>s\right\} .
\end{aligned}
$$

Theorem 5
Given $0 \leq n<m$ and $t>0$,

$$
\mathbb{P}\left\{S_{m}-t>s \mid N(t)=n\right\}=\mathbb{P}\left\{S_{m-n}>s\right\}, s>0
$$

and

$$
E\left[S_{m} \mid N(t)=n\right]=t+E\left[S_{n-m}\right] .
$$

Proof:

$$
\begin{aligned}
& E\left[S_{m} \mid N(t)=n\right]=t+E\left[S_{m}-t \mid N(t)=n\right] \\
= & t+\int_{0}^{\infty} \mathbb{P}\left\{S_{m}-t>s \mid N(t)=n\right\} d s \\
= & t+\int_{0}^{\infty} \mathbb{P}\left\{S_{m-n}>s\right\} d s=t+E\left[S_{m-n}\right] .
\end{aligned}
$$

Theorem 5

Given $0 \leq n<m$ and $t>0$,

$$
\mathbb{P}\left\{S_{m}-t>s \mid N(t)=n\right\}=\mathbb{P}\left\{S_{m-n}>s\right\}, s>0,
$$

and

$$
E\left[S_{m} \mid N(t)=n\right]=t+E\left[S_{n-m}\right] .
$$

A Poisson process is a Markov process. it starts anew. The number of occurrences observed after time t has the same distribution as the number of occurrences observed after time zero. Hence, given $N(t)=n$ the waiting time after time t until the m-th occurrence is observed has the distribution of the waiting time until the $(m-n)$-th occurrence is observed.

Example 3

Let $\{N(t): t \geq 0\}$ be a Poisson process with rate $\lambda=3$. Let S_{n} denote the time of the occurrence of the n-th event. Let $T_{n}=S_{n}-S_{n-1}$ be the elapsed time between the $(n-1)-t h$ and the $n-t h$ event. Calculate:
(i) $E\left[S_{3} \mid N(4)=1\right]$.
(ii) $\mathbb{P}\left\{S_{3}>7 \mid N(4)=1\right\}$.
(iii) $\mathbb{P}\left\{T_{3}>7 \mid N(4)=1\right\}$.

Example 3

Let $\{N(t): t \geq 0\}$ be a Poisson process with rate $\lambda=3$. Let S_{n} denote the time of the occurrence of the n-th event. Let $T_{n}=S_{n}-S_{n-1}$ be the elapsed time between the $(n-1)-t h$ and the n-th event. Calculate:
(i) $E\left[S_{3} \mid N(4)=1\right]$.
(ii) $\mathbb{P}\left\{S_{3}>7 \mid N(4)=1\right\}$.
(iii) $\mathbb{P}\left\{T_{3}>7 \mid N(4)=1\right\}$.

Solution:
(i) $E\left[S_{3} \mid N(4)=1\right)=4+E\left[S_{3-1}\right]=4+(3-1) \frac{1}{3}=\frac{14}{3}$.

Example 3

Let $\{N(t): t \geq 0\}$ be a Poisson process with rate $\lambda=3$. Let S_{n} denote the time of the occurrence of the n-th event. Let $T_{n}=S_{n}-S_{n-1}$ be the elapsed time between the $(n-1)-t h$ and the $n-t h$ event. Calculate:
(i) $E\left[S_{3} \mid N(4)=1\right]$.
(ii) $\mathbb{P}\left\{S_{3}>7 \mid N(4)=1\right\}$.
(iii) $\mathbb{P}\left\{T_{3}>7 \mid N(4)=1\right\}$.

Solution:
(ii)

$$
\begin{aligned}
& \mathbb{P}\left\{S_{3}>7 \mid N(4)=1\right\}=\mathbb{P}\left\{S_{3-1}>7-4\right\}=\mathbb{P}\left\{S_{2}>3\right\} \\
= & \mathbb{P}\{N(3) \leq 1\}=e^{-9}(1+9)=0.001234
\end{aligned}
$$

Example 3

Let $\{N(t): t \geq 0\}$ be a Poisson process with rate $\lambda=3$. Let S_{n} denote the time of the occurrence of the n-th event. Let $T_{n}=S_{n}-S_{n-1}$ be the elapsed time between the $(n-1)-t h$ and the $n-t h$ event. Calculate:
(i) $E\left[S_{3} \mid N(4)=1\right]$.
(ii) $\mathbb{P}\left\{S_{3}>7 \mid N(4)=1\right\}$.
(iii) $\mathbb{P}\left\{T_{3}>7 \mid N(4)=1\right\}$.

Solution:

(ii) Alternatively,

$$
\begin{aligned}
& \mathbb{P}\left\{S_{3}>7 \mid N(4)=1\right\}=\mathbb{P}\{N(7) \leq 2 \mid N(4)=1\}=\mathbb{P}\{N(3) \leq 1\} \\
= & e^{-9}(1+9)=0.001234
\end{aligned}
$$

Example 3

Let $\{N(t): t \geq 0\}$ be a Poisson process with rate $\lambda=3$. Let S_{n} denote the time of the occurrence of the n-th event. Let $T_{n}=S_{n}-S_{n-1}$ be the elapsed time between the $(n-1)-t h$ and the n-th event. Calculate:
(i) $E\left[S_{3} \mid N(4)=1\right]$.
(ii) $\mathbb{P}\left\{S_{3}>7 \mid N(4)=1\right\}$.
(iii) $\mathbb{P}\left\{T_{3}>7 \mid N(4)=1\right\}$.

Solution:
(iii)

$$
\begin{aligned}
& \mathbb{P}\left\{T_{3}>5 \mid N(4)=1\right\}=\mathbb{P}\left\{T_{3}>5 \mid T_{1} \leq 4<T_{1}+T_{2}\right\} \\
= & \mathbb{P}\left\{T_{3}>5\right\}=e^{-15} .
\end{aligned}
$$

Theorem 6

Given that $N(t)=n$, the n arrival times S_{1}, \ldots, S_{n} have conditional density

$$
f_{S_{1}, \ldots, S_{n} \mid N(t)=n}\left(s_{1}, \ldots, s_{n}\right)=\frac{n!}{t^{n}}, 0<s_{1}<s_{2}<\cdots<s_{n} \leq t
$$

The proof of the previous theorem is in Arcones' manual. It follows from the previous theorem that the distribution of T_{1}, \ldots, T_{n} given $N(t)=n$, is
$f_{T_{1}, \ldots, T_{n} \mid N(t)=n}\left(t_{1}, \ldots, t_{n}\right)=\frac{n!}{t^{n}}, 0<t_{1}, t_{2}, \ldots, t_{n}, t_{1}+t_{2}+\cdots+t_{n} \leq t$.
It also follows from the previous theorem that the distribution of the n arrival times S_{1}, \ldots, S_{n} given $N(t)=n$, is the distribution of order statistics corresponding to n independent random variables uniformly distributed on the interval $(0, t)$.

Theorem 7
Given $s<t$ and $k \leq n$,

$$
P\left\{N(s)=k \mid S_{n}=t\right\}=\binom{n-1}{k}\left(\frac{s}{t}\right)^{k}\left(\frac{t-s}{t}\right)^{n-k-1}
$$

Previous theorem says that given $S_{n}=t$, the number of occurrences in the interval $[0, s]$ has a binomial distribution with $n-1$ trials and success probability $\frac{s}{t}$.

Proof:

$$
\begin{aligned}
& \mathbb{P}\left\{N(s)=k \mid S_{n}=t\right\} \\
= & \lim _{\epsilon \rightarrow 0+} P\{N(s)=k \mid N(t)=n, N(t-\epsilon)=n-1\} \\
= & \lim _{\epsilon \rightarrow 0+} \frac{\mathbb{P}\{N(s)=k, N(t)=n, N(t-\epsilon)=n-1\}}{P\{N(t)=n, N(t-\epsilon)=n-1\}} \\
= & \lim _{\epsilon \rightarrow 0+} \frac{e^{-\lambda s} \frac{(\lambda s)^{k}}{k!} e^{-\lambda(t-\epsilon-s)} \frac{(\lambda(t-\epsilon-s))^{n-1-k}}{n-1-k)!} e^{-\lambda \epsilon} \lambda \epsilon}{e^{-\lambda(t-\epsilon)} \frac{(\lambda(t-\epsilon))^{n-1}}{(n-1)!} e^{-\lambda \epsilon} \lambda \epsilon} \\
= & \binom{n-1}{k}\left(\frac{s}{t}\right)^{k}\left(\frac{t-s}{t}\right)^{n-k-1} .
\end{aligned}
$$

Example 4

Claims arrive to an insurance company website according with a Poisson rate of 100 claims per day. Suppose that in one day the 10-th claim after midnight arrived at 5:15 am. Calculate the probability that more than two claims arrived between midnight and 1:00 am.

Example 4

Claims arrive to an insurance company website according with a Poisson rate of 100 claims per day. Suppose that in one day the 10-th claim after midnight arrived at 5:15 am. Calculate the probability that more than two claims arrived between midnight and 1:00 am.

Solution: The conditional distribution is binomial with $n=9$ and $p=\frac{60}{(5)(60)+15}=\frac{4}{21}$. Hence, the probability that more than two claims arrived between midnight and 1:00 am. is

$$
\begin{aligned}
& 1-\binom{9}{0}\left(\frac{4}{21}\right)^{0}\left(\frac{17}{21}\right)^{9}-\binom{9}{1}\left(\frac{4}{21}\right)^{1}\left(\frac{17}{21}\right)^{8} \\
= & 1-0.1493023487-0.3161696796=0.5345279717 .
\end{aligned}
$$

