## Manual for SOA Exam MLC.

Chapter 4. Life Insurance.
Section 4.1. Introduction to life insurance.
(C)2009. Miguel A. Arcones. All rights reserved.

Extract from:
"Arcones' Manual for the SOA Exam MLC. Fall 2009 Edition". available at http://www.actexmadriver.com/

## Level benefit insurance in the continuous case

In this chapter, we will consider a cashflow of contingent payments, i.e. the payments depend on uncertain events modeled as a random variable.

Definition 1
The (APV) actuarial present value of a cashflow of payments is the expectation of its present value at the time of purchase of this cashflow.

The expected present value is also called the expected present value and the net single premium.
The present value of a cashflow of payments can be random because many reasons. A possibility that payments are made only with a certain probability. A contingent cashflow is a cashflow whose payments are uncertain. Usually, we are able to estimate the probability that a contingent payment is made.

Recall that $i$ is the annual effective rate of interest, $v=(1+i)^{-1}$ is the annual discount factor, $\delta=\ln (1+i)$ is the force of interest (or continuously compounded annual rate of interest).

## Example 1

Consider the contingent cashflow

| Payment | $C_{1}$ | $C_{2}$ | $\cdots$ | $C_{m}$ |
| :---: | :---: | :---: | :---: | :---: |
| Probability that payment is made | $p_{1}$ | $p_{2}$ | $\cdots$ | $p_{m}$ |
| Time (in years) | $t_{1}$ | $t_{2}$ | $\cdots$ | $t_{m}$ |

Here, $p_{j}, 1 \leq j \leq m$, is the probability that $j$-th payment $C_{j}$ is made. Compute the actuarial present value of this contingent cashflow.

Example 1
Consider the contingent cashflow

| Payment | $C_{1}$ | $C_{2}$ | $\cdots$ | $C_{m}$ |
| :---: | :---: | :---: | :---: | :---: |
| Probability that payment is made | $p_{1}$ | $p_{2}$ | $\cdots$ | $p_{m}$ |
| Time (in years) | $t_{1}$ | $t_{2}$ | $\cdots$ | $t_{m}$ |

Here, $p_{j}, 1 \leq j \leq m$, is the probability that $j$-th payment $C_{j}$ is made. Compute the actuarial present value of this contingent cashflow.
Solution: Let $\delta_{j}= \begin{cases}1 & \text { if the } j-\text { th payment is made, } \\ 0 & \text { if the } j-\text { th payment is not made. }\end{cases}$
The present value random variable of this cashflow is
$\sum_{j=1}^{m} C_{j}(1+i)^{-t_{j}} \delta_{j}$. The actuarial present value of this cashflow is

$$
E\left[\sum_{j=1}^{m} C_{j}(1+i)^{-t_{j}} \delta_{j}\right]=\sum_{j=1}^{m} C_{j}(1+i)^{-t_{j}} p_{j}=\sum_{j=1}^{m} C_{j} v^{t_{j}} p_{j}
$$

We consider an insurance policy on a certain entity. Let $T$ be the age-at-death of this entity. Under this insurance policy, the policyholder receives a payment at a certain time in the future. Both the amount of the payment and the payment date depend on $T$. Let $b_{t}$ be the benefit payment made when failure happens at time $t$. Let $v_{t}$ be the discount factor when failure happens at time $t$. The present value of the benefit payment is denoted by

$$
\bar{Z}=b_{T} v_{T} .
$$

The actuarial present value of this benefit is

$$
E[\bar{Z}]=\int_{0}^{\infty} b_{t} v_{t} f_{T}(t) d t
$$

The bar over $X$ is to denote that the continuous r.v. $T$ is used. When the entity in the insurance contract is $(x), T$ is $T_{x}$ and

$$
E[\bar{Z}]=\int_{0}^{\infty} b_{t} v_{t} f_{T_{x}}(t) d t=\int_{0}^{\infty} b_{t} v_{t} \cdot{ }_{t} p_{x} \mu_{x+t} d t
$$

If the benefit payment is made at the time of death, then $v_{t}=v^{t}$.

## Example 2

For a whole life insurance on (60), you are given:
(i) Death benefits are paid at the moment of death.
(ii) Mortality follows the de Moivre model with terminal age 100.
(iii) $i=7 \%$.
(iv) $b_{t}=(20000)(1.04)^{t}, t \geq 0$.

Calculate the mean and the standard deviation of the present value random variable for this insurance.

## Example 2

For a whole life insurance on (60), you are given:
(i) Death benefits are paid at the moment of death.
(ii) Mortality follows the de Moivre model with terminal age 100.
(iii) $i=7 \%$.
(iv) $b_{t}=(20000)(1.04)^{t}, t \geq 0$.

Calculate the mean and the standard deviation of the present value random variable for this insurance.

Solution: The present value random variable is
$Z=b_{T_{60}} v^{T_{60}}=(20000)(1.04)^{T_{60}}(1.07)^{-T_{60}}=(20000)\left(\frac{1.04}{1.07}\right)^{T_{60}}$.
The density of $T_{60}$ is

$$
f_{T_{60}}(t)=\frac{1}{40}, 0 \leq t \leq 40 .
$$

Solution: The present value random variable is
$Z=b_{T_{60}} v^{T_{60}}=(20000)(1.04)^{T_{60}}(1.07)^{-T_{60}}=(20000)\left(\frac{1.04}{1.07}\right)^{T_{60}}$.
The density of $T_{60}$ is

$$
f_{T_{60}}(t)=\frac{1}{40}, 0 \leq t \leq 40
$$

Hence,

$$
\begin{aligned}
& E[Z]=\int_{0}^{40}(20000)\left(\frac{1.04}{1.07}\right)^{t} \frac{1}{40} d t=\left.\frac{(20000)\left(\frac{1.04}{1.07}\right)^{t}}{40 \ln (1.04 / 1.07)}\right|_{0} ^{40} \\
= & \frac{(20000)\left(\left(\frac{1.04}{1.07}\right)^{40}-1\right)}{40 \ln (1.04 / 1.07)}=11945.06573, \\
& E\left[Z^{2}\right]=\int_{0}^{40}(20000)^{2}\left(\frac{1.04}{1.07}\right)^{2 t} \frac{1}{40} d t=\frac{(20000)^{2}\left(\left(\frac{1.04}{1.07}\right)^{80}-1\right)}{80 \ln (1.04 / 1.07)} \\
= & 157748208.7, \\
& \operatorname{Var}(Z)=157748208.7-(11945.06573)^{2}=15063613.41,
\end{aligned}
$$

In some cases, these insurance products depend on the time interval of failure $K$. If $b_{t}$ and $v_{t}$ are constant functions in each interval $(k-1, k$ ], then $T$ and $K$ are in the same interval $(k-1, k], b_{T}=b_{K}$ and $v_{T}=v_{K}$. In this case the present value of the benefit payment is

$$
Z=b_{K} v_{K} .
$$

The actuarial present value of the benefit payment is

$$
E[Z]=\sum_{k=1}^{\infty} b_{k} v_{k} \mathbb{P}\{K=k\}=\sum_{k=1}^{\infty} b_{k} v_{k} \mathbb{P}\{k-1 \leq T<k\}
$$

When the entity in the insurance contract is $(x), K$ is $K_{x}$ and

$$
E[Z]=\sum_{k=1}^{\infty} b_{k} v_{k} \mathbb{P}\left\{K_{x}=k\right\}=\sum_{k=1}^{\infty} b_{k} v_{k} \cdot{ }_{k-1} \mid q_{x}
$$

Recall that

$$
\begin{aligned}
& \mathbb{P}\left\{K_{x}=k\right\}=\mathbb{P}\left\{k-1 \leq T_{x}<k\right\}=\mathbb{P}\{k-1 \leq X-x<k \mid X>x\} \\
= & \left.\frac{s(x+k-1)-s(x+k)}{s(x)}={ }_{k-1} \right\rvert\, q_{x}={ }_{k-1} p_{x} \cdot q_{x+k-1}={ }_{k-1} p_{x}-{ }_{k} p_{x} .
\end{aligned}
$$

## Example 3

A four-year warranty in a digital television will pay $\$ 400(5-k)$ if the television breaks during the $k$-th year, $k=1, \ldots, 4$. The payment will be paid at the end of the year. The effective annual discount rate is $4 \%$. The survival function is $s(x)=\frac{1000}{(x+10)^{3}}$, $x \geq 0$. Find the actuarial present value of this warranty benefit.

## Example 3

A four-year warranty in a digital television will pay $\$ 400(5-k)$ if the television breaks during the $k$-th year, $k=1, \ldots, 4$. The payment will be paid at the end of the year. The effective annual discount rate is $4 \%$. The survival function is $s(x)=\frac{1000}{(x+10)^{3}}$, $x \geq 0$. Find the actuarial present value of this warranty benefit.

Solution: The actuarial present value of the warranty benefit is

$$
\sum_{k=1}^{4} 400(5-k) v^{k}(s(k-1)-s(k))=712.1391022
$$

$$
\begin{aligned}
& \sum_{k=1}^{4} 400(5-k) v^{k}(s(k-1)-s(k)) \\
= & (1600)(0.96)\left(\frac{1000}{(10)^{3}}-\frac{1000}{(1+10)^{3}}\right) \\
& +(1200)(0.96)^{2}\left(\frac{1000}{(1+10)^{3}}-\frac{1000}{(2+10)^{3}}\right) \\
& +(800)(0.96)^{3}\left(\frac{1000}{(2+10)^{3}}-\frac{1000}{(3+10)^{3}}\right) \\
& +(400)(0.96)^{4}\left(\frac{1000}{(3+10)^{3}}-\frac{1000}{(4+10)^{3}}\right) \\
= & 381.98046582+190.89406461+87.43850706 \\
& +30.82606472+21.00000000=712.1391022 .
\end{aligned}
$$

