Manual for SOA Exam MLC. Chapter 2. Survival models. Section 2.7 Common Analytical Survival Models

©2009. Miguel A. Arcones. All rights reserved.

Extract from: "Arcones' Manual for SOA Exam MLC. Fall 2009 Edition", available at http://www.actexmadriver.com/

Common Analytical Survival Models

Sometimes it is of interest to assume that the survival function follows a **parametric model**, i.e. it is of the form $S(x, \theta)$, where θ is an unknown parameter. There are several reasons to make this assumption:

1. Data supports this assumption. Actuaries realized that the models observed in real life follow this assumption.

- 2. Computations are simpler using a parametric model.
- 3. There are valid scientific reasons to justify the use of a particular parametric model.

The most common approach is not to use parametric models due to the following reasons:

1. Modern computers allow to handle the computations needed using the collected data.

2. It is difficult to justify that a parametric model applies.

3. Knowing that a particular model applies we can get more accurate estimates. But, this increase in accuracy is not much. If a parametric model does not apply, using the parametric approach we can get much worse estimates than the nonparametric estimates.

De Moivre model.

De Moivre's law (1729) assumes that deaths happen uniformly over the interval of deaths, i.e. the density of the age-at-failure is $f_X(x) = \frac{1}{\omega}$, for $0 \le x \le \omega$. Therefore,

$$S_X(x) = \frac{\omega - x}{\omega}, \text{ for } 0 \le x < \omega,$$

$$F_X(x) = \frac{x}{\omega}, \text{ for } 0 \le x < \omega,$$

$$\mu(x) = \frac{1}{\omega - x}, \text{ for } 0 \le x < \omega,$$

$$tp_x = \frac{s(x + t)}{s(x)} = \frac{\omega - x - t}{\omega - x}, \text{ for } 0 \le t \le \omega - x,$$

$$tq_x = \frac{t}{\omega - x}, \text{ for } 0 \le t \le \omega - x.$$

Find the median of an age-at-death subject to de Moivre's law if the probability that a life aged 20 years survives 40 years is $\frac{1}{3}$.

Find the median of an age-at-death subject to de Moivre's law if the probability that a life aged 20 years survives 40 years is $\frac{1}{3}$. **Solution:** We know that ${}_{40}p_{20} = \frac{2}{3}$. For the uniform distribution, ${}_{t}p_{x} = \frac{\omega - x - t}{\omega - x}$. Hence, $\frac{1}{3} = \frac{\omega - 20 - 40}{\omega - 20}$, $\omega - 20 = 3\omega - 180$ and $\omega = 80$. Let *m* be the median of the age-at-death. Then,

$$\frac{1}{2}=S_X(m)=\frac{\omega-m}{\omega}=\frac{80-m}{80}$$

and m = 40.

Under the De Moivre's law, T(x) has a uniform distribution on the interval $[0, \omega - x]$. Hence,

Theorem 1 For the De Moivre's law,

$$\overset{\circ}{e}_x = rac{\omega-x}{2} ext{ and } ext{Var}(T(x)) = rac{(\omega-x)^2}{12}.$$

Suppose that the survival of a cohort follows the De Moivre's law. Suppose that the expected age-at-death of a new born is 70 years. Find the expected future lifetime of a 50-year old.

Suppose that the survival of a cohort follows the De Moivre's law. Suppose that the expected age-at-death of a new born is 70 years. Find the expected future lifetime of a 50-year old.

Solution: Since $70 = e_0 = \frac{\omega}{2}$, $\omega = 140$. The expected future lifetime of a 50-year old is

$$\overset{\circ}{e}_{50} = \frac{140 - 50}{2} = 45.$$

Theorem 2 For the de Moivre's law, for $0 \le x \le \omega$, x, ω integers,

$$e_x=\frac{\omega-x-1}{2}.$$

For the de Moivre's law, for $0 \le x \le \omega$, x, ω integers,

$$e_x=\frac{\omega-x-1}{2}.$$

Proof: We have that

$$e_{x} = \sum_{k=1}^{\omega-x} \frac{\omega - x - k}{\omega - x} = \sum_{k=1}^{\omega-x} 1 - \sum_{k=1}^{\omega-x} \frac{k}{\omega - x}$$
$$= (\omega - x) - \frac{\omega - x)((\omega - x) + 1)}{2(\omega - x)} = (\omega - x) - \frac{\omega - x) + 1}{2}$$
$$= \frac{\omega - x - 1}{2}.$$

For the de Moivre's law with terminal age ω , where ω is a positive integer, and each for $0 \le x \le \omega$, where x is an integer,

$$\mathbb{P}\{K(x)=k\}=\frac{1}{\omega-x}, k=0,1,2,\ldots,\omega-x.$$

and

$$\mathbb{P}\{K_x = k\} = p_1^{k-1}(1-p_1), k = 1, 2, \dots, \omega - x - 1.$$

Proof:

$$\mathbb{P}{K(x)=k}=\mathbb{P}{k< T_x\leq k+1}=\int_k^{k+1}rac{1}{\omega-x}\,dt=rac{1}{\omega-x}$$

Exponential model.

An **exponential model** assumes that the age-at-death has an exponential distribution, i.e.

$$S_X(x) = e^{-\mu x}, x \ge 0$$

where $\mu > 0$. In this case,

$$\begin{split} F_X(x) &= 1 - e^{-\mu x}, \text{ for } 0 \leq x, \\ f_X(x) &= \mu e^{-\mu x}, \text{ for } 0 \leq x, \\ \mu(x) &= \mu, \text{ for } 0 \leq x, \\ t p_x &= \frac{s(x+t)}{s(x)} = e^{-\mu t} = p_x^t. \end{split}$$

For an exponential model, the force of mortality is constant. The exponential model is also called the **constant force model**.

Suppose that:

(i) the force of mortality is constant.

(ii) the probability that a 30-year-old will survive to age 40 is 0.95. *Calculate:*

(i) the probability that a 40-year-old will survive to age 50.

(ii) the probability that a 30-year-old will survive to age 50.

(iii) the probability that a 30-year-old will die between ages 40 and 50.

Suppose that:

(i) the force of mortality is constant.

(ii) the probability that a 30-year-old will survive to age 40 is 0.95. *Calculate:*

(i) the probability that a 40-year-old will survive to age 50.

(ii) the probability that a 30-year-old will survive to age 50.

(iii) the probability that a 30-year-old will die between ages 40 and 50.

Solution: (i) Since the force of mortality is constant,

 $_{10}p_{40} = _{10}p_{30} = 0.95.$

Suppose that:

(i) the force of mortality is constant.

(ii) the probability that a 30-year-old will survive to age 40 is 0.95. *Calculate:*

(i) the probability that a 40-year-old will survive to age 50.

(ii) the probability that a 30-year-old will survive to age 50.

(iii) the probability that a 30-year-old will die between ages 40 and 50.

Solution: (i) Since the force of mortality is constant,

 $\substack{ {}_{10}p_{40} = {}_{10}p_{30} = 0.95. \\ (\text{ii}) \ {}_{20}p_{30} = {}_{10}p_{30} \cdot {}_{10}p_{40} = (0.95)(0.95) = 0.9025.$

Suppose that:

(i) the force of mortality is constant.

(ii) the probability that a 30-year-old will survive to age 40 is 0.95. *Calculate:*

(i) the probability that a 40-year-old will survive to age 50.

(ii) the probability that a 30-year-old will survive to age 50.

(iii) the probability that a 30-year-old will die between ages 40 and 50.

Solution: (i) Since the force of mortality is constant,

 $\begin{array}{l} {}_{10}p_{40}={}_{10}p_{30}=0.95.\\ ({\sf ii})\;{}_{20}p_{30}={}_{10}p_{30}\cdot{}_{10}p_{40}=(0.95)(0.95)=0.9025.\\ ({\sf iii})\; {\sf We\; can\; do\; either} \end{array}$

$$_{10}|_{10}p_{30} = {}_{10}p_{30} - {}_{20}p_{30} = 0.95 - 0.9025 = 0.0475.$$

or

$$_{10}|_{10}p_{30} = _{10}p_{30} \cdot _{10}q_{40} = (0.95)(1 - 0.95) = 0.0475.$$

Suppose that the lifetime random variable of a new born has constant mortality force μ . Then,

$$\overset{\circ}{e}_{\mathsf{x}}=rac{1}{\mu} ext{ and } \operatorname{Var}(\mathsf{X})=rac{1}{\mu^2}.$$

Suppose that the lifetime random variable of a new born has constant mortality force μ . Then,

$$\overset{\circ}{e}_{\mathsf{x}}=rac{1}{\mu} ext{ and } \operatorname{Var}(\mathsf{X})=rac{1}{\mu^2}.$$

Proof: Since $_t p_x = e^{-\mu t}$, T(x) has an exponential distribution with mean $\frac{1}{\mu}$.

Suppose that the lifetime random variable of a new born has constant mortality force μ . Then, the curtate future lifetime of (x) is

$$e_x=rac{1}{e^\mu-1}.$$

Suppose that the lifetime random variable of a new born has constant mortality force μ . Then, the curtate future lifetime of (x) is

$$e_x=rac{1}{e^\mu-1}.$$

Proof: We have that

$$e_x = \sum_{k=1}^{\infty} {}_k p_x = \sum_{k=1}^{\infty} e^{-k\mu} = rac{e^{-\mu}}{1-e^{-\mu}} = rac{1}{e^{\mu}-1}.$$

Suppose that:

(i) the force of mortality is constant.

(ii) the probability that a 30-year-old will survive to age 40 is 0.95. Calculate:

(i) the future lifetime of a 40-year-old.

(ii) the future curtate lifetime of a 40-year-old.

Suppose that:

(i) the force of mortality is constant.

(ii) the probability that a 30-year-old will survive to age 40 is 0.95. Calculate:

(i) the future lifetime of a 40-year-old.

(ii) the future curtate lifetime of a 40-year-old.

Solution: (i) We know that ${}_{10}p_{30} = 0.95 = e^{-(10)\mu}$. Hence, $\mu = \frac{-\ln(0.95)}{10}$ and $\overset{\circ}{e}_{40} = \frac{1}{\mu} = \frac{10}{-\ln(0.95)} = 194.9572575$.

Suppose that:

(i) the force of mortality is constant.

(ii) the probability that a 30-year-old will survive to age 40 is 0.95. *Calculate:*

(i) the future lifetime of a 40-year-old.

(ii) the future curtate lifetime of a 40-year-old.

Solution: (i) We know that ${}_{10}p_{30} = 0.95 = e^{-(10)\mu}$. Hence, $\mu = \frac{-\ln(0.95)}{10}$ and $\mathring{e}_{40} = \frac{1}{\mu} = \frac{10}{-\ln(0.95)} = 194.9572575$. (ii) Since $e^{-\mu} = (0.95)^{0.1}$, $e_{40} = \frac{1}{e^{\mu} - 1} = \frac{1}{(0.95)^{-0.1} - 1} = 194.4576849$.

Gompertz model.

Gompertz's model (1825) says that $\mu_x = Bc^x$, where B > 0 and c > 1. Hence, $s(x) = e^{-m(c^x-1)}$ for $x \ge 0$, where $m = \frac{B}{\log c}$.

Makeham model.

Makehan (1860) introduced the model $\mu_x = A + Bc^x$, where $A \ge -B$, B > 0 and c > 1. Hence, $s(x) = e^{-Ax - m(c^x - 1)}$ for $x \ge 0$, where $m = \frac{B}{\log c}$. We also have that

$$f_X(x) = s(x)\mu(x) = (A + Bc^x)e^{-Ax - m(c^x - 1)}, x \ge 0.$$

Weibull model.

Weibull (1939) introduced the model $\mu(x) = kx^n$, for $x \ge 0$, where k > 0 and n > -1. Then,

$$s(x) = e^{-rac{kx^{n+1}}{n+1}}, x \ge 0$$

 $f_X(x) = s(x)\mu(x) = kx^n e^{-rac{kx^{n+1}}{n+1}}, x \ge 0.$