Manual for SOA Exam MLC.

Chapter 2. Survival models. Section 2.4. Expectation of life.
(c)2009. Miguel A. Arcones. All rights reserved.

Extract from:
"Arcones' Manual for SOA Exam MLC. Fall 2009 Edition", available at http://www.actexmadriver.com/

Expectation of life of a newborn

Definition 1

The life expectancy of a newborn is $\stackrel{\circ}{e}_{0}=E[X]$.

Expectation of life of a newborn

Definition 1
The life expectancy of a newborn is $\stackrel{\circ}{e}_{0}=E[X]$.
$\stackrel{\circ}{e}_{0}$ is also called the complete expectation of life at birth.

Expectation of life of a newborn

Definition 1

The life expectancy of a newborn is $\stackrel{\circ}{e}_{0}=E[X]$.
$\stackrel{\circ}{e}_{0}$ is also called the complete expectation of life at birth.
Theorem 1
Let X be an age-at-death r.v. with density f_{X} and survival function S_{X}. Then,
(i)

$$
\stackrel{\circ}{e}_{0}=\int_{0}^{\infty} x f_{X}(x) d x=\int_{0}^{\infty} S_{X}(x) d x=\int_{0}^{\infty}{ }_{t} p_{0} d t
$$

(ii)

$$
E\left[X^{2}\right]=\int_{0}^{\infty} x^{2} f_{X}(x) d x=\int_{0}^{\infty} 2 x S_{X}(x) d x=\int_{0}^{\infty} 2 t \cdot{ }_{t} p_{0} d t
$$

Example 1

An actuary models the lifetime in years of a random selected person as a r.v. X with survival function $S_{X}(x)=\frac{90^{6}-x^{6}}{90^{6}}$, for $0<x<90$. Find $\stackrel{\circ}{e}_{0}$ and $\operatorname{Var}(X)$.

Example 1

An actuary models the lifetime in years of a random selected person as a r.v. X with survival function $S_{X}(x)=\frac{90^{6}-x^{6}}{90^{6}}$, for $0<x<90$. Find $\stackrel{\circ}{e}_{0}$ and $\operatorname{Var}(X)$.
Solution: (using the density of X) (i) The density of X is

$$
\begin{array}{r}
f_{X}(x)=-\frac{d}{d x} S_{X}(x)=-\frac{d}{d x} \frac{90^{6}-x^{6}}{90^{6}}=\frac{6 x^{5}}{90^{6}}, 0<x<90 . \\
\stackrel{\circ}{0}_{0}=\int_{0}^{\infty} x f_{X}(x) d x=\int_{0}^{90} x \frac{6 x^{5}}{90^{6}} d x=\left.\frac{6 x^{7}}{(7) 90^{6}}\right|_{0} ^{90}=\frac{(6)(90)}{7}
\end{array}
$$

$=77.142857$,

$$
\begin{aligned}
& E\left[X^{2}\right]=\int_{0}^{90} x^{2} \frac{6 x^{5}}{90^{6}} d x=\left.\frac{6 x^{8}}{(8) 90^{6}}\right|_{0} ^{90}=\frac{(3)(90)^{2}}{4}=6075 \\
& \operatorname{Var}(X)=E\left[X^{2}\right]-(E[X])^{2}=6075-(77.142857)^{2}=1123.9796139 .
\end{aligned}
$$

Example 1

An actuary models the lifetime in years of a random selected person as a r.v. X with survival function $S_{X}(x)=\frac{90^{6}-x^{6}}{90^{6}}$, for $0<x<90$. Find $\stackrel{\circ}{e}_{0}$ and $\operatorname{Var}(X)$.
(ii) (using the survival function of X) We have that

$$
\begin{aligned}
& \stackrel{\circ}{e}_{0}=\int_{0}^{\infty} S_{X}(x) d x=\int_{0}^{90} \frac{90^{6}-x^{6}}{90^{6}} d x=x-\left.\frac{x^{7}}{(7) 90^{6}}\right|_{0} ^{90} \\
= & 90-\frac{90^{7}}{(7) 90^{6}}=\frac{(6)(90)}{7}=77.142857, \\
& E\left[X^{2}\right]=\int_{0}^{\infty} 2 x S_{X}(x) d x=\int_{0}^{90} 2 x \frac{90^{6}-x^{6}}{90^{6}} d x=x^{2}-\left.\frac{x^{8}}{(4) 90^{6}}\right|_{0} ^{90} \\
= & 90^{2}-\frac{90^{8}}{(4) 90^{6}}=\frac{(3)(90)^{2}}{4}=6075, \\
& \operatorname{Var}(X)=E\left[X^{2}\right]-(E[X])^{2}=6075-(77.142857)^{2} \\
= & 1123.9796139 .
\end{aligned}
$$

expected future lifetime of (x)

Definition 2
The expected future lifetime at age x is

$$
\stackrel{\circ}{e}_{x}=E[T(x)] .
$$

expected future lifetime of (x)

Definition 2
The expected future lifetime at age x is

$$
\stackrel{\circ}{e}_{x}=E[T(x)] .
$$

$\stackrel{\circ}{e}_{x}$ is also called the complete expectation of a life at age x.

expected future lifetime of (x)

Definition 2

The expected future lifetime at age x is

$$
\stackrel{\circ}{e}_{x}=E[T(x)] .
$$

$\stackrel{\circ}{e}_{x}$ is also called the complete expectation of a life at age x.
Theorem 2
(i)
$\stackrel{\circ}{e}_{x}=E[X-x \mid X>x]=\frac{E[(X-x) I(X>x)]}{\mathbb{P}\{X>x\}}=\frac{\int_{x}^{\infty}(t-x) f_{X}(t) d t}{\mathbb{P}\{X>x\}}$.
(ii)

$$
\stackrel{\circ}{e}_{X}=\int_{0}^{\infty}{ }_{t} p_{X} d t=\int_{0}^{\infty} \frac{S_{X}(x+t)}{S_{X}(x)} d t
$$

Example 2

An actuary models the lifetime in years of a random selected person as a r.v. X with survival function $S_{X}(x)=\frac{90^{6}-x^{6}}{90^{6}}$, for $0<x<90$. Find:

Example 2

An actuary models the lifetime in years of a random selected person as a r.v. X with survival function $S_{X}(x)=\frac{90^{6}-x^{6}}{90^{6}}$, for $0<x<90$. Find:
(i) The density of $T(x)$.

Example 2

An actuary models the lifetime in years of a random selected person as a r.v. X with survival function $S_{X}(x)=\frac{90^{6}-x^{6}}{90^{6}}$, for $0<x<90$. Find:
(i) The density of $T(x)$.

Solution: (i) The density of X is

$$
f_{X}(x)=-\frac{d}{d x} S_{X}(x)=-\frac{d}{d x} \frac{90^{6}-x^{6}}{90^{6}}=\frac{6 x^{5}}{90^{6}}, 0<x<90 .
$$

The density of $T(x)$ is

$$
f_{T(x)}(t)=\frac{f_{X}(x+t)}{S_{X}(x)}=\frac{\frac{6(x+t)^{5}}{90^{6}}}{\frac{90^{6}-x^{6}}{90^{6}}}=\frac{6(x+t)^{5}}{90^{6}-x^{6}}, 0<t<90-x .
$$

Example 2

An actuary models the lifetime in years of a random selected person as a r.v. X with survival function $S_{X}(x)=\frac{90^{6}-x^{6}}{90^{6}}$, for $0<x<90$. Find:
(ii) ${ }^{\circ}$ using the density of $T(x)$.

Example 2

An actuary models the lifetime in years of a random selected person as a r.v. X with survival function $S_{X}(x)=\frac{90^{6}-x^{6}}{90^{6}}$, for $0<x<90$. Find:
(ii) ${ }^{\circ}{ }_{x}$ using the density of $T(x)$.

Solution: (ii) By the change of variables $s=x+t$

$$
\begin{aligned}
& \stackrel{\circ}{e}_{x}=\int_{0}^{\infty} t f_{T(x)}(t) d t=\int_{0}^{90-x} t \frac{6(x+t)^{5}}{90^{6}-x^{6}} d t \\
= & \int_{x}^{90}(s-x) \frac{6 s^{5}}{90^{6}-x^{6}} d s=\frac{6 s^{7}}{(7)\left(90^{6}-x^{6}\right)}-\left.\frac{x s^{6}}{90^{6}-x^{6}}\right|_{x} ^{90} \\
= & \frac{6(90)^{7}}{(7)\left(90^{6}-x^{6}\right)}-\frac{x(90)^{6}}{90^{6}-x^{6}}-\frac{6 x^{7}}{(7)\left(90^{6}-x^{6}\right)}+\frac{x^{7}}{90^{6}-x^{6}} \\
= & \frac{x^{7}-7(90)^{6}+6(90)^{7}}{(7)\left(90^{6}-x^{6}\right)}
\end{aligned}
$$

Example 2

An actuary models the lifetime in years of a random selected person as a r.v. X with survival function $S_{X}(x)=\frac{90^{6}-x^{6}}{90^{6}}$, for $0<x<90$. Find:
(iii) The survival function of $T(x)$.

Example 2

An actuary models the lifetime in years of a random selected person as a r.v. X with survival function $S_{X}(x)=\frac{90^{6}-x^{6}}{90^{6}}$, for $0<x<90$. Find:
(iii) The survival function of $T(x)$.

Solution: (iii) The survival function of $T(x)$ is

$$
{ }_{t} p_{X}=\frac{S_{X}(x+t)}{S_{X}(x)}=\frac{90^{6}-(x+t)^{6}}{90^{6}-x^{6}}, 0 \leq t \leq 90-x .
$$

Example 2

An actuary models the lifetime in years of a random selected person as a r.v. X with survival function $S_{X}(x)=\frac{90^{6}-x^{6}}{90^{6}}$, for $0<x<90$. Find:
(iv) $\stackrel{\circ}{e}_{x}$ using the survival function of $T(x)$.

Example 2

An actuary models the lifetime in years of a random selected person as a r.v. X with survival function $S_{X}(x)=\frac{90^{6}-x^{6}}{90^{6}}$, for $0<x<90$. Find:
(iv) $\stackrel{\circ}{e}_{x}$ using the survival function of $T(x)$.

Solution: (iv)

$$
\begin{aligned}
& \stackrel{\circ}{e}_{x}=\int_{0}^{\infty}{ }_{t} p_{x} d t=\int_{0}^{90-x} \frac{90^{6}-(x+t)^{6}}{90^{6}-x^{6}} d t \\
= & \frac{90^{6} t}{90^{6}-x^{6}}-\left.\frac{(x+t)^{7}}{(7)\left(90^{6}-x^{6}\right)}\right|_{0} ^{90-x} \\
= & \frac{90^{6}(90-x)}{90^{6}-x^{6}}-\frac{(90)^{7}}{(7)\left(90^{6}-x^{6}\right)}+\frac{x^{7}}{(7)\left(90^{6}-x^{6}\right)} \\
= & \frac{x^{7}-7(90)^{6}+6(90)^{7}}{(7)\left(90^{6}-x^{6}\right)}
\end{aligned}
$$

n-th year temporary complete life expectancy

Definition 3

The n-th year temporary complete life expectancy is the expected number of years lived between age x and age $x+n$ by a survivor aged x.

n-th year temporary complete life expectancy

Definition 3

The n-th year temporary complete life expectancy is the expected number of years lived between age x and age $x+n$ by a survivor aged x.
The n-th year temporary complete life expectancy is denoted by \circ
$e_{x: \bar{n} \mid}$.

n-th year temporary complete life expectancy

Definition 3

The n-th year temporary complete life expectancy is the expected number of years lived between age x and age $x+n$ by a survivor aged x.
The n-th year temporary complete life expectancy is denoted by $\stackrel{\circ}{e}_{x: \bar{n} \mid}$.
Theorem 3
(i) $\stackrel{\circ}{e}_{x: \bar{n} \mid}=E[\min (T(x), n)]$.
(ii) $\stackrel{\circ}{e}_{x: \bar{n} \mid}=\int_{0}^{n} t p_{x} d t$.

Example 3

An actuary models the lifetime in years of a random selected person as a r.v. X with survival function $S_{X}(x)=\frac{90^{6}-x^{6}}{90^{6}}$, for $0<x<90$. Find ${ }^{\circ}{ }_{x: \bar{n} \mid}$, for $0<x<90$.

Example 3

An actuary models the lifetime in years of a random selected person as a r.v. X with survival function $S_{X}(x)=\frac{90^{6}-x^{6}}{90^{6}}$, for $0<x<90$. Find ${ }^{\circ}{ }_{x: \bar{n} \mid}$, for $0<x<90$.
Solution: For $0 \leq x, t$ and $x+t<90$

$$
{ }_{t} p_{x}=\frac{s(x+t)}{s(x)}=\frac{90^{6}-(x+t)^{6}}{90^{6}-x^{6}}
$$

For $0 \leq x, t$ and $x+t>90,{ }_{t} p_{x}=0$. If $0<x<90-n$,

$$
\stackrel{\circ}{e}_{x: \bar{n} \mid}=\int_{0}^{n}{ }_{t} p_{x} d t=\int_{0}^{n} \frac{90^{6}-(x+t)^{6}}{90^{6}-x^{6}} d t=\frac{(7)\left(90^{6}\right) n+x^{7}-(x+n)^{7}}{(7)\left(90^{6}-x^{6}\right)}
$$

If $90-n<x<90$,

$$
\begin{aligned}
& \stackrel{\circ}{e}_{x: \bar{n} \mid}=\int_{0}^{n}{ }_{t} p_{x} d t=\int_{0}^{90-x} \frac{90^{6}-(x+t)^{6}}{90^{6}-x^{6}} d t \\
= & \frac{(7)\left(90^{6}\right)(90-x)+x^{7}-(90)^{7}}{(7)\left(90^{6}-x^{6}\right)}
\end{aligned}
$$

Theorem 4

$$
\stackrel{\circ}{e}_{x}=\stackrel{\circ}{e}_{x: \bar{n} \mid}+{ }_{n} p_{x} \stackrel{\circ}{e}_{x+n}
$$

Theorem 4

$$
\stackrel{\circ}{e}_{x}=\stackrel{\circ}{e}_{x: \bar{n} \mid}+{ }_{n} p_{x} \stackrel{\circ}{e}_{x+n}
$$

Proof: We have that

$$
\begin{aligned}
& \stackrel{\circ}{e}_{x}=\int_{0}^{\infty}{ }_{t} p_{x} d t=\int_{0}^{n}{ }_{t} p_{x} d t+\int_{n}^{\infty}{ }_{t} p_{x} d t \\
= & \stackrel{\circ}{e}_{x: \bar{n} \mid}+\int_{n}^{\infty}{ }_{n} p_{x} \cdot{ }_{t-n} p_{x+n} d t \\
= & \stackrel{\circ}{e}_{x: \bar{n} \mid}+\int_{0}^{\infty}{ }_{n} p_{x} \cdot{ }_{t} p_{x+n} d t=\stackrel{\circ}{e}_{x: \bar{n} \mid}+{ }_{n} p_{x} \stackrel{\circ}{e}_{x+n}
\end{aligned}
$$

Example 4

Assume that
(i) The expected future lifetime of a 40-year old is 45 years.
(ii) The expected future lifetime of a 50-year old is 36 years.
(iii) The probability that a 40-year old survives to age 50 is 0.98 . Find the expected number of years lived between age 40 and age 50 by a 40 year old.

Example 4

Assume that
(i) The expected future lifetime of a 40-year old is 45 years.
(ii) The expected future lifetime of a 50-year old is 36 years.
(iii) The probability that a 40-year old survives to age 50 is 0.98 .

Find the expected number of years lived between age 40 and age 50 by a 40 year old.
Solution: Using that $\stackrel{\circ}{e}_{x}=\stackrel{\circ}{e}_{x: \bar{n} \mid}+{ }_{n} p_{x} \stackrel{\circ}{e}_{x+n}$, we get that $45=\stackrel{\circ}{e}_{40: \overline{10} \mid}+(0.98)(36)$ and $\stackrel{\circ}{e}_{40: \overline{10} \mid}=45-(0.98)(36)=9.72$.

central rate of failure

Definition 4

The central rate of failure on the interval from age x to age $x+t$ is

$$
{ }_{t} m_{x}=\frac{\int_{x}^{x+t} S_{X}(y) \lambda_{X}(y) d y}{\int_{x}^{x+t} S_{X}(y) d y}=\frac{\int_{0}^{t}{ }_{y} p_{x} \mu_{x+y} d y}{\int_{0}^{t}{ }_{y} p_{x} d y}
$$

central rate of failure

Definition 4

The central rate of failure on the interval from age x to age $x+t$ is

$$
{ }_{t} m_{x}=\frac{\int_{x}^{x+t} S_{x}(y) \lambda_{x}(y) d y}{\int_{x}^{x+t} S_{x}(y) d y}=\frac{\int_{0}^{t} p_{y} p_{x+y} d y}{\int_{0}^{t}{ }_{y} p_{x} d y}
$$

The central rate of failure on the interval is an average of the rate of failure weighted using the survival function. We abbreviate $m_{x}={ }_{1} m_{x}$.

Theorem 5

$$
{ }_{t} m_{X}=\frac{S_{X}(x)-S_{X}(x+t)}{\int_{x}^{x+t} S_{X}(y) d y}
$$

Proof.

We have that

$$
\int_{x}^{x+t} S_{X}(y) \lambda_{X}(y) d y=\int_{x}^{x+t} f_{X}(y) d y=S_{X}(x)-S_{X}(x+t)
$$

So,

$$
{ }_{t} m_{x}=\frac{\int_{x}^{x+t} S_{X}(y) \lambda_{X}(y) d y}{\int_{x}^{x+t} S_{X}(y) d y}=\frac{S_{X}(x)-S_{X}(x+t)}{\int_{x}^{x+t} S_{X}(y) d y} .
$$

Example 5

For the survival function $S_{X}(x)=\frac{90^{6}-x^{6}}{90^{6}}$, for $0<x<90$. Find ${ }_{t} m_{x}$.

Example 5

For the survival function $S_{X}(x)=\frac{90^{6}-x^{6}}{90^{6}}$, for $0<x<90$. Find ${ }_{t} m_{x}$.
Solution: We have that

$$
\begin{aligned}
& S_{X}(x)-S_{X}(x+t)=\frac{(x+t)^{6}-x^{6}}{90^{6}} \\
& \int_{x}^{x+t} S_{X}(y) d y=\int_{x}^{x+t} \frac{90^{6}-y^{6}}{90^{6}} d y=\frac{(7) 90^{6} t-(x+t)^{6}+x^{6}}{(7) 90^{6}} \\
& { }_{t} m_{x}=\frac{S_{X}(x)-S_{X}(x+t)}{\int_{x}^{x+t} S_{X}(y) d y}=\frac{7(x+t)^{6}-7 x^{6}}{(7) 90^{6} t-(x+t)^{6}+x^{6}}
\end{aligned}
$$

median future lifetime

Definition 5

The median future lifetime of (x) is $m(x)$ such that $\mathbb{P}\{T(x)<m(x)\} \leq \frac{1}{2} \leq \mathbb{P}\{T(x) \leq m(x)\}$.

median future lifetime

Definition 5

The median future lifetime of (x) is $m(x)$ such that $\mathbb{P}\{T(x)<m(x)\} \leq \frac{1}{2} \leq \mathbb{P}\{T(x) \leq m(x)\}$.
Usually, $m(x)$ is the solution of

$$
\frac{1}{2}=\mathbb{P}\{T(x)>m(x)\}=\frac{S_{X}(x+m(x))}{S_{X}(x)}
$$

Example 6

For the survival function $S_{X}(x)=\frac{90^{6}-x^{6}}{90^{6}}$, for $0<x<90$. Find the median future lifetime of (x).

Example 6

For the survival function $S_{X}(x)=\frac{90^{6}-x^{6}}{90^{6}}$, for $0<x<90$. Find the median future lifetime of (x).
Solution: Let $m(x)$ be the median future lifetime of (x). We have that

$$
\frac{1}{2}=\mathbb{P}\{T(x)>m(x)\}=\frac{S_{X}(x+m(x))}{S_{X}(x)}=\frac{90^{6}-(x+m(x))^{6}}{90^{6}-x^{6}}
$$

and $m(x)=\left(\frac{90^{6}+x^{6}}{2}\right)^{1 / 6}-x$.

