Chapter 2. Survival models.

Section 2.1. Survival models.

©2009. Miguel A. Arcones. All rights reserved.

Extract from:
available at http://www.actexmadriver.com/
Review of Probability theory

Definition 1

*Given a set Ω, a **probability** \mathbb{P} on Ω is a function defined in the collection of all (subsets) events of Ω such that*

(i) $\mathbb{P}(\emptyset) = 0$.

(ii) $\mathbb{P}(\Omega) = 1$.

(iii) *If $\{A_n\}_{n=1}^{\infty}$ are disjoint events, then*

$$\mathbb{P}\left(\bigcup_{n=1}^{\infty} A_n \right) = \sum_{n=1}^{\infty} \mathbb{P}\{A_n\}.$$

Ω is called the **sample space**.
Review of Probability theory

Definition 1

*Given a set Ω, a **probability** \mathbb{P} on Ω is a function defined in the collection of all (subsets) events of Ω such that*

(i) $\mathbb{P}(\emptyset) = 0$.

(ii) $\mathbb{P}(\Omega) = 1$.

(iii) If $\{A_n\}_{n=1}^{\infty}$ are disjoint events, then

$$\mathbb{P}\{\bigcup_{n=1}^{\infty} A_n\} = \sum_{n=1}^{\infty} \mathbb{P}\{A_n\}.$$

Ω is called the **sample space**.

Definition 2

*A **random variable** X is function from the sample space Ω into \mathbb{R}. We will abbreviate random variable into r.v.*
Age–at–death

Many insurance concepts depend on accurate estimation of the life span of a person. It is of interest to study the distribution of lives’ lifespan. The life span of a person (or any alive entity) can be modeled as a positive (r.v.) random variable.
To model the lifespan of a live, we use age–at–death random variable X.
For inanimate objects, age–at–failure is the age of an object at the end of termination.
Chapter 2. Survival models.

Section 2.1. Survival models.

Cumulative distribution function

Definition 3
The cumulative distribution function of a r.v. X is $F_X(x) = P\{X \leq x\}$, $x \in \mathbb{R}$.

Theorem 1
A function $F_X : \mathbb{R} \to \mathbb{R}$ is the (c.d.f.) cumulative distribution function of a r.v. X if and only if:

(i) F_X is nondecreasing, i.e. for each $x_1 \leq x_2$, $F_X(x_1) \leq F_X(x_2)$.

(ii) F_X is right continuous, i.e. for each $x \in \mathbb{R}$,

$$\lim_{h \to 0^+} F_X(x + h) = F_X(x).$$

(iii) $\lim_{x \to -\infty} F_X(x) = 0$.

(iv) $\lim_{x \to \infty} F_X(x) = 1$.

©2009. Miguel A. Arcones. All rights reserved. Manual for SOA Exam MLC.
The previous theorem gives the following for positive r.v.’s.

Theorem 2

A function $F_X : \mathbb{R} \rightarrow \mathbb{R}$ is the c.d.f. of a positive r.v. X if and only if:

(i) F_X is nondecreasing, i.e. for each $x_1 \leq x_2$, $F_X(x_1) \leq F_X(x_2)$.

(ii) F_X is right continuous, i.e. for each $x \in \mathbb{R}$,

$$\lim_{h \rightarrow 0^+} F_X(x + h) = F_X(x).$$

(iii) For each $x \leq 0$, $F_X(x) = 0$.

(iv) $\lim_{x \rightarrow \infty} F_X(x) = 1$.
Example 1

Determine which of the following function is a legitimate cumulative distribution function of an age–at–death r.v.:

(i) \(F_X(x) = \frac{x+1}{x+3} \), for \(x \geq 0 \).
(ii) \(F_X(x) = \frac{x}{2x+1} \), for \(x \geq 0 \).
(iii) \(F_X(x) = \frac{x}{x+1} \), for \(x \geq 0 \).
Example 1

Determine which of the following function is a legitimate cumulative distribution function of an age–at–death r.v.:

(i) \(F_X(x) = \frac{x+1}{x+3}, \) for \(x \geq 0. \)
(ii) \(F_X(x) = \frac{x}{2x+1}, \) for \(x \geq 0. \)
(iii) \(F_X(x) = \frac{x}{x+1}, \) for \(x \geq 0. \)

Solution: (i) \(F_X(x) = \frac{x+1}{x+3} \) is not a legitimate c.d.f. of an age–at–death because \(F_X(0) = \frac{1}{3} \neq 0. \)
Example 1

Determine which of the following function is a legitimate cumulative distribution function of an age–at–death r.v.:

(i) \(F_X(x) = \frac{x+1}{x+3} \), for \(x \geq 0 \).

(ii) \(F_X(x) = \frac{x}{2x+1} \), for \(x \geq 0 \).

(iii) \(F_X(x) = \frac{x}{x+1} \), for \(x \geq 0 \).

Solution: (i) \(F_X(x) = \frac{x+1}{x+3} \) is not a legitimate c.d.f. of an age–at–death because \(F_X(0) = \frac{1}{3} \neq 0 \).

(ii) \(F_X(x) = \frac{x+1}{x+3} \) is not a legitimate c.d.f. of an age–at–death because \(\lim_{x \to \infty} F_X(x) = \frac{1}{2} \neq 1 \).
Example 1

Determine which of the following function is a legitime cumulative distribution function of an age–at–death r.v.:

(i) \(F_X(x) = \frac{x+1}{x+3} \), for \(x \geq 0 \).
(ii) \(F_X(x) = \frac{x}{2x+1} \), for \(x \geq 0 \).
(iii) \(F_X(x) = \frac{x}{x+1} \), for \(x \geq 0 \).

Solution: (i) \(F_X(x) = \frac{x+1}{x+3} \) is not a legitime c.d.f. of an age–at–death because \(F_X(0) = \frac{1}{3} \neq 0 \).
(ii) \(F_X(x) = \frac{x+1}{x+3} \) is not a legitime c.d.f. of an age–at–death because \(\lim_{x \to \infty} F_X(x) = \frac{1}{2} \neq 1 \).
(iii) \(F_X(x) = \frac{x}{x+1} \) is a legitime c.d.f. because it satisfies all properties which a c.d.f. should satisfy.
Discrete r.v.

Definition 4

A r.v. X is called **discrete** if there is a countable set $C \subset \mathbb{R}$ such that $P\{X \in C\} = 1$.

If $P\{X \in C\} = 1$, where $C = \{x_j\}_{j=1}^\infty$, then for any set $A \subset \mathbb{R}$,

$$P\{X \in A\} = P\{X \in A \cap C\} = P\{X \in A \cap \{x_j\}_{j=1}^\infty\}$$

$$= P\{X \in \bigcup_{j:j \geq 1,x_j \in A}\{x_j\}\} = \sum_{j:j \geq 1,x_j \in A} P\{X = x_j\}.$$
Definition 5
The probability mass function (or frequency function) of the discrete r.v. X is the function $p : \mathbb{R} \to \mathbb{R}$ defined by

$$p(x) = \mathbb{P}\{X = x\}, \ x \in \mathbb{R}.$$

If X is a discrete r.v. with p.m.f. p and $A \subset \mathbb{R}$, then

$$\mathbb{P}\{X \in A\} = \sum_{x : x \in A} \mathbb{P}\{X = x\} = \sum_{x : x \in A} p(x).$$

Theorem 3
Let p be the (p.m.f.) probability mass function of the random variable X. Then,

(i) For each $x \geq 0$, $p(x) \geq 0$.

(ii) $\sum_{x \in \mathbb{R}} p(x) = 1$.

If a function $p : \mathbb{R} \to \mathbb{R}$ satisfies conditions (i)–(ii) above, then there are a sample space S, a probability measure \mathbb{P} on S and a r.v. $X : S \to \mathbb{R}$ such that X has p.m.f. p.
Definition 6
A r.v. X is called \textit{continuous} if there exists a nonnegative function f called a (p.d.f.) probability density function of X such that for each $A \subset \mathbb{R}$,

$$
\mathbb{P}\{X \in A\} = \int_A f(x) \, dx = \int_{\mathbb{R}} f(x) I(x \in A) \, dx.
$$

Definition 6
A r.v. X is called **continuous** continuous random variable if there exists a nonnegative function f called a (p.d.f.) probability density function of X such that for each $A \subset \mathbb{R}$,

$$P\{X \in A\} = \int_A f(x) \, dx = \int_{\mathbb{R}} f(x) I(x \in A) \, dx.$$

Theorem 4
A function $f : \mathbb{R} \to \mathbb{R}$ is the probability density function of a r.v. X if and only if the following two conditions hold:
1. For each $x \in \mathbb{R}$, $f(x) \geq 0$.
2. $\int_{\mathbb{R}} f(x) \, dx = 1$.
If a r.v. is positive and continuous, then $f_X(x) = 0$, for each $x < 0$. So, we only need to define the p.d.f. of an age–at–death for $x \geq 0$.
Example 2

Determine which of the following function is a probability density function of a age–at–death:

(i) \(f_X(x) = \frac{1}{(x+1)^2} \), for \(x \geq 0 \).

(ii) \(f_X(x) = \frac{1}{(x+1)^3} \), for \(x \geq 0 \).

(iii) \(f_X(x) = (2x - 1)e^{-x} \), for \(x \geq 0 \).
Example 2

Determine which of the following function is a probability density function of a age–at–death:

(i) \(f_X(x) = \frac{1}{(x+1)^2} \), for \(x \geq 0 \).

(ii) \(f_X(x) = \frac{1}{(x+1)^3} \), for \(x \geq 0 \).

(iii) \(f_X(x) = (2x - 1)e^{-x} \), for \(x \geq 0 \).

Solution: (i) \(f_X \) is a density because for each \(x \geq 0 \), \(\frac{1}{(x+1)^2} \geq 0 \), and

\[
\int_0^\infty \frac{1}{(x+1)^2} = - \left. \frac{1}{x+1} \right|_0^\infty = 1.
\]
Example 2

Determine which of the following function is a probability density function of an age–at–death:

(i) \(f_X(x) = \frac{1}{(x+1)^2}, \text{ for } x \geq 0. \)

(ii) \(f_X(x) = \frac{1}{(x+1)^3}, \text{ for } x \geq 0. \)

(iii) \(f_X(x) = (2x - 1)e^{-x}, \text{ for } x \geq 0. \)

Solution: (i) \(f_X \) is a density because for each \(x \geq 0 \), \(\frac{1}{(x+1)^2} \geq 0 \), and

\[
\int_0^\infty \frac{1}{(x+1)^2} = -\left. \frac{1}{x+1} \right|_0^\infty = 1.
\]

(ii) \(f_X \) is not a density function because

\[
\int_0^\infty \frac{1}{(x+1)^3} = -\left. \frac{1}{2(x+1)^2} \right|_0^\infty = \frac{1}{2} \neq 1.
\]
Example 2

Determine which of the following function is a probability density function of a age-at-death:

(i) \(f_X(x) = \frac{1}{(x+1)^2} , \text{ for } x \geq 0. \)

(ii) \(f_X(x) = \frac{1}{(x+1)^3} , \text{ for } x \geq 0. \)

(iii) \(f_X(x) = (2x - 1)e^{-x} , \text{ for } x \geq 0. \)

Solution:

(i) \(f_X \) is a density because for each \(x \geq 0, \frac{1}{(x+1)^2} \geq 0, \) and

\[
\int_0^\infty \frac{1}{(x+1)^2} = -\frac{1}{x+1} \bigg|_0^\infty = 1.
\]

(ii) \(f_X \) is not a density function because

\[
\int_0^\infty \frac{1}{(x+1)^3} = -\frac{1}{2(x+1)^2} \bigg|_0^\infty = \frac{1}{2} \neq 1.
\]

(iii) \(f_X \) is not a density function because \((2x - 1)e^{-x} < 0, \text{ for each } 0 \leq x < \frac{1}{2}.\)
Knowing the density f of a r.v. X, the cumulative distribution function of X is given by

$$F_X(x) = \int_{-\infty}^{x} f(t) \, dt, \quad x \in \mathbb{R}.$$

Knowing the c.d.f. of a r.v. X, we can find its density using:

Theorem 5

Suppose that the c.d.f. F of a r.v. X satisfies the following conditions:

(i) F is continuous in \mathbb{R}.

(ii) There are $a_1, \ldots, a_n \in \mathbb{R}$ such that F is continuously differentiable on each of the intervals

$(-\infty, a_1), (a_1, a_2), \ldots, (a_{n-1}, a_n), (a_n, \infty)$.

*Then, X has a continuous distribution and the p.d.f. of X is given by $f(x) = F'(x)$, except at a_1, \ldots, a_n.***
Example 3

The cumulative distribution function of the random variable X is given by

$$F(x) = \begin{cases}
0 & \text{if } x < -1, \\
\frac{x+1}{4} & \text{if } -1 \leq x < 0, \\
\frac{3x^2+4}{16} & \text{if } 0 \leq x < 2, \\
1 & \text{if } 2 \leq x.
\end{cases}$$

Find the probability density function of X.
Example 3

The cumulative distribution function of the random variable X is given by

\[
F(x) = \begin{cases}
0 & \text{if } x < -1, \\
\frac{x+1}{4} & \text{if } -1 \leq x < 0, \\
\frac{3x^2+4}{16} & \text{if } 0 \leq x < 2, \\
1 & \text{if } 2 \leq x.
\end{cases}
\]

Find the probability density function of X.

Solution: We check that F is continuous and nondecreasing on \mathbb{R}. F' exists and it is continuous at each of the intervals $(-\infty, -1)$, $(-1, 0)$, $(0, 2)$ and $(2, \infty)$. A probability density function of X is

\[
f(x) = \begin{cases}
\frac{1}{4} & \text{if } -1 < x \leq 0, \\
\frac{3x}{8} & \text{if } 0 < x < 2, \\
0 & \text{else}.
\end{cases}
\]
Definition 7

A r.v. X has a **mixed distribution** if there is a function f and numbers $x_j, p_j, j \geq 1$, with $p_j > 0$, such that for each $A \subseteq \mathbb{R}$,

$$
P\{X \in A\} = \int_A f(x) \, dx + \sum_{j : x_j \in A} p_j.
$$

A mixed distribution X has two parts: a continuous part and a discrete part. The function f in the previous definition is the p.d.f. of the continuous part of X. The function $p(x) = P[X = x]$, $x \in \mathbb{R}$, is the p.m.f. of the discrete part of X.

In order to have a r.v., we must have that f is nonnegative and

$$
\int_{\mathbb{R}} f(x) \, dx + \sum_{j=1}^{\infty} p_j = 1.
$$
Definition 8

The survival function of a r.v. X is the function $S_X(x) = P\{X > x\}, x \in \mathbb{R}$.
Survival function

Definition 8

The **survival function** of a r.v. X is the function

$$S_X(x) = \mathbb{P}\{X > x\}, \; x \in \mathbb{R}.$$

Sometimes we will denote the survival function of a r.v. X by s. Notice that for each $x \geq 0$, $S_X(x) = 1 - F_X(x)$.

Survival function

Definition 8
The survival function of a r.v. X is the function $S_X(x) = \mathbb{P}\{X > x\}$, $x \in \mathbb{R}$.

Sometimes we will denote the survival function of a r.v. X by s. Notice that for each $x \geq 0$, $S_X(x) = 1 - F_X(x)$.

Theorem 6
A function $S_X : [0, \infty) \rightarrow \mathbb{R}$ is the survival function of a positive r.v. X if and only if the following conditions are satisfied:

(i) S_X is nonincreasing.
(ii) S_X is right continuous.
(iii) $S_X(0) = 1$.
(iv) $\lim_{x \to \infty} S_X(x) = 0$.
Theorem 7

If the survival function S_X of a r.v. X is continuous everywhere and continuously differentiable except at finitely points, then X has a continuous distribution and the density of X is $f_X(x) = -S_X'(x)$, whenever the derivative exists.
Example 4

Find the density function for the following survival functions:

(i) \(s(x) = (1 + x)e^{-x}, \) for \(x \geq 0. \)

(ii) \[
s(x) = \begin{cases}
1 - \frac{x^2}{10,000} & \text{for } 0 \leq x \leq 100, \\
0 & \text{for } 100 < x.
\end{cases}
\]

(iii) \(s(x) = \frac{2}{x+2}, \) for \(x \geq 0. \)
Example 4

Find the density function for the following survival functions:

(i) \(s(x) = (1 + x)e^{-x}, \text{ for } x \geq 0. \)

(ii) \[
s(x) = \begin{cases}
1 - \frac{x^2}{10,000} & \text{for } 0 \leq x \leq 100, \\
0 & \text{for } 100 < x.
\end{cases}
\]

(iii) \(s(x) = \frac{2}{x+2}, \text{ for } x \geq 0. \)

Solution: (i) \(f_X(x) = xe^{-x}, \text{ for } x \geq 0. \)
Example 4

Find the density function for the following survival functions:

(i) \(s(x) = (1 + x)e^{-x}, \) for \(x \geq 0. \)

(ii) \[
 s(x) = \begin{cases}
 1 - \frac{x^2}{10,000} & \text{for } 0 \leq x \leq 100, \\
 0 & \text{for } 100 < x.
 \end{cases}
\]

(iii) \(s(x) = \frac{2}{x+2}, \) for \(x \geq 0. \)

Solution: (i) \(f_X(x) = xe^{-x}, \) for \(x \geq 0. \)

(ii) \[
 f_X(x) = \begin{cases}
 \frac{2x}{10,000} & \text{for } 0 \leq x \leq 100, \\
 0 & \text{for } 100 < x.
 \end{cases}
\]
Example 4

Find the density function for the following survival functions:

(i) \(s(x) = (1 + x)e^{-x}, \) for \(x \geq 0. \)

(ii) \[
 s(x) = \begin{cases}
 1 - \frac{x^2}{10,000} & \text{for } 0 \leq x \leq 100, \\
 0 & \text{for } 100 < x.
 \end{cases}
\]

(iii) \(s(x) = \frac{2}{x+2}, \) for \(x \geq 0. \)

Solution: (i) \(f_X(x) = xe^{-x}, \) for \(x \geq 0. \)

(ii) \[
 f_X(x) = \begin{cases}
 \frac{2x}{10,000} & \text{for } 0 \leq x \leq 100, \\
 0 & \text{for } 100 < x.
 \end{cases}
\]

(iii) \(f_X(x) = \frac{2}{(x+2)^2}, \) for \(x \geq 0. \)
Terminal age

Often, we will assume that the individuals do not live more than a certain age. This age ω is called the **terminal age** or **limiting age** of the population. So, $S(t) = 0$, for each $t \geq \omega$.
Example 5

Suppose that the survival function of a person is given by

\[S_X(x) = \frac{90-x}{90}, \text{ for } 0 \leq x \leq 90. \]

(i) Find the probability that a person dies before reaching 20 years old.

(ii) Find the probability that a person lives more than 60 years old.
Example 5

Suppose that the survival function of a person is given by
\[S_X(x) = \frac{90 - x}{90}, \text{ for } 0 \leq x \leq 90. \]

(i) Find the probability that a person dies before reaching 20 years old.

(ii) Find the probability that a person lives more than 60 years.

Solution: (i)

\[\mathbb{P}\{X \leq 20\} = 1 - S_X(20) = 1 - \frac{90 - 20}{90} = \frac{2}{9}. \]
Example 5

Suppose that the survival function of a person is given by

\[S_X(x) = \frac{90-x}{90} \], for \(0 \leq x \leq 90. \)

(i) Find the probability that a person dies before reaching 20 years old.

(ii) Find the probability that a person lives more than 60 years.

Solution: (i)

\[
\mathbb{P}\{X \leq 20\} = 1 - S_X(20) = 1 - \frac{90 - 20}{90} = \frac{2}{9}.
\]

(ii)

\[
\mathbb{P}\{X > 60\} = S_X(60) = \frac{90 - 60}{90} = \frac{1}{3}.
\]
Given a set $A \subseteq \mathbb{R}$, the **indicator function** of A is the function

$$I(A) = I(\{x \in A\}) = \begin{cases} 1 & \text{if } x \in A \\ 0 & \text{if } x \notin A \end{cases}$$
Theorem 8
(using the survival function to find an expectation) Let X be a non-negative r.v. with survival function s. Let $h : [0, \infty) \to [0, \infty)$ be a function. Let $H(x) = \int_0^x h(t) \, dt$. Then,

$$E[H(X)] = \int_0^\infty s(t)h(t) \, dt.$$
Theorem 8
(Using the survival function to find an expectation) Let X be a non-negative r.v. with survival function s. Let $h : [0, \infty) \rightarrow [0, \infty)$ be a function. Let $H(x) = \int_0^x h(t) dt$. Then,

$$E[H(X)] = \int_0^\infty s(t)h(t) dt.$$

Proof.
Since $H(x) = \int_0^\infty I(x > t)h(t) dt$,

$$E[H(X)] = E \left[\int_0^\infty I(X > t)h(t) dt \right] = \int_0^\infty E[I(X > t)]h(t) dt$$

$$= \int_0^\infty s(t)h(t) dt.$$

© 2009. Miguel A. Arcones. All rights reserved. Manual for SOA Exam MLC.
Recall that if $H(x) = \int_0^x h(t) \, dt$, then

$$E[H(X)] = \int_0^\infty s(t)h(t) \, dt.$$
Recall that if $H(x) = \int_0^x h(t) \, dt$, then

$$E[H(X)] = \int_0^\infty s(t)h(t) \, dt.$$

Corollary 1

Let X be a nonnegative r.v. with survival function s. Then,

$$E[X] = \int_0^\infty s(t) \, dt.$$
Recall that if $H(x) = \int_0^x h(t) \, dt$, then

$$E[H(X)] = \int_0^\infty s(t)h(t) \, dt.$$

Corollary 1

Let X be a nonnegative r.v. with survival function s. Then,

$$E[X] = \int_0^\infty s(t) \, dt.$$

Solution: Let $h(t) = 1$, for each $t \geq 0$. Then,

$H(x) = \int_0^x h(t) \, dt = x$, for each $x \geq 0$. By Theorem 8,

$$E[X] = E[H(X)] = \int_0^\infty s(t)h(t) \, dt = \int_0^\infty s(t) \, dt.$$
Example 6

Suppose that the survival function of X is $s(x) = e^{-x}(x + 1)$, $x \geq 0$.

(i) Find $E[X]$ using that $E[X] = \int_0^\infty s(t) \, dt$.

(ii) Find the density of X.

(iii) Find $E[X]$ using that $E[X] = \int_0^\infty x f(x) \, dx$.
Example 6

Suppose that the survival function of X is $s(x) = e^{-x}(x + 1)$, $x \geq 0$.

(i) Find $E[X]$ using that $E[X] = \int_0^\infty s(t) \, dt$.

(ii) Find the density of X.

(iii) Find $E[X]$ using that $E[X] = \int_0^\infty x f(x) \, dx$.

Solution: (i)

$$E[X] = \int_0^\infty s(t) \, dt = \int_0^\infty e^{-x}(x + 1) \, dx = 2.$$
Example 6

Suppose that the survival function of X is $s(x) = e^{-x}(x + 1)$, $x \geq 0$.

(i) Find $E[X]$ using that $E[X] = \int_0^\infty s(t) \, dt$.
(ii) Find the density of X.
(iii) Find $E[X]$ using that $E[X] = \int_0^\infty x f(x) \, dx$.

Solution:

(i)

$$E[X] = \int_0^\infty s(t) \, dt = \int_0^\infty e^{-x}(x + 1) \, dx = 2.$$

(ii) The density of X is

$$f(x) = -s'(x) = -e^{-x}(-1)(x + 1) - e^{-x}(1) = e^{-x}x.$$
Example 6

Suppose that the survival function of X is $s(x) = e^{-x}(x + 1)$, $x \geq 0$.

(i) Find $E[X]$ using that $E[X] = \int_0^\infty s(t) \, dt$.

(ii) Find the density of X.

(iii) Find $E[X]$ using that $E[X] = \int_0^\infty x f(x) \, dx$.

Solution: (i)

$$E[X] = \int_0^\infty s(t) \, dt = \int_0^\infty e^{-x}(x + 1) \, dx = 2.$$

(ii) The density of X is

$$f(x) = -s'(x) = -e^{-x}(-1)(x + 1) - e^{-x}(1) = e^{-x}x.$$

(iii)

$$E[X] = \int_0^\infty x f(x) \, dx = \int_0^\infty x^2e^{-x} \, dx = 2.$$
Recall that if $H(x) = \int_0^x h(t) \, dt$, then

$$E[H(X)] = \int_0^\infty s(t) h(t) \, dt.$$
Recall that if $H(x) = \int_0^x h(t) \, dt$, then

$$E[H(X)] = \int_0^\infty s(t)h(t) \, dt.$$

Corollary 2

Let X be a nonnegative r.v. with survival function s. Then,

$$E[X^2] = \int_0^\infty s(t)2t \, dt.$$
Recall that if $H(x) = \int_0^x h(t) \, dt$, then

$$E[H(X)] = \int_0^\infty s(t)h(t) \, dt.$$

Corollary 2

Let X be a nonnegative r.v. with survival function s. Then,

$$E[X^2] = \int_0^\infty s(t)2t \, dt.$$

Solution: Let $h(t) = 2t$, for each $t \geq 0$. Hence, $H(x) = \int_0^x h(t) \, dt = x^2$, for each $x \geq 0$. By Theorem 8,

$$E[X^2] = E[H(X)] = \int_0^\infty s(t)h(t) \, dt = \int_0^\infty s(t)2t \, dt.$$
Recall that if \(H(x) = \int_0^x h(t) \, dt \), then

\[
E[H(X)] = \int_0^\infty s(t) h(t) \, dt.
\]
Recall that if $H(x) = \int_0^x h(t) \, dt$, then

$$E[H(X)] = \int_0^\infty s(t)h(t) \, dt.$$

Corollary 3

*Let X be a nonnegative r.v. with survival function s. Let $p > 0$. Then,

$$E[X^p] = \int_0^\infty s(t)pt^{p-1} \, dt.$$*
Recall that if \(H(x) = \int_0^x h(t) \, dt \), then

\[
E[H(X)] = \int_0^\infty s(t)h(t) \, dt.
\]

Corollary 3

Let \(X \) be a nonnegative r.v. with survival function \(s \). Let \(p > 0 \). Then,

\[
E[X^p] = \int_0^\infty s(t)pt^{p-1} \, dt.
\]

Solution: We take \(h(t) = pt^{p-1} \), for each \(t \geq 0 \). Hence, \(H(x) = \int_0^x h(t) \, dt = x^p \), for each \(x \geq 0 \). By Theorem 8, \(E[X^p] = \int_0^\infty s(t)pt^{p-1} \, dt \).
Recall that if \(H(x) = \int_0^x h(t) \, dt \), then
\[
E[H(X)] = \int_0^\infty s(t) h(t) \, dt.
\]

Corollary 4

*Let \(X \) be a nonnegative r.v. with survival function \(s \). Let \(a \geq 0 \). Then,
\[
E[\min(X, a)] = \int_0^a s(t) \, dt.
\]
Recall that if $H(x) = \int_0^x h(t) \, dt$, then

$$E[H(X)] = \int_0^{\infty} s(t) h(t) \, dt.$$

Corollary 4

Let X be a nonnegative r.v. with survival function s. Let $a \geq 0$. Then,

$$E[\min(X, a)] = \int_0^a s(t) \, dt.$$

Solution: Let $h(t) = I(t \in [0, a])$, for each $t \geq 0$. For $x \geq 0$,

$$H(x) = \int_0^x h(t) \, dt = \int_0^x I(t \in [0, a]) \, dt = \int_0^{\min(x, a)} \, dt = \min(x, a).$$

By Theorem 8,

$$E[\min(X, a)] = E[H(X)] = \int_0^{\infty} s(t) h(t) \, dt = \int_0^a s(t) \, dt.$$
Example 7

Suppose that the survival function of X is $s(x) = e^{-x}(x + 1)$, $x \geq 0$.

(i) Find $E[\min(X, 10)]$ using that

$E[\min(X, 10)] = \int_{0}^{\infty} \min(x, 10)f(x)\,dx$.

(ii) Find $E[\min(X, 10)]$ using that $E[\min(X, 10)] = \int_{0}^{10} s(t)\,dt$.

Example 7

Suppose that the survival function of X is $s(x) = e^{-x}(x + 1)$, $x \geq 0$.

(i) Find $E[\min(X, 10)]$ using that

$$E[\min(X, 10)] = \int_0^\infty \min(x, 10)f(x)\,dx.$$

(ii) Find $E[\min(X, 10)]$ using that $E[\min(X, 10)] = \int_0^{10} s(t)\,dt$.

Solution: (i)

$$\int_0^\infty \min(x, 10)f(x)\,dx = \int_0^{10} xe^{-x} \,dx + \int_{10}^\infty 10e^{-x} \,dx$$

$$= 2 \int_0^{10} \frac{x^2}{2} e^{-x} \,dx + \int_{10}^\infty 10e^{-x} \,dx$$

$$= (-2)e^{-x} \left(\frac{x^2}{2} + x + 1 \right) \bigg|_0^{10} - 10e^{-x}(x + 1) \bigg|_{10}^\infty$$

$$= 2 - 2e^{-10}(61) + 10e^{-10}(11) = 2 - 12e^{-10}.$$
Example 7

Suppose that the survival function of X is $s(x) = e^{-x}(x + 1)$, $x \geq 0$.

(i) Find $E[\min(X, 10)]$ using that

$E[\min(X, 10)] = \int_{0}^{\infty} \min(x, 10) f(x) \, dx$.

(ii) Find $E[\min(X, 10)]$ using that $E[\min(X, 10)] = \int_{0}^{10} s(t) \, dt$.

Solution: (ii)

$$
\int_{0}^{10} s(t) \, dt = \int_{0}^{10} e^{-t}(t + 1) \, dt = \int_{0}^{10} e^{-t} t \, dt + \int_{0}^{10} e^{-t} \, dt
$$

$$
= - e^{-t}(t + 1) \bigg|_{0}^{10} - e^{-t} \bigg|_{0}^{10} = 1 - 11e^{-10} + 1 - e^{-10} = 2 - 12e^{-10}.
$$
Theorem 9
Let X be a discrete r.v. whose possible values are nonnegative integers. Let $h : [0, \infty) \rightarrow [0, \infty)$ be a function. Let $H(x) = \int_0^x h(t) \, dt$. Then,

$$E[H(X)] = \sum_{k=1}^{\infty} \mathbb{P}\{X \geq k\}(H(k) - H(k - 1)).$$

Proof: We have that $s(t) = \mathbb{P}\{X \geq k\}$, for $k - 1 \leq t < k$. Hence,

$$E[H(X)] = \int_0^{\infty} s(t) h(t) \, dt = \sum_{k=1}^{\infty} \int_{k-1}^{k} s(t) h(t) \, dt$$
$$= \sum_{k=1}^{\infty} \int_{k-1}^{k} \mathbb{P}\{X \geq k\} h(t) \, dt = \sum_{k=1}^{\infty} \mathbb{P}\{X \geq k\} \int_{k-1}^{k} h(t) \, dt$$
$$= \sum_{k=1}^{\infty} \mathbb{P}\{X \geq k\}(H(k) - H(k - 1)).$$
Recall that if \(H(x) = \int_0^x h(t) \, dt \), then,

\[
E[H(X)] = \sum_{k=1}^{\infty} \mathbb{P}\{X \geq k\} (H(k) - H(k - 1)).
\]

This implies that

\[
E[X] = \sum_{k=1}^{\infty} \mathbb{P}\{X \geq k\},
\]

\[
E[X^2] = \sum_{k=1}^{\infty} \mathbb{P}\{X \geq k\} (k^2 - (k - 1)^2) = \sum_{k=1}^{\infty} \mathbb{P}\{X \geq k\} (2k - 1)
\]

and

\[
E[\min(X, a)] = \sum_{k=1}^{a} \mathbb{P}\{X \geq k\},
\]

where \(a \) is a positive integer.
Example 8

Let X be a discrete r.v. with probability mass function given by the following table,

<table>
<thead>
<tr>
<th>k</th>
<th>$\mathbb{P}{X = k}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.2</td>
</tr>
<tr>
<td>1</td>
<td>0.3</td>
</tr>
<tr>
<td>2</td>
<td>0.5</td>
</tr>
</tbody>
</table>

(i) Find $E[X]$ and $E[X^2]$, using that

$$E[H(X)] = \sum_{k=0}^{\infty} H(k)\mathbb{P}\{X = k\}.$$

(ii) Find $E[X]$ and $E[X^2]$, using that $E[X] = \sum_{k=1}^{\infty} \mathbb{P}\{X \geq k\}$ and $E[X^2] = \sum_{k=1}^{\infty} \mathbb{P}\{X \geq k\}(2k - 1)$.
Example 8

Let X be a discrete r.v. with probability mass function given by the following table,

<table>
<thead>
<tr>
<th>k</th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mathbb{P}{X = k}$</td>
<td>0.2</td>
<td>0.3</td>
<td>0.5</td>
</tr>
</tbody>
</table>

(i) Find $E[X]$ and $E[X^2]$, using that

$$E[H(X)] = \sum_{k=0}^{\infty} H(k)\mathbb{P}\{X = k\}.$$

(ii) Find $E[X]$ and $E[X^2]$, using that $E[X] = \sum_{k=1}^{\infty} \mathbb{P}\{X \geq k\}$ and $E[X^2] = \sum_{k=1}^{\infty} \mathbb{P}\{X \geq k\}(2k - 1)$.

Solution: (i) We have that

$$E[X] = (0)(0.2) + (1)(0.3) + (2)(0.5) = 1.3$$

$$E[X^2] = (0)^2(0.2) + (1)^2(0.3) + (2)^2(0.5) = 2.3.$$
Example 8

Let X be a discrete r.v. with probability mass function given by the following table,

<table>
<thead>
<tr>
<th>k</th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mathbb{P}{X = k}$</td>
<td>0.2</td>
<td>0.3</td>
<td>0.5</td>
</tr>
</tbody>
</table>

(i) Find $E[X]$ and $E[X^2]$, using that

$E[H(X)] = \sum_{k=0}^{\infty} H(k) \mathbb{P}\{X = k\}.$

(ii) Find $E[X]$ and $E[X^2]$, using that $E[X] = \sum_{k=1}^{\infty} \mathbb{P}\{X \geq k\}$ and $E[X^2] = \sum_{k=1}^{\infty} \mathbb{P}\{X \geq k\}(2k - 1)$.

Solution: (ii) We have that $\mathbb{P}\{X \geq 1\} = 0.8$, $\mathbb{P}\{X \geq 2\} = 0.5$, and $\mathbb{P}\{X \geq k\} = 0$, for each $k \geq 3$. Hence,

$E[X] = \mathbb{P}\{X \geq 1\} + \mathbb{P}\{X \geq 2\} = 0.8 + 0.5 = 1.3$

$E[X^2] = \mathbb{P}\{X \geq 1\}((2)(1) - 1) + \mathbb{P}\{X \geq 2\}((2)(2) - 1)$

$= 0.8 + 0.5(3) = 2.3.$
Definition 9

Given $0 < p < 1$, the $100p$–th percentile (or p–th quantile) of a r.v. X is a value such that

$$\mathbb{P}\{X < \xi_p\} \leq p \leq \mathbb{P}\{X \leq \xi_p\}.$$

Usually $\mathbb{P}\{X \leq \xi_p\} = p$. If X has a continuous distribution, then $\mathbb{P}\{X < \xi_p\} = \mathbb{P}\{X \leq \xi_p\}$ and $\mathbb{P}\{X \leq \xi_p\} = p$.
Theorem 10

If X has a uniform distribution on the interval (a, b), then the p–th quantile ξ_p of X is $a + (b - a)p$.
Theorem 10

If X has a uniform distribution on the interval (a, b), then the p–th quantile ξ_p of X is $a + (b - a)p$.

Proof: We have that

$$p = \mathbb{P}\{X \leq \xi_p\} = \int_a^{\xi_p} \frac{1}{b - a} + dt = \frac{\xi_p - a}{b - a}.$$

So, $\xi_p = a + (b - a)p$.

Definition 10

A **median** m of a r.v. X is a value such that
\[P\{X < m\} \leq \frac{1}{2} \leq P\{X \leq m\} . \]

Definition 11

The **first quartile** Q_1 of a r.v. X is the 25–th percentile of the r.v. X. The **third quartile** Q_3 of a r.v. X is the 75–th percentile of the r.v. X.

Usually, the range of a r.v. X is divided in four parts with probability 0.25 each by the numbers $-\infty, Q_1, m, Q_3, \infty$.

<table>
<thead>
<tr>
<th>Interval</th>
<th>$(-\infty, Q_1)$</th>
<th>(Q_1, m)</th>
<th>(m, Q_3)</th>
<th>(Q_3, ∞)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probability</td>
<td>25 %</td>
<td>25%</td>
<td>25%</td>
<td>25%</td>
</tr>
</tbody>
</table>
Example 9

Suppose that the age–at–failure r.v. X has density

$$f_X(x) = \begin{cases} \frac{5x^4}{k^5} & \text{if } 0 < x < k, \\ 0 & \text{else.} \end{cases}$$

Suppose that the expected age–at–failure is 70 years. Find the median age–at–failure.
Example 9

Suppose that the age–at–failure r.v. X has density

$$f_X(x) = \begin{cases} \frac{5x^4}{k^5} & \text{if } 0 < x < k, \\ 0 & \text{else.} \end{cases}$$

Suppose that the expected age–at–failure is 70 years. Find the median age–at–failure.

Solution: Since

$$70 = E[X] = \int_0^k x \frac{5x^4}{k^5} \, dx = \left[\frac{5x^6}{6k^5} \right]_0^k = \frac{5k}{6},$$

$$k = \frac{(70)(6)}{5} = 84.$$ Let m be the median age–at–failure. Then,

$$\frac{1}{2} = \int_0^m \frac{5x^4}{(84)^5} \, dx = \left[\frac{x^5}{(84)^5} \right]_0^m = \frac{m^5}{(84)^5},$$

and $m = \frac{84}{2^{5/5}} = 73.12624732.$
Theorem 11

Let X be a continuous r.v. with density function f_X. Let $0 < p < 1$. Suppose that there are $-\infty \leq a < b \leq \infty$ such that:

(i) $f_X(x) = 0$, if $x \not\in (a, b)$.

(ii) $f_X(x)$ is continuous and positive in (a, b).

Then, there exists ξ_p such that $F_X(\xi_p) = p$. Moreover, ξ_p is unique.
Theorem 12

Let X be a r.v. with range (a, b) and density f_X. Let $0 < p < 1$. Let $h : (a, b) \to (c, d)$ be a one–to–one onto function.

(i) Let ξ_p be a p–th quantile of X such that
$$P\{X < \xi_p\} = p = P\{X \leq \xi_p\}.$$ If h is nonincreasing, then a p–the quantile of Y is $\zeta_p = h(\xi_p)$.

(ii) Let ξ_{1-p} be a $(1 - p)$–th quantile of X such that
$$P\{X < \xi_{1-p}\} = 1 - p = P\{X \leq \xi_{1-p}\}.$$ If h is nondecreasing, then a p–the quantile of Y is $\zeta_p = h(\xi_{1-p})$.
Example 10

Suppose that the age–at–failure r.v. X has density

$$f_X(x) = \begin{cases} \frac{5x^4}{(84)^5} & \text{if } 0 < x < 84, \\ 0 & \text{else.} \end{cases}$$

Find the three quartiles of $(1000)(1.06)^{-X}$.

Example 10

Suppose that the age–at–failure r.v. X has density

$$f_X(x) = \begin{cases} \frac{5x^4}{(84)^5} & \text{if } 0 < x < 84, \\ 0 & \text{else.} \end{cases}$$

Find the three quartiles of $(1000)(1.06)^{-X}$.

Solution: (i) let $h(x) = (1000)(1.06)^{-x}$, $x \geq 0$. h is a decreasing function. Let ξ_p be p–th quantile of the r.v. X. Let ζ_p be p–th quantile of the r.v. $h(X)$. By the previous theorem, $\zeta_p = h(\xi_{1-p})$.

Hence,

$$\zeta_{0.25} = h(\xi_{0.75}) = (1000)(1.06)^{-79.30335095} = 9.843738901,$$

$$\zeta_{0.5} = h(\xi_{0.5}) = (1000)(1.06)^{-73.12624732} = 14.10837641,$$

$$\zeta_{0.75} = h(\xi_{0.25}) = (1000)(1.06)^{-63.6609579} = 24.49210954,$$