Manual for SOA Exam MLC.

Chapter 2. Survival models.
Section 2.1. Survival models.

(©2009. Miguel A. Arcones. All rights reserved.

Extract from:
" Arcones’ Manual for SOA Exam MLC. Fall 2009 Edition",
available at http://www.actexmadriver.com/

(©2009. Miguel A. Arcones. All rights reserved. Manual for SOA Exam MLC.



Chapter 2. Survival models. Section 2.1. Survival models.

Review of Probability theory

Definition 1

Given a set €2, a probability P on Q is a function defined in the
collection of all (subsets) events of Q such that

(i) P(0) = 0.

(i) P(Q2) = 1.

(iii) If {An}52, are disjoint events, then

P{UZ1An} = Z?il P{An}.

Q is called the sample space.
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Review of Probability theory

Definition 1

Given a set €2, a probability P on Q is a function defined in the
collection of all (subsets) events of Q such that

(i) P(0) = 0.

(i) P(Q2) = 1.

(iii) If {An}52, are disjoint events, then

P{UZ1An} = Z?il P{An}.

Q is called the sample space.

Definition 2
A random variable X is function from the sample space Q) into R.

We will abbreviate random variable into r.v.
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Age—at—death

Many insurance concepts depend on accurate estimation of the life
span of a person. It is of interest to study the distribution of lives’
lifespan. The life span of a person (or any alive entity) can be
modeled as a positive (r.v.) random variable.

To model the lifespan of a live, we use age—at—death random
variable X.

For inanimate objects, age—at—failure is the age of an object at
the end of termination.
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Cumulative distribution function

Definition 3
The cumulative distribution function of a r.v. X is
Fx(x) = P{X < x}, x e R.

Theorem 1
A function Fx : R — R is the (c.d.f.) cumulative distribution
function of a r.v. X if and only if:

(i) Fx is nondecreasing, i.e. for each x1 < x2, Fx(x1) < Fx(x2).
(ii) Fx is right continuous, i.e. for each x € &,

I|m Fx(x + h) = Fx(x).

(///) I|r11Oo Fx(x) = 0.
(iv) xhj;o Fx(x) =1.
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The previous theorem gives the following for positive r.v.'s.

Theorem 2

A function Fx : R — R is the c.d.f. of a positive r.v. X if and only
if:

(i) Fx is nondecreasing, i.e. for each x1 < xz, Fx(x1) < Fx(x2).
(ii) Fx is right continuous, i.e. for each x € R,

lim F, h) = F, .
Jim Fx(x + h) = Fx(x)

(iii) For each x <0, Fx(x) =0.

(iv) lim Fx(x) =1.

X—00

(©2009. Miguel A. Arcones. All rights reserved. Manual for SOA Exam MLC.



Chapter 2. Survival models. Section 2.1. Survival models.

Example 1

Determine which of the following function is a legitime cumulative
distribution function of an age—at—death r.v.:

(i) Fx(x) = i—ié for x > 0.

(i) Fx(x) = 557, for x > 0.

(iii) Fx(x) = 25, forx > 0.
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Example 1

Determine which of the following function is a legitime cumulative
distribution function of an age—at—death r.v.:

(i) Fx(x) = i—ié for x > 0.

(i) Fx(x) = 557, for x > 0.

(iii) Fx(x) = 25, forx > 0.

Solution: (i) Fx(x) = i—ié is not a legitime c.d.f. of an
age—at—death because Fx(0) = 1 # 0.
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Example 1

Determine which of the following function is a legitime cumulative
distribution function of an age—at—death r.v.:

(i) Fx(x) = i—ié for x > 0.

(i) Fx(x) = 557, for x > 0.

(iii) Fx(x) = 25, forx > 0.

Solution: (i) Fx(x) = i—ié is not a legitime c.d.f. of an
age—at—death because Fx(0) = 1 # 0.

(ii) Fx(x) = i—j_% is not a legitime c.d.f. of an age—at—death

1
because lim Fx(x)= = # 1.
X—00 2
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Example 1

Determine which of the following function is a legitime cumulative
distribution function of an age—at—death r.v.:

(i) Fx(x) = i—ié for x > 0.

(i) Fx(x) = 557, for x > 0.

(iii) Fx(x) = 25, forx > 0.

Solution: (i) Fx(x) = i—ié is not a legitime c.d.f. of an
age—at—death because Fx(0) = 1 # 0.

(ii) Fx(x) = i—j_% is not a legitime c.d.f. of an age—at—death
1
because lim Fx(x)= = # 1.
X—00 2
(iii) Fx(x) = 7 is a legitime c.d.f. because it satisfies all
properties which a c.d.f. should satisfy.
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Discrete r.v.

Definition 4
A r.v. X is called discrete if there is a countable set C C R such
that P{X € C} = 1.

If P{X € C} =1, where C = {x;}?2;, then for any set A C R,
P{X € A} =P{X € AN C} =P{X € An{x};21}

=P{X € Upjm1ea{x}t = Y P{X=x}.
Jij>1,xEA
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Definition 5
The probability mass function (or frequency function) of the
discrete r.v. X is the function p : R — R defined by

p(x) =P{X =x}, x e R.

If X is a discrete r.v. with p.m.f. p and A C R, then

P{XecAl=) P{X=x}= > px)

x:xEA X:XEA

Theorem 3

Let p be the (p.m.f.) probability mass function of the random
variable X. Then,

(i) For each x > 0, p(x) > 0.

(i) ez PX) = 1.

If a function p : R — R satisfies conditions (i)—(ii) above, then
there are a sample space S, a probability measure P on S and a
r.v. X : S — R such that X has p.m.f. p.

(©2009. Miguel A. Arcones. All rights reserved. Manual for SOA Exam MLC.



Chapter 2. Survival models. Section 2.1. Survival models.

Continuous r.v.

Definition 6

A r.v. X is called continuous continuous random variable if there
exists a nonnegative function f called a (p.d.f.) probability density
function of X such that for each A C R,

IP’{XGA}:/Af(X)dx:/Rf(X)I(XEA)dX.
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Continuous r.v.

Definition 6

A r.v. X is called continuous continuous random variable if there
exists a nonnegative function f called a (p.d.f.) probability density
function of X such that for each A C R,

IP’{XGA}:/Af(X)dx:/Rf(X)I(XEA)dX.

Theorem 4

A function f : ® — R is the probability density function of a r.v. X
if and only if the following two conditions hold:

(i) For each x € R, f(x) > 0.

(i) [ f(x)dx =1.

(©2009. Miguel A. Arcones. All rights reserved. Manual for SOA Exam MLC.



Chapter 2. Survival models. Section 2.1. Survival models.

If a r.v. is positive and continuous, then fx(x) = 0, for each x < 0.
So, we only need to define the p.d.f. of an age—at—death for x > 0.

(©2009. Miguel A. Arcones. All rights reserved. Manual for SOA Exam MLC.
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Example 2

Determine which of the following function is a probability density
function of a age—at—death:

(i) fx(x) = ﬁ for x > 0.

(i) fx(x) = ﬁ for x > 0.

(iii) fx(x) = (2x — 1)e™, for x > 0.
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Example 2

Determine which of the following function is a probability density
function of a age—at—death:

(I)fX( ):ﬁ, forX>0
(ii) fx(x ): X+1)3, for x > 0.
(iii) fx(x) = (2x — 1)e™, for x > 0.

Solution: (i) fx is a density because for each x > 0,

/OO 1 1 *
= =1
0 (X+1) X+10

Zov

(><+1)2
and
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Example 2

Determine which of the following function is a probability density
function of a age—at—death:

(i) fx(x) = ﬁ for x > 0.
(”) fX( ) = X+1)3’ fOfX > O
(iii) fx(x) = (2x — 1)e™, for x > 0.

Solution: (i) fx is a density because for each x > 0, (X+1)2 >0,
and
A A
0 (x+1)? x+1 |,
(i) fx is not a density function because
o0 oo
S ol
o (x+1)3 2(x +1)2 2
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Example 2

Determine which of the following function is a probability density
function of a age—at—death:

(i) fx(x )—ﬁ, for x > 0.
(ii) fx(x ): X+1)3, for x > 0.
(iii) fx(x) = (2x — 1)e™, for x > 0.

Solution: (i) fx is a density because for each x > 0, (X+1)2 >0,
and
A A
0 (x+1)? x+1 |,
(i) fx is not a density function because
o0 1 1 <1
[ — 1,
o (x+1)3 2(x +1)2 2

(iii) fx is not a density function because (2x — 1)e™ < 0, for each
0<x< %
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Knowing the density f of a r.v. X, the cumulative distribution
function of X is given by

Fx(x) = /X f(t)dt,x € R.

—00

Knowing the c.d.f. of a r.v. X, we can find its density using:

Theorem 5

Suppose that the c.d.f. F of a r.v. X satisfies the following
conditions:

(i) F is continuous in R.

(ii) There are a1, ...,a, € R such that F is continuously
differentiable on each of the intervals
(—o0,a1),(a1,a82),-..,(an-1, an), (an, ).

Then, X has a continuous distribution and the p.d.f. of X is given
by f(x) = F'(x), except at a1, ..., an.
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Example 3
The cumulative distribution function of the random variable X is
given by
0 if x < -1,
Fx) = XTJ:L if —1<x<0,
i 0<x <2,
1 if 2<x.

Find the probability density function of X.
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Example 3
The cumulative distribution function of the random variable X is
given by
0 if x < -1,
Fx) = XTJ:L if —1<x<0,
i 0<x <2,
1 if 2<x.

Find the probability density function of X.

Solution: We check that F is continuous and nondecreasing on R.
F’ exists and it is continuous at each of the intervals (—oo, —1),
(—1,0), (0,2) and (2,00). A probability density function of X is

i if —1<x<0,
X if 0<x<2,

0 else.
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Mixed r.v.

Definition 7
A r.v. X has a mixed distribution if there is a function f and
numbers x;, p;, j > 1, with p; > 0, such that for each A C R,

P{X € A} = / dx+ > pj.

JixGEA

A mixed distribution X has two parts: a continuous part and a
discrete part. The function f in the previous definition is the p.d.f.
of the continuous part of X. The function p(x) = P[X = x],

x € R, is the p.m.f. of the discrete part of X.

In order to have a r.v., we must have that f is nonnegative and
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Survival function

Definition 8
The survival function of a r.v. X is the function
Sx(x) =P{X > x}, x e R.

(©2009. Miguel A. Arcones. All rights reserved. Manual for SOA Exam MLC.
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Survival function

Definition 8

The survival function of a r.v. X is the function

Sx(x) =P{X > x}, x e R.

Sometimes we will denote the survival function of a r.v. X by s.
Notice that for each x > 0, Sx(x) =1 — Fx(x).
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Survival function

Definition 8

The survival function of a r.v. X is the function

Sx(x) =P{X > x}, x e R.

Sometimes we will denote the survival function of a r.v. X by s.
Notice that for each x > 0, Sx(x) =1 — Fx(x).

Theorem 6
A function Sx : [0,00) — R is the survival function of a positive
r.v. X if and only if the following conditions are satisfied:
(i) Sx is nonincreasing.
(ii) Sx is right continuous.
(iii) Sx(0) = 1.
(iv) lim Sx(x)=0.
X—00
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Theorem 7

If the survival function Sx of a r.v. X is continuous everywhere
and continuously differentiable except at finitely points, then X has
a continuous distribution and the density of X is fx(x) = —55(x),
whenever the derivative exists.

(©2009. Miguel A. Arcones. All rights reserved. Manual for SOA Exam MLC.
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Example 4

Find the density function for the following survival functions:
(i) s(x) = (1 + x)e™*, for x > 0.

(ii)

for 0 < x <100,

0 for 100 < x.
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Example 4

Find the density function for the following survival functions:
(i) s(x) = (1 + x)e™*, for x > 0.
(ii)
2
s(x)= 117 wo  for 0= x <100,

0 for 100 < x.

(iii) s(x) = 35, for x > 0.
Solution: (i) fx(x) = xe™, for x > 0.
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Example 4
Find the density function for the following survival functions:

(i) s(x) = (1 + x)e™*, for x > 0.
(ii)

s(x)= 117 wo  for 0= x <100,
0 for 100 < x.

(ii)) s(x) = 53, forx 2 0.
Solution: (i) fx(x) = xe™, for x > 0.
(ii)
2x
fx(x) = { 10.000 for 0 < x < 100,
0 for 100 < x.
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Example 4
Find the density function for the following survival functions:
(i) s(x) = (1 + x)e™*, for x > 0.
(ii)
S() {1-@500 for 0 < x < 100,
0 for 100 < x.

(iii) s(x) = X+2, for x > 0.
Solution: (i) fx(x) = xe™, for x > 0.

(ii)

2x
fx(x) = 10,000 for 0 < x <100,
0 for 100 < x.

(iii) fx(x) = = +2)2, for x > 0.
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Terminal age

Often, we will assume that the individuals do not live more than a
certain age. This age w is called the terminal age or limiting age
of the population. So, S(t) =0, for each t > w.
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Example 5

Suppose that the survival function of a person is given by

Sx(x) = 8%, for 0 < x < 90.

(i) Find the probability that a person dies before reaching 20 years

old.
(ii) Find the probability that a person lives more than 60 years.

(©2009. Miguel A. Arcones. All rights reserved. Manual for SOA Exam MLC.
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Example 5

Suppose that the survival function of a person is given by

Sx(x) = 8%, for 0 < x < 90.

(i) Find the probability that a person dies before reaching 20 years
old.

(ii) Find the probability that a person lives more than 60 years.

Solution: (i)
90-20 2

90 9

P{X <20} =1— 5x(20)=1—
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Example 5

Suppose that the survival function of a person is given by

Sx(x) = 8%, for 0 < x < 90.

(i) Find the probability that a person dies before reaching 20 years

old.
(ii) Find the probability that a person lives more than 60 years.

Solution: (i)

90 -20 2

90 9

P{X <20} =1— 5x(20)=1—

(ii)
90-60 1

90 3

P{X > 60} = Sx(60) =

(©2009. Miguel A. Arcones. All rights reserved. Manual for SOA Exam MLC.
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Indicator function

Given a set A C R, the indicator function of A is the function

1 ifxeA

I(A):I(XEA):{O xgA
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Theorem 8

(using the survival function to find an expectation) Let X be a
non—negative r.v. with surviva/ function s. Let h:[0,00) — [0, 00)
be a function. Let H(x) = [ h(t) dt. Then,

E[H(X)] = /O 7 s(t)h(t) dt.
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Theorem 8

(using the survival function to find an expectation) Let X be a
non—negative r.v. with surviva/ function s. Let h:[0,00) — [0, 00)
be a function. Let H(x) = [ h(t) dt. Then,

E[H(X)] = /OOO s(t)h(t) dt.

Proof.
Since H(x) = [~ I(x > t)h(t) dt,

E[HX)|=E {/OOO I(X > t)h(t) dt} = /0OO E[I(X > t)]h(t) dt
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Recall that if H(x) = [ h(t) dt, then

E[H(X)] = /0 " s(t)h(t) dt.
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Recall that if H(x) = [ h(t) dt, then

E[H(X)] = /0 " s(t)h(t) dt.

Corollary 1

Let X be a nonnegative r.v. with survival function s. Then,

E[X] = /Ooo s(t) dt.

(©2009. Miguel A. Arcones. All rights reserved. Manual for SOA Exam MLC.



Recall that if H(x fo t) dt, then

E[H(X)] = /0 " s(t)h(t) dt.

Corollary 1
Let X be a nonnegative r.v. with survival function s. Then,

E[X] = /Ooo s(t) dt.

Solution Let h(t) =1, for each t > 0. Then,
= [y h(t)dt = x, for each x > 0. By Theorem 8,

E[X] = E[H(X)] = /0 " s(e)h(t) dt = /0 " s(t) d.
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Example 6

Suppose that the survival function of X is s(x) = e *(x + 1),
x > 0.

(i) Find E[X] using that E[X] = [;* s(t) dt.

(ii) Find the density of X.

(iii) Find E[X] using that E[X] = [; xf(x) dx.
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Example 6

Suppose that the survival function of X is s(x) = e *(x + 1),
x > 0.

(i) Find E[X] using that E[X] = [;* s(t) dt.

(ii) Find the density of X.

(iii) Find E[X] using that E[X] = [; xf(x) dx.

Solution: (i)

E[X] :/Ooos(t)dt:/oooex(x—i-l)dx:z
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Example 6

Suppose that the survival function of X is s(x) = e *(x + 1),
x > 0.

(i) Find E[X] using that E[X] = [;* s(t) dt.

(ii) Find the density of X.

(iii) Find E[X] using that E[X] = [; xf(x) dx.

Solution: (i)

E[X] :/Ooos(t)dt:/oooex(x—i-l)dx:z

(ii) The density of X is
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Example 6

Suppose that the survival function of X is s(x) = e *(x + 1),
x > 0.

(i) Find E[X] using that E[X] = [;* s(t) dt.

(ii) Find the density of X.

(iii) Find E[X] using that E[X] = [; xf(x) dx.

Solution: (i)

E[X] :/Ooos(t)dt:/oooex(x—i-l)dx:z

(ii) The density of X is

(iif)
E[X] = /Oooxf(x) dx = /Oooxzex dx = 2.
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Recall that if H(x) = [ h(t) dt, then

E[H(X)] = /O ~ s(t)h(t) dt.
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Recall that if H(x) = [ h(t) dt, then

E[H(X)] = /O ~ s(t)h(t) dt.

Corollary 2
Let X be a nonnegative r.v. with survival function s. Then,

E[X? = /OOO s(t)2t dt.
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Recall that if H(x) = [ h(t) dt, then

E[H(X)] = /0 ~ s(t)h(t) dt.

Corollary 2
Let X be a nonnegative r.v. with survival function s. Then,

E[X? = /OOO s(t)2t dt.

Solution: Let h(t) = 2t, for each t > 0. Hence,
H(x) = [y h(t) dt = x?, for each x > 0. By Theorem 8,

E[X?] = E[H(X)] = /OOO s(t)h(t) dt = /OOO s(t)2t dt.
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Recall that if H(x) = [ h(t) dt, then

E[H(X)] = /O " s(e)h(t) dt.
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Recall that if H(x) = [ h(t) dt, then
E[H(X)] = /O " s(e)h(t) dt.

Corollary 3

Let X be a nonnegative r.v. with survival function s. Let p > 0.
Then,

E[XP] = /O " s(t)ptP dt.
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Recall that if H(x) = [ h(t) dt, then
E[H(X)] = /O " s(e)h(t) dt.

Corollary 3

Let X be a nonnegative r.v. with survival function s. Let p > 0.
Then,

E[XP] = /O " s(t)ptP dt.

Solution We take h(t) = ptP~1, for each t > 0. Hence,
= [y h(t)dt = xP, for each x > 0. By Theorem 8,
E[XP] =y s(t ptP~ 1.
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Recall that if H(x) = fo t) dt, then

E[H(X)] = /O  s(e)h(t) dt.

Corollary 4

Let X be a nonnegative r.v. with survival function s. Let a > 0.
Then,

E[min(X,a)] = /Oa s(t) dt.
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Recall that if H(x) = fo t) dt, then

E[H(X)] = /0  s(e)h(t) dt.

Corollary 4

Let X be a nonnegative r.v. with survival function s. Let a > 0.
Then,

a
E[min(X, a)] :/ s(t) dt.
0
Solution: Let h(t) = I(t € [0, a]), for each t > 0. For x > 0,

X X min(x,a) .
H(x):/0 h(t)dt:/o I(te[O,a])dt:/O dt = min(x, ).

By Theorem 8,

E[min(X,a)]:E[H(X)]:/Ooos(t)h(t) dt:/oas(t) dt.

(©2009. Miguel A. Arcones. All rights reserved. Manual for SOA Exam MLC.



Chapter 2. Survival models. Section 2.1. Survival models.

Example 7

Suppose that the survival function of X is s(x) = e *(x + 1),
x > 0.

(i) Find E[min(X,10)] using that

E[min(X,10)] = [3* min(x, 10)f(x) dx.

(ii) Find E[min(X, 10)] using that E[min(X,10)] = [1%s(t) dt.
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Chapter 2. Survival models. Section 2.1. Survival models.

Example 7

Suppose that the survival function of X is s(x) = e *(x + 1),
x > 0.

(i) Find E[min(X,10)] using that

E[min(X,10)] = [3* min(x, 10)f(x) dx.

(ii) Find E[min(X, 10)] using that E[min(X,10)] = [1%s(t) dt.
Solution: (i)

0 10 oo
/ min(x, 10)f(x) dx = / xe *x dx + / 10e™x dx
0 0 1

0
10 X2 00
:2/ —e X dx+/ 10e *x dx
o 2 10

2 10

—(—2)e~ <X2 +x+ 1) —10e~*(x + 1)
0

=2 —2e719(61) + 10e719(11) = 2 — 12710

o0

10
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Chapter 2. Survival models. Section 2.1. Survival models.

Example 7

Suppose that the survival function of X is s(x) = e *(x + 1),
x > 0.

(i) Find E[min(X,10)] using that

E[min(X,10)] = [3* min(x, 10)f(x) dx.

(ii) Find E[min(X, 10)] using that E[min(X,10)] = [1%s(t) dt.
Solution: (ii)

10 10 10 10
/ s(t) dt = / e f(t+1)dt = / e 'tdt +/ e dt
0 0 0 0

10 10
et =1-11e 1041 e 109212710
0 0

=—e f(t+1)
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Theorem 9

Let X be a discrete r.v. whose possible values are nonnegative
integers. Let h: [0,00) — [0,00) be a function. Let

H(x) = [; h(t) dt. Then,

E[H(X)] =) P{X = k}(H(k) - H(k - 1)).
k=1

Proof: We have that s(t) = P{X > k}, for k —1 < t < k. Hence,

) 0 k
E[H(X)] = /0 s(O)h(t)de =3 /k S(E)h(8) dt
k=17 k-1

9] k o k
:kzl/klp{x > k}Yh(t) dt = kZI}P’{X > k} /kl h(t) dt

:ip{x > k}(H(K) — H(k — 1)).
k=1

(©2009. Miguel A. Arcones. All rights reserved. Manual for SOA Exam MLC.



Chapter 2. Survival models. Section 2.1. Survival models.

Recall that if H(x) = [ h(t) dt, then,

EIHOO] = S P{X > K} (H(k) - H(k — 1)).
k=1

This implies that

EIX|= 3 B{X > k).
k=1

E[X?] = ip{x > k}(Kk? — (k—1)?) = i[@{x > k}(2k — 1)

k=1 k=1
and ,
Elmin(X,a)] = Y P{X > k},
k=1

where a is positive integer.

(©2009. Miguel A. Arcones. All rights reserved. Manual for SOA Exam MLC.



Chapter 2. Survival models. Section 2.1. Survival models.

Example 8

Let X be a discrete r.v. with probability mass function given by
the following table,

kK o 1 2
P{X=k}]02 03 05

(i) Find E[X] and E[X?], using that

ETH(X)] = > k=0 H(K)P{X = k}.

(ii) Find E[X] and E[X?], using that E[X] = >_72; P{X > k} and
E[X?] = S50, PIX > k}(2k — 1),
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Chapter 2. Survival models. Section 2.1. Survival models.

Example 8
Let X be a discrete r.v. with probability mass function given by
the following table,

kK o 1 2
P{X=k}]02 03 05

(i) Find E[X] and E[X?], using that

E[H(X)] = 2o H(K)P{X = k}.

(ii) Find E[X] and E[X?], using that E[X] = >_72; P{X > k} and
E[X?] = S50, PIX > k}(2k — 1),

Solution: (i) We have that

E[X] = (0)(0.2) + (1)(0.3) + (2)(0.5) = 1.3
E[X?] = (0)%(0.2) + (1)?(0.3) + (2)?(0.5) = 2.3.
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Chapter 2. Survival models. Section 2.1. Survival models.

Example 8
Let X be a discrete r.v. with probability mass function given by
the following table,

kK o 1 2
P{X=k}]02 03 05

(i) Find E[X] and E[X?], using that

E[H(X)] = 350 H(KJBIX = K},

(ii) Find E[X] and E[X?], using that E[X] = >_72; P{X > k} and
E[X?] = Y02, P{X > k}(2k - 1).

Solution: (ii) We have that P{X > 1} = 0.8, P{X > 2} = 0.5,
and P{X > k} =0, for each k > 3. Hence,

E[X] =P{X >1} +P{X >2} =0.8+05=123
E[X?] =P{X > 1}((2)(1) — 1) + P{X > 2}((2)(2) - 1)
=0.8+0.5(3) = 2.3.
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Definition 9
Given 0 < p < 1, the 100p—th percentile (or p—th quantile) of a
r.v. X is a value such that

P{X <&} < p < P{X < &)

Usually P{X < &,} = p. If X has a continuous distribution, then
P{X < &} =P{X <&} and P{X < &,} = p.
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Theorem 10
If X has a uniform distribution on the interval (a, b), then the p—th
quantile £, of X is a+ (b — a)p.
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Chapter 2. Survival models. Section 2.1. Survival models.

Theorem 10

If X has a uniform distribution on the interval (a, b), then the p—th
quantile £, of X is a+ (b — a)p.
Proof: We have that
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Definition 10
A median m of a r.v. X is a value such that
P{X <m} <3 <P{X < m}.

Definition 11

The first quartile Q1 of a r.v. X is the 25—th percentile of the r.v.
X. The third quartile Q3 of a r.v. X is the 75—th percentile of the
rv. X.

Usually, the range of a r.v. X is divided in four parts with
probability 0.25 each by the numbers —oo, Q1, m, Q3,00

Interval H —00, Q1) ‘ (@1, m) ‘ (m, Q) ‘ (Qs,00)
Probability | 26% | 25% | 25% | 25%
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Example 9
Suppose that the age—at—failure r.v. X has density

5x4 .
2= if 0 < x <k,
Be(x) = Ok5 else

Suppose that the expected age—at—failure is 70 years. Find the
median age—at—failure.
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Chapter 2. Survival models. Section 2.1. Survival models.

Example 9
Suppose that the age—at—failure r.v. X has density

Be(x) = 0 else

{5;5“ if 0<x<k,
Suppose that the expected age—at—failure is 70 years. Find the

median age—at—failure.
Solution: Since

k 4 6

5x 5x
70:E[X]:/ X—dX = —
0 k> 6k>

K 5k

0_6’

70)(6
k = (10)©)

m m5

= 84. Let m be the median age—at—failure. Then,
1 /’" 5x* x>
- = dx =
2 o (84)° (84)°

and m = 8 = 73.12624732.
25

o (84)%

(©2009. Miguel A. Arcones. All rights reserved. Manual for SOA Exam MLC.



Chapter 2. Survival models. Section 2.1. Survival models.

Theorem 11

Let X be a continuous r.v. with density function fx. Let

0 < p < 1. Suppose that there are —oco < a < b < oo such that:
(i) fx(x) =0, if x & (a, b).

(ii) fx(x) is continuous and positive in (a, b).

Then, there exists £, such that Fx(&,) = p. Moreover, &, is
unique.
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Theorem 12

Let X be a r.v. with range (a, b) and density fx. Let 0 < p < 1.
Let h: (a,b) — (c,d) be a one-to—one onto function.

(i) Let &, be a p—th quantile of X such that

P{X < &} = p=P{X < &,}. If his nonincreasing, then a p—the
quantile of Y is (, = h(&p).

(ii) Let £&1—p be a (1 — p)—th quantile of X such that

P{X <&-p} =1—p=P{X <& _p}. If h is nondecreasing, then
a p—the quantile of Y is (p = h(&1—p).
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Example 10
Suppose that the age—at—failure r.v. X has density

5x* :
54 if 0 < x < 84,
fX (X) - (()84)5 ellse )

Find the three quartiles of (1000)(1.06)%.
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Example 10
Suppose that the age—at—failure r.v. X has density

5x4 :
BE i 0 < x < 84,
fx (x) = { (()84)5 ellse X

Find the three quartiles of (1000)(1.06)%.

Solution: (i) let h(x) = (1000)(1.06)"*, x > 0. h is a decreasing
function. Let £, be p-th quantile of the r.v. X. Let (, be p-th
quantile of the r.v. h(X). By the previous theorem, ¢, = h(&1—p).
Hence,

Co.25 = h(£0.75) = (1000)(1.06) 7930335095 — 9 843738901,
Co5 = h(&o.5) = (1000)(1.06)~ 7312624732 — 14 10837641,
Co.75 = h(€0.25) = (1000)(1.06) 0306009579 — 94 29210954,
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