Manual for SOA Exam MLC. Chapter 4. Life Insurance. Section 4.1. Introduction to life insurance.

©2009. Miguel A. Arcones. All rights reserved.

Extract from: "Arcones' Manual for the SOA Exam MLC. Fall 2009 Edition". available at http://www.actexmadriver.com/

Level benefit insurance in the continuous case

In this chapter, we will consider a cashflow of contingent payments, i.e. the payments depend on uncertain events modeled as a random variable.

Definition 1

The **(APV)** actuarial present value of a cashflow of payments is the expectation of its present value at the time of purchase of this cashflow.

The expected present value is also called the **expected present** value and the **net single premium**.

The present value of a cashflow of payments can be random because many reasons. A possibility that payments are made only with a certain probability. A **contingent cashflow** is a cashflow whose payments are uncertain. Usually, we are able to estimate the probability that a contingent payment is made. Recall that *i* is the annual effective rate of interest, $v = (1 + i)^{-1}$ is the annual discount factor, $\delta = \ln(1 + i)$ is the force of interest (or continuously compounded annual rate of interest).

Consider the contingent cashflow

Payment	<i>C</i> ₁	<i>C</i> ₂	•••	Cm
Probability that payment is made	p_1	<i>p</i> ₂	•••	p _m
Time (in years)	t_1	t_2	•••	t _m

Here, p_j , $1 \le j \le m$, is the probability that *j*-th payment C_j is made. Compute the actuarial present value of this contingent cashflow.

Consider the contingent cashflow

Payment	<i>C</i> ₁	<i>C</i> ₂	•••	Cm
Probability that payment is made	p_1	<i>p</i> ₂	•••	p _m
Time (in years)	t_1	t_2	•••	t _m

Here, p_j , $1 \le j \le m$, is the probability that *j*-th payment C_j is made. Compute the actuarial present value of this contingent cashflow.

Solution: Let $\delta_j = \begin{cases} 1 & \text{if the } j - \text{th payment is made,} \\ 0 & \text{if the } j - \text{th payment is not made.} \end{cases}$ The present value random variable of this cashflow is $\sum_{j=1}^{m} C_j (1+i)^{-t_j} \delta_j$. The actuarial present value of this cashflow is $E\left[\sum_{i=1}^{m} C_j (1+i)^{-t_j} \delta_i\right] = \sum_{i=1}^{m} C_j (1+i)^{-t_j} p_j = \sum_{i=1}^{m} C_j v^{t_j} p_j.$ We consider an insurance policy on a certain entity. Let T be the age-at-death of this entity. Under this insurance policy, the policyholder receives a payment at a certain time in the future. Both the amount of the payment and the payment date depend on T. Let b_t be the benefit payment made when failure happens at time t. Let v_t be the discount factor when failure happens at time t. The present value of the benefit payment is denoted by

$$\overline{Z} = b_T v_T.$$

The actuarial present value of this benefit is

$$E[\overline{Z}] = \int_0^\infty b_t v_t f_T(t) \, dt.$$

The bar over X is to denote that the continuous r.v. T is used. When the entity in the insurance contract is (x), T is T_x and

$$E[\overline{Z}] = \int_0^\infty b_t v_t f_{T_x}(t) dt = \int_0^\infty b_t v_t \cdot {}_t p_x \mu_{x+t} dt.$$

If the benefit payment is made at the time of death, then $v_t = v^t$.

5/14

For a whole life insurance on (60), you are given: (i) Death benefits are paid at the moment of death. (ii) Mortality follows the de Moivre model with terminal age 100. (iii) i = 7%.

(iv) $b_t = (20000)(1.04)^t$, $t \ge 0$.

Calculate the mean and the standard deviation of the present value random variable for this insurance.

For a whole life insurance on (60), you are given: (i) Death benefits are paid at the moment of death. (ii) Mortality follows the de Moivre model with terminal age 100. (iii) i = 7%. (iv) $b_t = (20000)(1.04)^t$, $t \ge 0$.

Calculate the mean and the standard deviation of the present value random variable for this insurance.

Solution: The present value random variable is

$$Z = b_{T_{60}} v^{T_{60}} = (20000)(1.04)^{T_{60}}(1.07)^{-T_{60}} = (20000) \left(\frac{1.04}{1.07}\right)^{T_{60}}$$

The density of T_{60} is

$$f_{T_{60}}(t) = \frac{1}{40}, \ 0 \le t \le 40.$$

Solution: The present value random variable is

$$Z = b_{T_{60}} v^{T_{60}} = (20000)(1.04)^{T_{60}}(1.07)^{-T_{60}} = (20000) \left(\frac{1.04}{1.07}\right)^{T_{60}}$$

The density of T_{60} is

$$f_{T_{60}}(t) = \frac{1}{40}, \ 0 \le t \le 40.$$

Hence,

$$E[Z] = \int_{0}^{40} (20000) \left(\frac{1.04}{1.07}\right)^{t} \frac{1}{40} dt = \frac{(20000) \left(\frac{1.04}{1.07}\right)^{t}}{40 \ln(1.04/1.07)} \Big|_{0}^{40}$$

= $\frac{(20000) \left(\left(\frac{1.04}{1.07}\right)^{40} - 1\right)}{40 \ln(1.04/1.07)} = 11945.06573,$
 $E[Z^{2}] = \int_{0}^{40} (20000)^{2} \left(\frac{1.04}{1.07}\right)^{2t} \frac{1}{40} dt = \frac{(20000)^{2} \left(\left(\frac{1.04}{1.07}\right)^{80} - 1\right)}{80 \ln(1.04/1.07)}$
= 157748208.7,
 $\operatorname{Var}(Z) = 157748208.7 - (11945.06573)^{2} = 15063613.41,$

.

In some cases, these insurance products depend on the time interval of failure K. If b_t and v_t are constant functions in each interval (k - 1, k], then T and K are in the same interval (k - 1, k], $b_T = b_K$ and $v_T = v_K$. In this case the present value of the benefit payment is

$$Z = b_K v_K.$$

The actuarial present value of the benefit payment is

$$E[Z] = \sum_{k=1}^{\infty} b_k v_k \mathbb{P}\{K=k\} = \sum_{k=1}^{\infty} b_k v_k \mathbb{P}\{k-1 \le T < k\}.$$

When the entity in the insurance contract is (x), K is K_x and

$$E[Z] = \sum_{k=1}^{\infty} b_k v_k \mathbb{P}\{K_x = k\} = \sum_{k=1}^{\infty} b_k v_k \cdot {}_{k-1}|q_x.$$

Recall that

$$\mathbb{P}\{K_x = k\} = \mathbb{P}\{k-1 \le T_x < k\} = \mathbb{P}\{k-1 \le X - x < k | X > x\}$$
$$= \frac{s(x+k-1) - s(x+k)}{s(x)} = {}_{k-1}|q_x = {}_{k-1}p_x \cdot q_{x+k-1} = {}_{k-1}p_x - {}_{k}p_x.$$

11/14

A four-year warranty in a digital television will pay \$400(5 - k) if the television breaks during the k-th year, k = 1, ..., 4. The payment will be paid at the end of the year. The effective annual discount rate is 4%. The survival function is $s(x) = \frac{1000}{(x+10)^3}$, $x \ge 0$. Find the actuarial present value of this warranty benefit.

A four-year warranty in a digital television will pay \$400(5 - k) if the television breaks during the k-th year, k = 1, ..., 4. The payment will be paid at the end of the year. The effective annual discount rate is 4%. The survival function is $s(x) = \frac{1000}{(x+10)^3}$, $x \ge 0$. Find the actuarial present value of this warranty benefit. **Solution:** The actuarial present value of the warranty benefit is

$$\sum_{k=1}^{4} 400(5-k)v^{k}(s(k-1)-s(k)) = 712.1391022.$$

$$\sum_{k=1}^{4} 400(5-k)v^{k}(s(k-1)-s(k))$$

=(1600)(0.96) $\left(\frac{1000}{(10)^{3}}-\frac{1000}{(1+10)^{3}}\right)$
+ (1200)(0.96)² $\left(\frac{1000}{(1+10)^{3}}-\frac{1000}{(2+10)^{3}}\right)$
+ (800)(0.96)³ $\left(\frac{1000}{(2+10)^{3}}-\frac{1000}{(3+10)^{3}}\right)$
+ (400)(0.96)⁴ $\left(\frac{1000}{(3+10)^{3}}-\frac{1000}{(4+10)^{3}}\right)$
=381.98046582 + 190.89406461 + 87.43850706
+ 30.82606472 + 21.00000000 = 712.1391022.