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Common Analytical Survival Models

Sometimes it is of interest to assume that the survival function
follows a parametric model, i.e. it is of the form S(x , θ), where θ
is an unknown parameter. There are several reasons to make this
assumption:
1. Data supports this assumption. Actuaries realized that the
models observed in real life follow this assumption.
2. Computations are simpler using a parametric model.
3. There are valid scientific reasons to justify the use of a
particular parametric model.
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The most common approach is not to use parametric models due
to the following reasons:
1. Modern computers allow to handle the computations needed
using the collected data.
2. It is difficult to justify that a parametric model applies.
3. Knowing that a particular model applies we can get more
accurate estimates. But, this increase in accuracy is not much. If a
parametric model does not apply, using the parametric approach we
can get much worse estimates than the nonparametric estimates.
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De Moivre model.

De Moivre’s law (1729) assumes that deaths happen uniformly
over the interval of deaths, i.e. the density of the age–at–failure is
fX (x) = 1

ω , for 0 ≤ x ≤ ω. Therefore,

SX (x) =
ω − x

ω
, for 0 ≤ x < ω,

FX (x) =
x

ω
, for 0 ≤ x < ω,

µ(x) =
1

ω − x
, for 0 ≤ x < ω,

tpx =
s(x + t)

s(x)
=

ω − x − t

ω − x
, for 0 ≤ t ≤ ω − x ,

tqx =
t

ω − x
, for 0 ≤ t ≤ ω − x .

c©2009. Miguel A. Arcones. All rights reserved. Manual for SOA Exam MLC.



5/27

Chapter 2. Survival models. Section 2.7 Common Analytical Survival Models.

Example 1

Find the median of an age–at–death subject to de Moivre’s law if
the probability that a life aged 20 years survives 40 years is 1

3 .

Solution: We know that 40p20 = 2
3 . For the uniform distribution,

tpx = ω−x−t
ω−x . Hence, 1

3 = ω−20−40
ω−20 , ω − 20 = 3ω − 180 and

ω = 80. Let m be the median of the age–at–death. Then,

1

2
= SX (m) =

ω −m

ω
=

80−m

80

and m = 40.
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Under the De Moivre’s law, T (x) has a uniform distribution on the
interval [0, ω − x ]. Hence,

Theorem 1
For the De Moivre’s law,

◦
ex =

ω − x

2
and Var(T (x)) =

(ω − x)2

12
.
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Example 2

Suppose that the survival of a cohort follows the De Moivre’s law.
Suppose that the expected age–at–death of a new born is 70 years.
Find the expected future lifetime of a 50–year old.

Solution: Since 70 = e0 = ω
2 , ω = 140. The expected future

lifetime of a 50–year old is

◦
e50 =

140− 50

2
= 45.
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Theorem 2
For the de Moivre’s law, for 0 ≤ x ≤ ω, x, ω integers,

ex =
ω − x − 1

2
.

Proof: We have that

ex =
ω−x∑
k=1

ω − x − k

ω − x
=

ω−x∑
k=1

1−
ω−x∑
k=1

k

ω − x

=(ω − x)− ω − x)((ω − x) + 1)

2(ω − x)
= (ω − x)− ω − x) + 1

2

=
ω − x − 1

2
.
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Theorem 3
For the de Moivre’s law with terminal age ω, where ω is a positive
integer, and each for 0 ≤ x ≤ ω, where x is an integer,

P{K (x) = k} =
1

ω − x
, k = 0, 1, 2, . . . , ω − x .

and

P{Kx = k} = pk−1
1 (1− p1), k = 1, 2, . . . , ω − x − 1.

Proof:

P{K (x) = k} = P{k < Tx ≤ k + 1} =

∫ k+1

k

1

ω − x
dt =

1

ω − x
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Exponential model.

An exponential model assumes that the age–at–death has an
exponential distribution, i.e.

SX (x) = e−µx , x ≥ 0

where µ > 0. In this case,

FX (x) = 1− e−µx , for 0 ≤ x ,

fX (x) = µe−µx , for 0 ≤ x ,

µ(x) = µ, for 0 ≤ x ,

tpx =
s(x + t)

s(x)
= e−µt = pt

x .

For an exponential model, the force of mortality is constant. The
exponential model is also called the constant force model.
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Example 3

Suppose that:
(i) the force of mortality is constant.
(ii) the probability that a 30–year–old will survive to age 40 is 0.95.
Calculate:
(i) the probability that a 40–year–old will survive to age 50.
(ii) the probability that a 30–year–old will survive to age 50.
(iii) the probability that a 30–year–old will die between ages 40 and
50.

Solution: (i) Since the force of mortality is constant,

10p40 = 10p30 = 0.95.
(ii) 20p30 = 10p30 · 10p40 = (0.95)(0.95) = 0.9025.
(iii) We can do either

10|10p30 = 10p30 − 20p30 = 0.95− 0.9025 = 0.0475.

or

10|10p30 = 10p30 · 10q40 = (0.95)(1− 0.95) = 0.0475.
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Theorem 4
Suppose that the lifetime random variable of a new born has
constant mortality force µ. Then,

◦
ex =

1

µ
and Var(X ) =

1

µ2
.

Proof: Since tpx = e−µt , T (x) has an exponential distribution
with mean 1

µ .
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Theorem 5
Suppose that the lifetime random variable of a new born has
constant mortality force µ. Then, the curtate future lifetime of (x)
is

ex =
1

eµ − 1
.

Proof: We have that

ex =
∞∑

k=1

kpx =
∞∑

k=1

e−kµ =
e−µ

1− e−µ
=

1

eµ − 1
.
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Example 4

Suppose that:
(i) the force of mortality is constant.
(ii) the probability that a 30–year–old will survive to age 40 is 0.95.
Calculate:
(i) the future lifetime of a 40–year–old.
(ii) the future curtate lifetime of a 40–year–old.

Solution: (i) We know that 10p30 = 0.95 = e−(10)µ. Hence,

µ = − ln(0.95)
10 and

◦
e40 = 1

µ = 10
− ln(0.95) = 194.9572575.

(ii) Since e−µ = (0.95)0.1,
e40 = 1

eµ−1 = 1
(0.95)−0.1−1

= 194.4576849.
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Gompertz model.

Gompertz’s model (1825) says that µx = Bcx , where B > 0 and
c > 1. Hence, s(x) = e−m(cx−1) for x ≥ 0, where m = B

log c .
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Makeham model.

Makehan (1860) introduced the model µx = A + Bcx , where
A ≥ −B, B > 0 and c > 1. Hence, s(x) = e−Ax−m(cx−1) for
x ≥ 0, where m = B

log c . We also have that

fX (x) = s(x)µ(x) = (A + Bcx)e−Ax−m(cx−1), x ≥ 0.
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Weibull model.

Weibull (1939) introduced the model µ(x) = kxn, for x ≥ 0,
where k > 0 and n > −1. Then,

s(x) = e−
kxn+1

n+1 , x ≥ 0

fX (x) = s(x)µ(x) = kxne−
kxn+1

n+1 , x ≥ 0.
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