Manual for SOA Exam MLC.

Chapter 2. Survival models. Section 2.1. Survival models.

©2009. Miguel A. Arcones. All rights reserved.

Extract from: "Arcones' Manual for SOA Exam MLC. Fall 2009 Edition", available at http://www.actexmadriver.com/

Review of Probability theory

Definition 1

Given a set Ω , a **probability** \mathbb{P} on Ω is a function defined in the collection of all (subsets) events of Ω such that (i) $\mathbb{P}(\emptyset) = 0$. (ii) $\mathbb{P}(\Omega) = 1$. (iii) If $\{A_n\}_{n=1}^{\infty}$ are disjoint events, then $\mathbb{P}\{\bigcup_{n=1}^{\infty}A_n\} = \sum_{n=1}^{\infty} \mathbb{P}\{A_n\}$.

 Ω is called the **sample space**.

Review of Probability theory

Definition 1

Given a set Ω , a **probability** \mathbb{P} on Ω is a function defined in the collection of all (subsets) events of Ω such that (i) $\mathbb{P}(\emptyset) = 0$. (ii) $\mathbb{P}(\Omega) = 1$. (iii) If $\{A_n\}_{n=1}^{\infty}$ are disjoint events, then $\mathbb{P}\{\bigcup_{n=1}^{\infty}A_n\} = \sum_{n=1}^{\infty}\mathbb{P}\{A_n\}$.

 Ω is called the **sample space**.

Definition 2

A random variable X is function from the sample space Ω into \mathbb{R} .

We will abbreviate random variable into r.v.

Many insurance concepts depend on accurate estimation of the life span of a person. It is of interest to study the distribution of lives' lifespan. The life span of a person (or any alive entity) can be modeled as a positive (r.v.) random variable. To model the lifespan of a live, we use **age-at-death** random

variable X.

For inanimate objects, **age-at-failure** is the age of an object at the end of termination.

Cumulative distribution function

Definition 3

The cumulative distribution function of a r.v. X is $F_X(x) = P\{X \le x\}, x \in \mathbb{R}.$

Theorem 1

A function $F_X : \mathbb{R} \to \Re$ is the (c.d.f.) cumulative distribution function of a r.v. X if and only if: (i) F_X is nondecreasing, i.e. for each $x_1 \le x_2$, $F_X(x_1) \le F_X(x_2)$. (ii) F_X is right continuous, i.e. for each $x \in \Re$, $\lim_{h \to 0+} F_X(x+h) = F_X(x)$. (iii) $\lim_{x \to -\infty} F_X(x) = 0$. (iv) $\lim_{x \to \infty} F_X(x) = 1$. The previous theorem gives the following for positive r.v.'s.

Theorem 2 A function $F_X : \mathbb{R} \to \Re$ is the c.d.f. of a positive r.v. X if and only if: (i) F_X is nondecreasing, i.e. for each $x_1 \le x_2$, $F_X(x_1) \le F_X(x_2)$. (ii) F_X is right continuous, i.e. for each $x \in \Re$, $\lim_{h\to 0+} F_X(x+h) = F_X(x)$. (iii) For each $x \le 0$, $F_X(x) = 0$. (iv) $\lim_{x\to\infty} F_X(x) = 1$.

Determine which of the following function is a legitime cumulative distribution function of an age-at-death r.v.:

(i)
$$F_X(x) = \frac{x+1}{x+3}$$
, for $x \ge 0$.
(ii) $F_X(x) = \frac{x}{2x+1}$, for $x \ge 0$.
(iii) $F_X(x) = \frac{x}{x+1}$, for $x \ge 0$.

Determine which of the following function is a legitime cumulative distribution function of an age-at-death r.v.:

(i) $F_X(x) = \frac{x+1}{x+3}$, for $x \ge 0$. (ii) $F_X(x) = \frac{x}{2x+1}$, for $x \ge 0$. (iii) $F_X(x) = \frac{x}{x+1}$, for $x \ge 0$. **Solution:** (i) $F_X(x) = \frac{x+1}{x+3}$ is not a legitime c.d.f. of an age-at-death because $F_X(0) = \frac{1}{3} \ne 0$.

© 2009. Miguel A. Arcones. All rights reserved. Manual for SOA Exam MLC.

Determine which of the following function is a legitime cumulative distribution function of an age-at-death r.v.:

(i) $F_X(x) = \frac{x+1}{x+3}$, for $x \ge 0$. (ii) $F_X(x) = \frac{x}{2x+1}$, for $x \ge 0$. (iii) $F_X(x) = \frac{x}{x+1}$, for $x \ge 0$. **Solution:** (i) $F_X(x) = \frac{x+1}{x+3}$ is not a legitime c.d.f. of an age-at-death because $F_X(0) = \frac{1}{3} \ne 0$. (ii) $F_X(x) = \frac{x+1}{x+3}$ is not a legitime c.d.f. of an age-at-death because $\lim_{x \to \infty} F_X(x) = \frac{1}{2} \ne 1$.

Determine which of the following function is a legitime cumulative distribution function of an age-at-death r.v.:

(i) $F_X(x) = \frac{x+1}{x+3}$, for $x \ge 0$. (ii) $F_X(x) = \frac{x}{2x+1}$, for $x \ge 0$. (iii) $F_X(x) = \frac{x}{x+1}$, for $x \ge 0$. **Solution:** (i) $F_X(x) = \frac{x+1}{x+3}$ is not a legitime c.d.f. of an age-at-death because $F_X(0) = \frac{1}{3} \ne 0$. (ii) $F_X(x) = \frac{x+1}{x+3}$ is not a legitime c.d.f. of an age-at-death because $\lim_{x\to\infty} F_X(x) = \frac{1}{2} \ne 1$. (iii) $F_X(x) = \frac{x}{x+1}$ is a legitime c.d.f. because it satisfies all properties which a c.d.f. should satisfy.

Discrete r.v.

Definition 4

A r.v. X is called **discrete** if there is a countable set $C \subset \mathbb{R}$ such that $\mathbb{P}\{X \in C\} = 1$.

If $\mathbb{P}\{X \in C\} = 1$, where $C = \{x_j\}_{j=1}^\infty$, then for any set $A \subset \mathbb{R}$,

$$\mathbb{P}\{X \in A\} = \mathbb{P}\{X \in A \cap C\} = \mathbb{P}\{X \in A \cap \{x_j\}_{j=1}^{\infty}\}$$
$$= \mathbb{P}\{X \in \bigcup_{j:j \ge 1, x_j \in A} \{x_j\}\} = \sum_{j:j \ge 1, x_j \in A} \mathbb{P}\{X = x_j\}.$$

Definition 5

The probability mass function (or frequency function) of the discrete r.v. X is the function $p : \mathbb{R} \to \mathbb{R}$ defined by

$$p(x) = \mathbb{P}\{X = x\}, x \in \mathbb{R}.$$

If X is a discrete r.v. with p.m.f. p and $A \subset \mathbb{R}$, then

$$\mathbb{P}\{X \in A\} = \sum_{x:x \in A} \mathbb{P}\{X = x\} = \sum_{x:x \in A} p(x).$$

Theorem 3

Let p be the (p.m.f.) probability mass function of the random variable X. Then,

(i) For each $x \ge 0$, $p(x) \ge 0$. (ii) $\sum_{x \in \mathbb{R}} p(x) = 1$. If a function $p : \mathbb{R} \to \mathbb{R}$ satisfies conditions (i)–(ii) above, then there are a sample space S, a probability measure \mathbb{P} on S and a r.v. $X : S \to \mathbb{R}$ such that X has p.m.f. p.

Continuous r.v.

Definition 6

A r.v. X is called **continuous** continuous random variable if there exists a nonnegative function f called a (p.d.f.) probability density function of X such that for each $A \subset \mathbb{R}$,

$$\mathbb{P}\{X \in A\} = \int_A f(x) \, dx = \int_{\mathbb{R}} f(x) I(x \in A) \, dx.$$

Continuous r.v.

Definition 6

A r.v. X is called **continuous** continuous random variable if there exists a nonnegative function f called a (p.d.f.) probability density function of X such that for each $A \subset \mathbb{R}$,

$$\mathbb{P}\{X \in A\} = \int_A f(x) \, dx = \int_{\mathbb{R}} f(x) I(x \in A) \, dx.$$

Theorem 4

A function $f : \Re \to \Re$ is the probability density function of a r.v. X if and only if the following two conditions hold: (i) For each $x \in \mathbb{R}$, $f(x) \ge 0$. (ii) $\int_{\mathbb{R}} f(x) dx = 1$. If a r.v. is positive and continuous, then $f_X(x) = 0$, for each x < 0. So, we only need to define the p.d.f. of an age-at-death for $x \ge 0$.

Determine which of the following function is a probability density function of a age-at-death:

(i)
$$f_X(x) = \frac{1}{(x+1)^2}$$
, for $x \ge 0$.
(ii) $f_X(x) = \frac{1}{(x+1)^3}$, for $x \ge 0$.
(iii) $f_X(x) = (2x-1)e^{-x}$, for $x \ge 0$

Determine which of the following function is a probability density function of a age-at-death:

(i)
$$f_X(x) = \frac{1}{(x+1)^2}$$
, for $x \ge 0$.
(ii) $f_X(x) = \frac{1}{(x+1)^3}$, for $x \ge 0$.
(iii) $f_X(x) = (2x-1)e^{-x}$, for $x \ge 0$.
Solution: (i) f_X is a density because for each $x \ge 0$, $\frac{1}{(x+1)^2} \ge 0$, and

$$\int_0^\infty \frac{1}{(x+1)^2} = -\frac{1}{x+1} \Big|_0^\infty = 1.$$

Determine which of the following function is a probability density function of a age-at-death:

(i)
$$f_X(x) = \frac{1}{(x+1)^2}$$
, for $x \ge 0$.
(ii) $f_X(x) = \frac{1}{(x+1)^3}$, for $x \ge 0$.
(iii) $f_X(x) = (2x-1)e^{-x}$, for $x \ge 0$.

Solution: (i) f_X is a density because for each $x \ge 0$, $\frac{1}{(x+1)^2} \ge 0$, and

$$\int_0^\infty \frac{1}{(x+1)^2} = -\frac{1}{x+1} \Big|_0^\infty = 1.$$

(ii) f_X is not a density function because

$$\int_0^\infty \frac{1}{(x+1)^3} = -\frac{1}{2(x+1)^2} \Big|_0^\infty = \frac{1}{2} \neq 1.$$

Determine which of the following function is a probability density function of a age-at-death:

(i)
$$f_X(x) = \frac{1}{(x+1)^2}$$
, for $x \ge 0$.
(ii) $f_X(x) = \frac{1}{(x+1)^3}$, for $x \ge 0$.
(iii) $f_X(x) = (2x-1)e^{-x}$, for $x \ge 0$.
Solution: (i) f_X is a density because for each $x \ge 0$.

Solution: (i) f_X is a density because for each $x \ge 0$, $\frac{1}{(x+1)^2} \ge 0$, and

$$\int_0^\infty \frac{1}{(x+1)^2} = -\frac{1}{x+1} \Big|_0^\infty = 1.$$

(ii) f_X is not a density function because

$$\int_0^\infty \frac{1}{(x+1)^3} = -\frac{1}{2(x+1)^2} \Big|_0^\infty = \frac{1}{2} \neq 1.$$

(iii) f_X is not a density function because $(2x - 1)e^{-x} < 0$, for each $0 \le x < \frac{1}{2}$.

Knowing the density f of a r.v. X, the cumulative distribution function of X is given by

$$F_X(x) = \int_{-\infty}^x f(t) dt, x \in \mathbb{R}.$$

Knowing the c.d.f. of a r.v. X, we can find its density using:

Theorem 5

Suppose that the c.d.f. F of a r.v. X satisfies the following conditions:

(i) F is continuous in \mathbb{R} .

(ii) There are $a_1, \ldots, a_n \in \mathbb{R}$ such that F is continuously differentiable on each of the intervals

$$(-\infty, a_1), (a_1, a_2), \ldots, (a_{n-1}, a_n), (a_n, \infty).$$

Then, X has a continuous distribution and the p.d.f. of X is given by f(x) = F'(x), except at a_1, \ldots, a_n .

The cumulative distribution function of the random variable X is given by

$$F(x) = \begin{cases} 0 & \text{if } x < -1, \\ \frac{x+1}{4} & \text{if } -1 \le x < 0, \\ \frac{3x^2+4}{16} & \text{if } 0 \le x < 2, \\ 1 & \text{if } 2 \le x. \end{cases}$$

Find the probability density function of X.

The cumulative distribution function of the random variable X is given by

$$F(x) = \begin{cases} 0 & \text{if } x < -1, \\ \frac{x+1}{4} & \text{if } -1 \le x < 0, \\ \frac{3x^2+4}{16} & \text{if } 0 \le x < 2, \\ 1 & \text{if } 2 \le x. \end{cases}$$

Find the probability density function of X.

Solution: We check that F is continuous and nondecreasing on \mathbb{R} . F' exists and it is continuous at each of the intervals $(-\infty, -1)$, (-1, 0), (0, 2) and $(2, \infty)$. A probability density function of X is

$$f(x) = \begin{cases} \frac{1}{4} & \text{if } -1 < x \le 0, \\ \frac{3x}{8} & \text{if } 0 < x < 2, \\ 0 & \text{else.} \end{cases}$$

Mixed r.v.

Definition 7

A r.v. X has a **mixed distribution** if there is a function f and numbers x_j , p_j , $j \ge 1$, with $p_j > 0$, such that for each $A \subset \mathbb{R}$,

$$\mathbb{P}\{X \in A\} = \int_A f(x) \, dx + \sum_{j: x_j \in A} p_j.$$

A mixed distribution X has two parts: a continuous part and a discrete part. The function f in the previous definition is the p.d.f. of the continuous part of X. The function $p(x) = \mathbb{P}[X = x]$, $x \in \mathbb{R}$, is the p.m.f. of the discrete part of X.

In order to have a r.v., we must have that f is nonnegative and

$$\int_{\mathbb{R}} f(x) \, dx + \sum_{j=1}^{\infty} p_j = 1.$$

Survival function

Definition 8

The survival function of a r.v. X is the function $S_X(x) = \mathbb{P}\{X > x\}, x \in \Re$.

Survival function

Definition 8

The survival function of a r.v. X is the function $S_X(x) = \mathbb{P}\{X > x\}, x \in \Re.$

Sometimes we will denote the survival function of a r.v. X by s. Notice that for each $x \ge 0$, $S_X(x) = 1 - F_X(x)$.

Survival function

Definition 8

The survival function of a r.v. X is the function $S_X(x) = \mathbb{P}\{X > x\}, x \in \Re.$

Sometimes we will denote the survival function of a r.v. X by s. Notice that for each $x \ge 0$, $S_X(x) = 1 - F_X(x)$.

Theorem 6

A function $S_X : [0, \infty) \to \Re$ is the survival function of a positive r.v. X if and only if the following conditions are satisfied: (i) S_X is nonincreasing. (ii) S_X is right continuous. (iii) $S_X(0) = 1$. (iv) $\lim_{x \to \infty} S_X(x) = 0$.

Theorem 7

If the survival function S_X of a r.v. X is continuous everywhere and continuously differentiable except at finitely points, then X has a continuous distribution and the density of X is $f_X(x) = -S'_X(x)$, whenever the derivative exists.

Find the density function for the following survival functions: (i) $s(x) = (1 + x)e^{-x}$, for $x \ge 0$. (ii)

$$s(x) = \begin{cases} 1 - \frac{x^2}{10,000} \\ 0 \end{cases}$$

for $0 \le x \le 100$, for 100 < x.

(iii) $s(x) = \frac{2}{x+2}$, for $x \ge 0$.

Find the density function for the following survival functions: (i) $s(x) = (1 + x)e^{-x}$, for $x \ge 0$. (ii)

$$s(x) = \begin{cases} 1 - \frac{x^2}{10,000} & \text{ for } 0 \le x \le 100, \\ 0 & \text{ for } 100 < x. \end{cases}$$

(iii)
$$s(x) = \frac{2}{x+2}$$
, for $x \ge 0$.
Solution: (i) $f_X(x) = xe^{-x}$, for $x \ge 0$.

Find the density function for the following survival functions: (i) $s(x) = (1+x)e^{-x}$, for $x \ge 0$. (ii) $s(x) = \begin{cases} 1 - \frac{x^2}{10,000} & \text{for } 0 \le x \le 100, \\ 0 & \text{for } 100 < x. \end{cases}$

(iii)
$$s(x) = \frac{2}{x+2}$$
, for $x \ge 0$.
Solution: (i) $f_X(x) = xe^{-x}$, for $x \ge 0$.
(ii)
 $\int_{-\infty}^{\infty} e^{-x} f_{0}(x) = xe^{-x} f_{0}(x) = xe^{-x}$

$$f_X(x) = \begin{cases} \frac{2x}{10,000} & \text{ for } 0 \le x \le 100, \\ 0 & \text{ for } 100 < x. \end{cases}$$

Find the density function for the following survival functions: (i) $s(x) = (1 + x)e^{-x}$, for $x \ge 0$. (ii)

$$s(x) = egin{cases} 1 - rac{x^2}{10,000} & ext{ for } 0 \leq x \leq 100, \ 0 & ext{ for } 100 < x. \end{cases}$$

(iii)
$$s(x) = \frac{2}{x+2}$$
, for $x \ge 0$.
Solution: (i) $f_X(x) = xe^{-x}$, for $x \ge 0$.
(ii)

$$f_X(x) = \begin{cases} \frac{2x}{10,000} & \text{ for } 0 \le x \le 100, \\ 0 & \text{ for } 100 < x. \end{cases}$$

(iii) $f_X(x) = \frac{2}{(x+2)^2}$, for $x \ge 0$.

Often, we will assume that the individuals do not live more than a certain age. This age ω is called the **terminal age** or **limiting age** of the population. So, S(t) = 0, for each $t \ge \omega$.

Suppose that the survival function of a person is given by $S_X(x) = \frac{90-x}{90}$, for $0 \le x \le 90$.

(i) Find the probability that a person dies before reaching 20 years old.

(ii) Find the probability that a person lives more than 60 years.

Suppose that the survival function of a person is given by $S_X(x) = \frac{90-x}{90}$, for $0 \le x \le 90$. (i) Find the probability that a person dies before reaching 20 years old.

(ii) Find the probability that a person lives more than 60 years. **Solution:** (i)

$$\mathbb{P}{X \le 20} = 1 - S_X(20) = 1 - \frac{90 - 20}{90} = \frac{2}{9}.$$

Suppose that the survival function of a person is given by $S_X(x) = \frac{90-x}{90}$, for $0 \le x \le 90$. (i) Find the probability that a person dies before reaching 20 years old.

(ii) Find the probability that a person lives more than 60 years.Solution: (i)

(ii)

$$\mathbb{P}\{X \le 20\} = 1 - S_X(20) = 1 - \frac{90 - 20}{90} = \frac{2}{9}.$$

$$\mathbb{P}\{X > 60\} = S_X(60) = \frac{90 - 60}{90} = \frac{1}{3}.$$

Indicator function

Given a set $A \subseteq \mathbb{R}$, the **indicator function** of A is the function

$$I(A) = I(x \in A) = \begin{cases} 1 & \text{if } x \in A \\ 0 & \text{if } x \notin A \end{cases}$$

Theorem 8

(using the survival function to find an expectation) Let X be a non-negative r.v. with survival function s. Let $h : [0, \infty) \to [0, \infty)$ be a function. Let $H(x) = \int_0^x h(t) dt$. Then,

$$E[H(X)] = \int_0^\infty s(t)h(t)\,dt.$$

Theorem 8

(using the survival function to find an expectation) Let X be a non-negative r.v. with survival function s. Let $h : [0, \infty) \to [0, \infty)$ be a function. Let $H(x) = \int_0^x h(t) dt$. Then,

$$E[H(X)] = \int_0^\infty s(t)h(t)\,dt.$$

Proof.

Since $H(x) = \int_0^\infty I(x > t)h(t) dt$,

$$E[H(X)] = E\left[\int_0^\infty I(X > t)h(t) dt\right] = \int_0^\infty E[I(X > t)]h(t) dt$$
$$= \int_0^\infty s(t)h(t) dt.$$

$$E[H(X)] = \int_0^\infty s(t)h(t)\,dt.$$

$$E[H(X)] = \int_0^\infty s(t)h(t)\,dt.$$

Corollary 1

Let X be a nonnegative r.v. with survival function s. Then,

$$E[X] = \int_0^\infty s(t)\,dt.$$

$$E[H(X)] = \int_0^\infty s(t)h(t)\,dt.$$

Corollary 1

Let X be a nonnegative r.v. with survival function s. Then,

$$E[X] = \int_0^\infty s(t) \, dt$$

Solution: Let h(t) = 1, for each $t \ge 0$. Then, $H(x) = \int_0^x h(t) dt = x$, for each $x \ge 0$. By Theorem 8,

$$E[X] = E[H(X)] = \int_0^\infty s(t)h(t)\,dt = \int_0^\infty s(t)\,dt.$$

Suppose that the survival function of X is $s(x) = e^{-x}(x+1)$, $x \ge 0$. (i) Find E[X] using that $E[X] = \int_0^\infty s(t) dt$. (ii) Find the density of X. (iii) Find E[X] using that $E[X] = \int_0^\infty xf(x) dx$.

Suppose that the survival function of X is $s(x) = e^{-x}(x+1)$, $x \ge 0$. (i) Find E[X] using that $E[X] = \int_0^\infty s(t) dt$. (ii) Find the density of X. (iii) Find E[X] using that $E[X] = \int_0^\infty xf(x) dx$. Solution: (i)

$$E[X] = \int_0^\infty s(t) \, dt = \int_0^\infty e^{-x} (x+1) \, dx = 2.$$

Suppose that the survival function of X is $s(x) = e^{-x}(x+1)$, $x \ge 0$. (i) Find E[X] using that $E[X] = \int_0^\infty s(t) dt$. (ii) Find the density of X. (iii) Find E[X] using that $E[X] = \int_0^\infty xf(x) dx$. Solution: (i)

$$E[X] = \int_0^\infty s(t) \, dt = \int_0^\infty e^{-x} (x+1) \, dx = 2.$$

(ii) The density of X is

$$f(x) = -s'(x) = -e^{-x}(-1)(x+1) - e^{-x}(1) = e^{-x}x.$$

Suppose that the survival function of X is $s(x) = e^{-x}(x+1)$, $x \ge 0$. (i) Find E[X] using that $E[X] = \int_0^\infty s(t) dt$. (ii) Find the density of X. (iii) Find E[X] using that $E[X] = \int_0^\infty xf(x) dx$. Solution: (i)

$$E[X] = \int_0^\infty s(t) \, dt = \int_0^\infty e^{-x} (x+1) \, dx = 2.$$

(ii) The density of X is

$$f(x) = -s'(x) = -e^{-x}(-1)(x+1) - e^{-x}(1) = e^{-x}x.$$

(iii)

$$E[X] = \int_0^\infty x f(x) \, dx = \int_0^\infty x^2 e^{-x} \, dx = 2.$$

$$E[H(X)] = \int_0^\infty s(t)h(t)\,dt.$$

$$E[H(X)] = \int_0^\infty s(t)h(t)\,dt.$$

Corollary 2

Let X be a nonnegative r.v. with survival function s. Then,

$$E[X^2] = \int_0^\infty s(t) 2t \, dt.$$

$$E[H(X)] = \int_0^\infty s(t)h(t)\,dt.$$

Corollary 2

Let X be a nonnegative r.v. with survival function s. Then,

$$E[X^2] = \int_0^\infty s(t) 2t \, dt.$$

Solution: Let h(t) = 2t, for each $t \ge 0$. Hence, $H(x) = \int_0^x h(t) dt = x^2$, for each $x \ge 0$. By Theorem 8,

$$E[X^{2}] = E[H(X)] = \int_{0}^{\infty} s(t)h(t) dt = \int_{0}^{\infty} s(t)2t dt.$$

$$E[H(X)] = \int_0^\infty s(t)h(t)\,dt.$$

$$E[H(X)] = \int_0^\infty s(t)h(t)\,dt.$$

Corollary 3

Let X be a nonnegative r.v. with survival function s. Let p > 0. Then,

$$E[X^p] = \int_0^\infty s(t) p t^{p-1} dt.$$

$$E[H(X)] = \int_0^\infty s(t)h(t)\,dt.$$

Corollary 3

Let X be a nonnegative r.v. with survival function s. Let p > 0. Then,

$$E[X^p] = \int_0^\infty s(t) p t^{p-1} dt.$$

Solution: We take $h(t) = pt^{p-1}$, for each $t \ge 0$. Hence, $H(x) = \int_0^x h(t) dt = x^p$, for each $x \ge 0$. By Theorem 8, $E[X^p] = \int_0^\infty s(t)pt^{p-1} dt$.

$$E[H(X)] = \int_0^\infty s(t)h(t)\,dt.$$

Corollary 4

Let X be a nonnegative r.v. with survival function s. Let $a \ge 0$. Then,

$$E[\min(X,a)] = \int_0^a s(t) \, dt.$$

$$E[H(X)] = \int_0^\infty s(t)h(t)\,dt.$$

Corollary 4

Let X be a nonnegative r.v. with survival function s. Let $a \ge 0$. Then,

$$E[\min(X,a)] = \int_0^a s(t) \, dt.$$

Solution: Let $h(t) = I(t \in [0, a])$, for each $t \ge 0$. For $x \ge 0$,

$$H(x) = \int_0^x h(t) dt = \int_0^x I(t \in [0, a]) dt = \int_0^{\min(x, a)} dt = \min(x, a).$$

By Theorem 8,

$$E[\min(X,a)] = E[H(X)] = \int_0^\infty s(t)h(t) dt = \int_0^a s(t) dt.$$

Suppose that the survival function of X is $s(x) = e^{-x}(x+1)$, $x \ge 0$. (i) Find $E[\min(X, 10)]$ using that $E[\min(X, 10)] = \int_0^\infty \min(x, 10)f(x) dx$. (ii) Find $E[\min(X, 10)]$ using that $E[\min(X, 10)] = \int_0^{10} s(t) dt$.

Suppose that the survival function of X is $s(x) = e^{-x}(x+1)$, $x \ge 0$. (i) Find $E[\min(X, 10)]$ using that $E[\min(X, 10)] = \int_0^\infty \min(x, 10)f(x) dx$. (ii) Find $E[\min(X, 10)]$ using that $E[\min(X, 10)] = \int_0^{10} s(t) dt$. Solution: (i)

$$\int_{0}^{\infty} \min(x, 10) f(x) \, dx = \int_{0}^{10} x e^{-x} x \, dx + \int_{10}^{\infty} 10 e^{-x} x \, dx$$
$$= 2 \int_{0}^{10} \frac{x^{2}}{2} e^{-x} \, dx + \int_{10}^{\infty} 10 e^{-x} x \, dx$$
$$= (-2) e^{-x} \left(\frac{x^{2}}{2} + x + 1\right) \Big|_{0}^{10} - 10 e^{-x} (x+1) \Big|_{10}^{\infty}$$
$$= 2 - 2 e^{-10} (61) + 10 e^{-10} (11) = 2 - 12 e^{-10}.$$

Suppose that the survival function of X is $s(x) = e^{-x}(x+1)$, $x \ge 0$. (i) Find $E[\min(X, 10)]$ using that $E[\min(X, 10)] = \int_0^\infty \min(x, 10)f(x) dx$. (ii) Find $E[\min(X, 10)]$ using that $E[\min(X, 10)] = \int_0^{10} s(t) dt$. Solution: (ii)

$$\int_0^{10} s(t) dt = \int_0^{10} e^{-t} (t+1) dt = \int_0^{10} e^{-t} t dt + \int_0^{10} e^{-t} dt$$
$$= -e^{-t} (t+1) \Big|_0^{10} - e^{-t} \Big|_0^{10} = 1 - 11e^{-10} + 1 - e^{-10} = 2 - 12e^{-10}.$$

Theorem 9

Let X be a discrete r.v. whose possible values are nonnegative integers. Let $h : [0, \infty) \to [0, \infty)$ be a function. Let $H(x) = \int_0^x h(t) dt$. Then,

$$E[H(X)] = \sum_{k=1}^{\infty} \mathbb{P}\{X \ge k\}(H(k) - H(k-1)).$$

Proof: We have that $s(t) = \mathbb{P}\{X \ge k\}$, for $k - 1 \le t < k$. Hence,

$$E[H(X)] = \int_0^\infty s(t)h(t) dt = \sum_{k=1}^\infty \int_{k-1}^k s(t)h(t) dt$$

= $\sum_{k=1}^\infty \int_{k-1}^k \mathbb{P}\{X \ge k\}h(t) dt = \sum_{k=1}^\infty \mathbb{P}\{X \ge k\} \int_{k-1}^k h(t) dt$
= $\sum_{k=1}^\infty \mathbb{P}\{X \ge k\}(H(k) - H(k-1)).$

©2009. Miguel A. Arcones. All rights reserved. Manual for SOA Exam MLC.

$$E[H(X)] = \sum_{k=1}^{\infty} \mathbb{P}\{X \ge k\}(H(k) - H(k-1)).$$

This implies that

$$E[X] = \sum_{k=1}^{\infty} \mathbb{P}\{X \ge k\},\$$

$$E[X^{2}] = \sum_{k=1}^{\infty} \mathbb{P}\{X \ge k\}(k^{2} - (k-1)^{2}) = \sum_{k=1}^{\infty} \mathbb{P}\{X \ge k\}(2k-1)$$

and

$$E[\min(X,a)] = \sum_{k=1}^{a} \mathbb{P}\{X \ge k\},\$$

where a is positive integer.

Let X be a discrete r.v. with probability mass function given by the following table,

$$\frac{k}{\mathbb{P}\{X=k\}} \quad \begin{array}{ccc} 0 & 1 & 2 \\ 0.2 & 0.3 & 0.5 \end{array}$$

(i) Find E[X] and $E[X^2]$, using that $E[H(X)] = \sum_{k=0}^{\infty} H(k) \mathbb{P}\{X = k\}.$ (ii) Find E[X] and $E[X^2]$, using that $E[X] = \sum_{k=1}^{\infty} \mathbb{P}\{X \ge k\}$ and $E[X^2] = \sum_{k=1}^{\infty} \mathbb{P}\{X \ge k\}(2k-1).$

Let X be a discrete r.v. with probability mass function given by the following table,

$$\begin{array}{c|cccc} k & 0 & 1 & 2 \\ \hline \mathbb{P}\{X=k\} & 0.2 & 0.3 & 0.5 \end{array}$$

(i) Find
$$E[X]$$
 and $E[X^2]$, using that
 $E[H(X)] = \sum_{k=0}^{\infty} H(k) \mathbb{P}\{X = k\}.$
(ii) Find $E[X]$ and $E[X^2]$, using that $E[X] = \sum_{k=1}^{\infty} \mathbb{P}\{X \ge k\}$ and
 $E[X^2] = \sum_{k=1}^{\infty} \mathbb{P}\{X \ge k\}(2k-1).$

Solution: (i) We have that

$$\begin{split} E[X] &= (0)(0.2) + (1)(0.3) + (2)(0.5) = 1.3\\ E[X^2] &= (0)^2(0.2) + (1)^2(0.3) + (2)^2(0.5) = 2.3. \end{split}$$

Let X be a discrete r.v. with probability mass function given by the following table,

$$\begin{array}{c|cccc} k & 0 & 1 & 2 \\ \mathbb{P}\{X = k\} & 0.2 & 0.3 & 0.5 \end{array}$$

(i) Find E[X] and $E[X^2]$, using that $E[H(X)] = \sum_{k=0}^{\infty} H(k) \mathbb{P}\{X = k\}.$ (ii) Find E[X] and $E[X^2]$, using that $E[X] = \sum_{k=1}^{\infty} \mathbb{P}\{X \ge k\}$ and $E[X^2] = \sum_{k=1}^{\infty} \mathbb{P}\{X \ge k\}(2k-1).$

Solution: (ii) We have that $\mathbb{P}\{X \ge 1\} = 0.8$, $\mathbb{P}\{X \ge 2\} = 0.5$, and $\mathbb{P}\{X \ge k\} = 0$, for each $k \ge 3$. Hence,

$$\begin{split} E[X] &= \mathbb{P}\{X \ge 1\} + \mathbb{P}\{X \ge 2\} = 0.8 + 0.5 = 1.3\\ E[X^2] &= \mathbb{P}\{X \ge 1\}((2)(1) - 1) + \mathbb{P}\{X \ge 2\}((2)(2) - 1)\\ = 0.8 + 0.5(3) = 2.3. \end{split}$$

Definition 9

Given 0 , the 100*p*-th percentile (or*p*-th quantile) of a*r.v.*X is a value such that

$$\mathbb{P}\{X < \xi_p\} \le p \le \mathbb{P}\{X \le \xi_p\}.$$

Usually $\mathbb{P}\{X \leq \xi_p\} = p$. If X has a continuous distribution, then $\mathbb{P}\{X < \xi_p\} = \mathbb{P}\{X \leq \xi_p\}$ and $\mathbb{P}\{X \leq \xi_p\} = p$.

Theorem 10 If X has a uniform distribution on the interval (a, b), then the p-th quantile ξ_p of X is a + (b - a)p.

Theorem 10

If X has a uniform distribution on the interval (a, b), then the p-th quantile ξ_p of X is a + (b - a)p.

Proof: We have that

$$p = \mathbb{P}\{X \leq \xi_p\} = \int_a^{\xi_p} \frac{1}{b-a} + dt = \frac{\xi_p - a}{b-a}.$$

So, $\xi_p = a + (b - a)p$.

Definition 10

A median *m* of a r.v. X is a value such that $\mathbb{P}\{X < m\} \le \frac{1}{2} \le \mathbb{P}\{X \le m\}.$

Definition 11

The first quartile Q_1 of a r.v. X is the 25-th percentile of the r.v. X. The third quartile Q_3 of a r.v. X is the 75-th percentile of the r.v. X.

Usually, the range of a r.v. X is divided in four parts with probability 0.25 each by the numbers $-\infty$, Q_1 , m, Q_3 , ∞ .

Suppose that the age-at-failure r.v. X has density

$$f_X(x) = \begin{cases} \frac{5x^4}{k^5} & \text{if } 0 < x < k, \\ 0 & \text{else.} \end{cases}$$

Suppose that the expected age-at-failure is 70 years. Find the median age-at-failure.

Suppose that the age-at-failure r.v. X has density

$$f_X(x) = \begin{cases} \frac{5x^4}{k^5} & \text{ if } 0 < x < k, \\ 0 & \text{ else.} \end{cases}$$

Suppose that the expected age-at-failure is 70 years. Find the median age-at-failure.

Solution: Since

$$70 = E[X] = \int_0^k x \frac{5x^4}{k^5} \, dx = \frac{5x^6}{6k^5} \Big|_0^k = \frac{5k}{6},$$

 $k = \frac{(70)(6)}{5} = 84$. Let *m* be the median age-at-failure. Then, $\frac{1}{2} = \int_0^m \frac{5x^4}{(84)^5} dx = \frac{x^5}{(84)^5} \Big|_0^m = \frac{m^5}{(84)^5}$, and $m = \frac{84}{2^{\frac{1}{5}}} = 73.12624732$.

Theorem 11

Let X be a continuous r.v. with density function f_X . Let

 $0 . Suppose that there are <math>-\infty \le a < b \le \infty$ such that: (i) $f_X(x) = 0$, if $x \notin (a, b)$.

(ii) $f_X(x)$ is continuous and positive in (a, b).

Then, there exists ξ_p such that $F_X(\xi_p) = p$. Moreover, ξ_p is unique.

Theorem 12

Let X be a r.v. with range (a, b) and density f_X . Let 0 . $Let <math>h: (a, b) \rightarrow (c, d)$ be a one-to-one onto function. (i) Let ξ_p be a p-th quantile of X such that $\mathbb{P}\{X < \xi_p\} = p = \mathbb{P}\{X \le \xi_p\}$. If h is nonincreasing, then a p-the quantile of Y is $\zeta_p = h(\xi_p)$. (ii) Let ξ_{1-p} be a (1-p)-th quantile of X such that $\mathbb{P}\{X < \xi_{1-p}\} = 1 - p = \mathbb{P}\{X \le \xi_{1-p}\}$. If h is nondecreasing, then a p-the quantile of Y is $\zeta_p = h(\xi_{1-p})$.

Suppose that the age-at-failure r.v. X has density

$$f_X(x) = \begin{cases} rac{5x^4}{(84)^5} & ext{if } 0 < x < 84, \\ 0 & ext{else.} \end{cases}$$

Find the three quartiles of $(1000)(1.06)^{-X}$.

Suppose that the age-at-failure r.v. X has density

$$f_X(x) = \begin{cases} rac{5x^4}{(84)^5} & ext{if } 0 < x < 84, \\ 0 & ext{else.} \end{cases}$$

Find the three quartiles of $(1000)(1.06)^{-X}$. **Solution:** (i) let $h(x) = (1000)(1.06)^{-x}$, $x \ge 0$. *h* is a decreasing function. Let ξ_p be *p*-th quantile of the r.v. *X*. Let ζ_p be *p*-th quantile of the r.v. *X*. Let $\zeta_p = h(\xi_{1-p})$. Hence,

$$\begin{split} \zeta_{0.25} &= h(\xi_{0.75}) = (1000)(1.06)^{-79.30335095} = 9.843738901, \\ \zeta_{0.5} &= h(\xi_{0.5}) = (1000)(1.06)^{-73.12624732} = 14.10837641, \\ \zeta_{0.75} &= h(\xi_{0.25}) = (1000)(1.06)^{-63.66009579} = 24.49210954, \end{split}$$