Manual for SOA Exam MLC.

Chapter 4. Life Insurance.
Section 4.3. Further properties of the APV for discrete insurance.
(C)2009. Miguel A. Arcones. All rights reserved.

Extract from:
"Arcones' Manual for the SOA Exam MLC. Fall 2009 Edition". available at http://www.actexmadriver.com/

Further properties of the APV for insurance

The following table shows the definition of all the variables in the previous section:

type of insurance	payment
whole life insurance	$Z_{x}=\nu^{K_{x}}$
n-year term life insurance	$Z_{x: \bar{n} \mid}^{1}=\nu^{K_{x}} I\left(K_{x} \leq n\right)$
n-year deferred life insurance	$n \mid Z_{x}=\nu^{K_{x}} I\left(n<K_{x}\right)$
n-year pure endowment life insurance	$Z_{x: \bar{n} \mid}^{1}=\nu^{n} I\left(n<K_{x}\right)$
n-year endowment life insurance	$Z_{x: \bar{n} \mid}=\nu^{\min \left(K_{x}, n\right)}$

Theorem 1

We have that

$$
\begin{aligned}
& Z_{x}=Z_{x: \overline{\bar{n}} \mid}^{1}+{ }_{n} \mid Z_{x}, \\
& A_{x}=A_{x: \bar{n} \mid}^{1}+{ }_{n} \mid A_{x}, \\
& { }^{2} A_{x}={ }^{2} A_{x: \bar{n} \mid}^{1}+{ }^{2}{ }_{n} \mid A_{x}, \\
& \operatorname{Var}\left(Z_{x}\right)=\operatorname{Var}\left(Z_{x: \bar{n} \mid}^{1}\right)+\operatorname{Var}\left({ }_{n} \mid Z_{x}\right)-2 A_{x: \bar{n} \mid}^{1} \cdot{ }_{n} \mid A_{x} \\
& \operatorname{Cov}\left(Z_{x: \bar{n} \mid}^{1},{ }_{n} \mid Z_{x}\right)=-A_{x: \bar{n} \mid}^{1} \cdot{ }_{n} \left\lvert\, A_{x}=\frac{1}{2}\left(A_{x: \bar{n} \mid}^{1}{ }^{2}+{ }_{n} \mid A_{x}{ }^{2}-A_{x}{ }^{2}\right) .\right.
\end{aligned}
$$

Proof: We have that

$$
Z_{x: \bar{n} \mid}^{1}+{ }_{n} \mid Z_{x}=\nu^{K_{x}} I\left(K_{x} \leq n\right)+\nu^{K_{x}} I\left(n<K_{x}\right)=\nu^{K_{x}}=Z_{x} .
$$

and

$$
Z_{x: \bar{n} \mid}^{1}{ }^{2}+{ }_{n} \mid Z_{x}^{2}=\nu^{2 K_{x}} I\left(K_{x} \leq n\right)+\nu^{2 K_{x}} I\left(n<K_{x}\right)=\nu^{2 K_{x}}=Z_{x}^{2}
$$

Hence,

$$
A_{x}=A_{x: \bar{n} \mid}^{1}+{ }_{n} \mid A_{x}
$$

and

$$
{ }^{2} A_{x}={ }^{2} A_{x: \bar{n} \mid}^{1}+{ }^{2}{ }_{n} \mid A_{x} .
$$

Thus,

$$
\begin{aligned}
& \operatorname{Var}\left(Z_{x}\right)={ }^{2} A_{x}-\left(A_{x}\right)^{2}={ }^{2} A_{x: \bar{n} \mid}^{1}+{ }_{n}{ }_{n} \mid A_{x}-\left(A_{x: \bar{n} \mid}^{1}+{ }_{n} \mid A_{x}\right)^{2} \\
= & { }^{2} A_{x: \bar{n} \mid}^{1}-\left(A_{x: \bar{n} \mid}^{1}\right)^{2}+{ }_{n}{ }_{n}\left|A_{x}-\left({ }_{n} \mid A_{x}\right)^{2}-2 A_{x: \bar{n} \mid}^{1} \cdot{ }_{n}\right| A_{x} \\
= & \operatorname{Var}\left(Z_{x: \bar{n} \mid}^{1}\right)+\operatorname{Var}\left({ }_{n} \mid Z_{x}\right)-2 A_{x: \bar{n} \mid}^{1} \cdot{ }_{n} \mid A_{x}
\end{aligned}
$$

Since

$$
Z_{x: \pi}^{1} \cdot{ }^{1} \mid Z_{x}=\nu^{K_{x}} I\left(K_{x} \leq n\right) \cdot \nu^{K_{x}} I\left(n<K_{x}\right)=0 .
$$

we get that

$$
\begin{aligned}
& \operatorname{Cov}\left(Z_{x: \overline{\bar{n}}}^{1},{ }_{n} \mid Z_{x}\right)=E\left[Z_{x: \bar{n} \mid}^{1} \cdot{ }_{n} \mid Z_{x}\right]-E\left[Z_{x: \bar{n}]}^{1}\right] E\left[{ }_{n} \mid Z_{x}\right] \\
= & -E\left[Z_{x: \bar{n}]}^{1}\right] E\left[{ }_{n} \mid Z_{x}\right]=-A_{x: \bar{n} \mid}^{1} \cdot{ }_{n} \mid A_{x} .
\end{aligned}
$$

Finally, we have

$$
\begin{aligned}
& \frac{1}{2}\left(A_{x: \bar{n} \mid}^{1}{ }^{2}+{ }_{n} \mid A_{x}{ }^{2}-A_{x}{ }^{2}\right) \\
= & \left.\frac{1}{2}\left(A_{x: \bar{n} \mid}^{1}{ }^{2}+{ }_{n} \mid A_{x}{ }^{2}-\left(A_{x: \bar{n} \mid}^{1}+{ }_{n} \mid A_{x}\right)^{2}\right)=-A_{x: \bar{n} \mid}^{1} \cdot{ }_{n} \right\rvert\, A_{x} .
\end{aligned}
$$

Example 1

Suppose that

$$
E\left[Z_{x}\right]=0.75, \operatorname{Var}\left(Z_{x}\right)=0.45, E\left[Z_{x: \bar{n} \mid}^{1}\right]=0.5, \operatorname{Var}\left(Z_{x: \bar{n} \mid}^{1}\right)=0.2
$$

Find $E\left[{ }_{n} \mid Z_{x}\right]$ and $\operatorname{Var}\left({ }_{n} \mid Z_{x}\right)$.

Example 1

Suppose that

$$
E\left[Z_{x}\right]=0.75, \operatorname{Var}\left(Z_{x}\right)=0.45, E\left[Z_{x: \bar{n} \mid}^{1}\right]=0.5, \operatorname{Var}\left(Z_{x: \bar{n} \mid}^{1}\right)=0.2
$$

Find $E\left[{ }_{n} \mid Z_{x}\right]$ and $\operatorname{Var}\left({ }_{n} \mid Z_{x}\right)$.
Solution: Since $Z_{x}=Z_{x: \bar{n} \mid}^{1}+{ }_{n} \mid Z_{x}$,

$$
0.75=A_{x}=A_{x: \bar{n} \mid}^{1}+{ }_{n}\left|A_{x}=(0.5)+{ }_{n}\right| A_{x} .
$$

So, ${ }_{n} \mid A_{x}=0.25$. Since $\left.Z_{x}^{2}=\left(Z_{x: \bar{n} \mid}^{1}\right)^{2}+{ }_{n} \mid Z_{x}\right)^{2}$,

$$
\begin{aligned}
& 0.45+(0.75)^{2}=E\left[Z_{x}^{2}\right]=E\left[\left(Z_{x: \bar{n} \mid}^{1}\right)^{2}\right]+E\left[\left({ }_{n} \mid Z_{x}\right)^{2}\right] \\
= & 0.2+(0.5)^{2}+E\left[\left({ }_{n} \mid Z_{x}\right)^{2}\right]
\end{aligned}
$$

Hence,

$$
E\left[\left({ }_{n} \mid Z_{x}\right)^{2}\right]=0.45+(0.75)^{2}-0.2-(0.5)^{2}=0.5625 .
$$

and

$$
\operatorname{Var}\left({ }_{n} \mid Z_{X}\right)=0.5625-(0.25)^{2}=0.5
$$

Theorem 2

We have that

$$
\begin{aligned}
& Z_{x: \bar{n} \mid}=Z_{x: \bar{n} \mid}^{1}+Z_{x: \bar{n}}, \\
& A_{x: \bar{n} \mid}=A_{x: \bar{n} \mid}^{1}+A_{x: \overline{\bar{n}} \mid}, \\
& { }^{2} A_{x: \bar{n} \mid}={ }^{2} A_{x: \bar{n} \mid}^{1}+{ }^{2} A_{x: \bar{n} \mid}^{1}, \\
& \operatorname{Var}\left(Z_{x: \bar{n} \mid}\right)=\operatorname{Var}\left(Z_{x: \bar{n} \mid}^{1}\right)+\operatorname{Var}\left(Z_{x: \bar{n} \mid}\right)-2 A_{x: \bar{n} \mid}^{1} \cdot A_{x: \bar{n} \mid}^{1} \\
& \operatorname{Cov}\left(Z_{x: \bar{n} \mid}^{1}, Z_{x: \bar{n} \mid}^{1}\right)=-A_{x: \bar{n} \mid}^{1} \cdot A_{x: \bar{n} \mid}=\frac{1}{2}\left(A_{x: \overline{\bar{n}} \mid}^{1}+A_{x: \overline{\bar{n}} \mid}{ }^{2}-A_{x:\left.\overline{\bar{n}}\right|^{2}}{ }^{2}\right) .
\end{aligned}
$$

Proof.

The proof is similar to the proof of the previous theorem. So, we only sketch the proof. We have

$$
Z_{x: \bar{\pi} \mid}^{1}+Z_{x: \bar{\pi} \mid}^{1}=\nu^{K_{x}} I\left(K_{x} \leq n\right)+\nu^{n} I\left(n<K_{x}\right)=\nu^{\min \left(K_{x}, n\right)}=Z_{x: \bar{\pi} \mid} .
$$

and
$Z_{x: \bar{n} \mid}^{1}{ }^{2}+Z_{x: \bar{n} \mid}^{12}=\nu^{2 K_{x}} I\left(K_{x} \leq n\right)+\nu^{2 n} I\left(n<K_{x}\right)=\nu^{2 \min \left(K_{x}, n\right)}=Z_{x: \bar{n} \mid}^{2}$.
Proceeding as the proof of the previous theorem, the proof follows.

Example 2

Suppose that

$$
E\left[Z_{x: \bar{n} \mid}^{1}\right]=0.5, \operatorname{Var}\left(Z_{x: \bar{n} \mid}^{1}\right)=0.35, \nu^{n}=0.4,{ }_{n} p_{x}=0.6
$$

Find $E\left[Z_{x: \overline{\bar{n}} \mid}\right]$ and $\operatorname{Var}\left(Z_{x: \overline{\bar{n}} \mid}\right)$.

Example 2

Suppose that

$$
E\left[Z_{x: \overline{\overline{\mid}}}^{1}\right]=0.5, \operatorname{Var}\left(Z_{x: \bar{n} \mid}^{1}\right)=0.35, \nu^{n}=0.4,{ }_{n} p_{x}=0.6
$$

Find $E\left[Z_{x: \bar{n} \mid}\right]$ and $\operatorname{Var}\left(Z_{x: \bar{n} \mid}\right)$.
Solution: We have that

$$
\begin{array}{r}
Z_{x: \overline{\overline{\mid}} \mid}=Z_{x: \bar{n} \mid}^{1}+Z_{x: \bar{n} \mid}=Z_{x: \bar{n} \mid}^{1}+\nu^{n} I\left(n<K_{x}\right), \\
E\left[Z_{x: \bar{n} \mid}\right]=E\left[Z_{x: \bar{n} \mid}^{1}\right]+\nu_{n}^{n} p_{x}=(0.5)+(0.4)(0.6)=0.74 .
\end{array}
$$

We also have that

$$
\begin{aligned}
& E\left[Z_{x: \bar{n} \mid}{ }^{2}\right]=E\left[Z_{x: \bar{n} \mid}^{1}\right]+E\left[Z_{x: \bar{n} \mid}{ }^{2}\right] \\
= & \operatorname{Var}\left(Z_{x: \bar{n} \mid}^{1}\right)+\left(E\left[Z_{x: \bar{n}]}^{1}\right]\right)^{2}+\nu^{2 n}{ }_{n} p_{x} \\
= & 0.35+(0.5)^{2}+(0.4)^{2}(0.6)=0.696 .
\end{aligned}
$$

Hence,

$$
\operatorname{Var}\left(Z_{x: \bar{n} \mid}^{1}\right)=0.696-(0.74)^{2}=0.1484
$$

Theorem 3
We have that

$$
{ }_{n} \mid A_{x}=A_{x: \bar{n} \mid} A_{x+n}={ }_{n} E_{x} A_{x+n} .
$$

Proof: By the change of variables $k=j-n$,

$$
\begin{aligned}
& A_{x: \bar{n} \mid} A_{x+n}=v^{n}{ }_{n} p_{x} \sum_{k=1}^{\infty} v^{k} \cdot{ }_{k-1}\left|q_{x+n}=\sum_{k=1}^{\infty} v^{n+k}{ }_{n+k-1}\right| q_{x} \\
= & \sum_{k=n+1}^{\infty} v^{k} \cdot{ }_{k-1}\left|q_{x}={ }_{n}\right| A_{x} .
\end{aligned}
$$

Theorem 3
We have that

$$
{ }_{n} \mid A_{x}=A_{x: \bar{n} \mid} A_{x+n}={ }_{n} E_{x} A_{x+n} .
$$

Proof: By the change of variables $k=j-n$,

$$
\begin{aligned}
& A_{x: \bar{n} \mid} A_{x+n}=v^{n}{ }_{n} p_{x} \sum_{k=1}^{\infty} v^{k} \cdot{ }_{k-1}\left|q_{x+n}=\sum_{k=1}^{\infty} v^{n+k}{ }_{n+k-1}\right| q_{x} \\
= & \sum_{k=n+1}^{\infty} v^{k} \cdot{ }_{k-1}\left|q_{x}={ }_{n}\right| A_{x} .
\end{aligned}
$$

Corollary 1

$$
A_{x}=A_{x: \bar{n} \mid}^{1}+{ }_{n} E_{x} A_{x+n} .
$$

Example 3

An insurance company offers a 10-year deferred life insurance for an individual aged 25, which will pay $\$ 250000$ at the end of the year of his death. Suppose that $p_{x}=0.95$, for each $x \geq 0$, and $\delta=0.065$. Find the actuarial present value of this life insurance.

Example 3

An insurance company offers a 10-year deferred life insurance for an individual aged 25, which will pay $\$ 250000$ at the end of the year of his death. Suppose that $p_{x}=0.95$, for each $x \geq 0$, and $\delta=0.065$. Find the actuarial present value of this life insurance.
Solution: We have that

$$
A_{x+n}=\frac{q_{x+n}}{q_{x+n}+i}=\frac{1-0.95}{1-0.95+e^{0.065}-1}=\frac{0.05}{e^{0.065}-0.95} .
$$

and

$$
\begin{aligned}
& (250000)_{10} \mid A_{x}=(250000)_{10} E_{x} A_{x+10} \\
= & (250000)(0.95)^{10} e^{-(10)(0.065)} \frac{0.05}{e^{0.065}-0.95}=33348.69979 .
\end{aligned}
$$

Example 4

Using $i=6 \%$ and the life table in the textbook, find:
(i) $A_{40: \left.\frac{10}{10} \right\rvert\,}$. (ii) ${ }_{10} \mid A_{40}$. (iii) $A_{40: \overline{10} \mid}^{1}$. (iv) $A_{40: \overline{10} \mid}$.

Example 4

Using $i=6 \%$ and the life table in the textbook, find:

Solution: (i) We have that
$A_{40: 10 \mid} \frac{1}{10}=\nu^{10}{ }_{10} p_{40}=(1.06)^{-10} \frac{\ell_{50}}{\ell_{40}}=(1.06)^{-10} \frac{93735}{96517}=0.5422996406$.
(ii)

$$
{ }_{10} \mid A_{40}={ }_{10} E_{40} A_{50}=(0.5422996406)(0.20696)=0.1122343 .
$$

(iii)

$$
A_{40: \overline{10} \mid}^{1}=A_{40}-{ }_{10} \mid A_{40}=0.13264-0.1122343=0.0204057
$$

(iv)
$A_{40: \overline{10} \mid}=A_{40: \overline{10} \mid}^{1}+{ }_{10} E_{40}=0.0204057+0.5422996406=0.5627053406$.

Example 5

Suppose that $\delta=0.04$ and (x) has force of mortality $\mu=0.03$. Calculate:

Example 5

Suppose that $\delta=0.04$ and (x) has force of mortality $\mu=0.03$. Calculate:
(i) A_{x} and $\operatorname{Var}\left(Z_{x}\right)$.

Example 5

Suppose that $\delta=0.04$ and (x) has force of mortality $\mu=0.03$.
Calculate:
(i) A_{x} and $\operatorname{Var}\left(Z_{x}\right)$.

Solution: (i) We have that

$$
\begin{aligned}
& A_{x}=\frac{e^{\mu}-1}{e^{\delta+\mu}-1}=\frac{e^{0.03}-1}{e^{0.04+0.03}-1}=0.4200151407, \\
& { }^{2} A_{x}=\frac{e^{\mu}-1}{e^{\delta+\mu}-1}=\frac{e^{0.03}-1}{e^{(2)(0.04)+0.03}-1}=0.2619112429, \\
& \operatorname{Var}\left(Z_{x}\right)={ }^{2} A_{x}-\left(A_{x}\right)^{2}=0.2619112429-(0.4200151407)^{2} \\
& =0.08549852448 .
\end{aligned}
$$

Example 5

Suppose that $\delta=0.04$ and (x) has force of mortality $\mu=0.03$. Calculate:
(ii) $A_{x: \left.\frac{1}{10} \right\rvert\,}$ and $\operatorname{Var}\left(Z_{x: 10 \mid}\right)$.

Example 5
Suppose that $\delta=0.04$ and (x) has force of mortality $\mu=0.03$.
Calculate:
(ii) $A_{x: 10 \mid}$ and $\operatorname{Var}\left(Z_{x: 10 \mid}\right)$.

Solution: (ii) We have that

$$
\begin{aligned}
& A_{x: 10 \mid}=e^{-10 \delta}{ }_{10} p_{x}=e^{-(10)(0.04)} e^{-(10)(0.03)}=e^{-0.7}=0.4965853038, \\
&{ }^{2} A_{x: 10 \mid}=e^{-10(2) \delta}{ }_{10} p_{x}=e^{-(10)(2)(0.04)} e^{-(10)(0.03)}=e^{-0.11} \\
&= 0.3328710837,
\end{aligned}
$$

$\operatorname{Var}\left(Z_{x: 10 \mid}\right)={ }^{2} A_{x: \left.\frac{1}{10} \right\rvert\,}-A_{x: \left.\frac{1}{10} \right\rvert\,}{ }^{2}=0.3328710837-(0.4965853038)^{2}$
$=0.08627411975$.

Example 5

Suppose that $\delta=0.04$ and (x) has force of mortality $\mu=0.03$. Calculate: (iii) ${ }_{10} \mid A_{x}$ and $\operatorname{Var}\left({ }_{10} \mid Z_{x}\right)$.

Example 5

Suppose that $\delta=0.04$ and (x) has force of mortality $\mu=0.03$.
Calculate:
(iii) ${ }_{10} \mid A_{x}$ and $\operatorname{Var}\left({ }_{10} \mid Z_{x}\right)$.

Solution: (iii) We have that

$$
\begin{aligned}
& { }_{10} \mid A_{x}={ }_{n} E_{x} A_{x+n}=(0.4965853038)(0.4200151407)=0.2085733462, \\
& { }^{2}{ }_{10} \mid A_{x}={ }^{2}{ }_{n} E_{x} \cdot{ }^{2} A_{x+n}=(0.2619112429)(0.3328710837) \\
& = \\
& =0.08718267926
\end{aligned}
$$

$$
\operatorname{Var}\left({ }_{10} \mid A_{x}\right)=0.08718267926-(0.2085733462)^{2}=0.04367983851
$$

Example 5

Suppose that $\delta=0.04$ and (x) has force of mortality $\mu=0.03$. Calculate: (iv) $A_{x: \overline{10} \mid}^{1}$ and $\operatorname{Var}\left(Z_{x: \bar{n} \mid}^{1}\right)$.

Example 5

Suppose that $\delta=0.04$ and (x) has force of mortality $\mu=0.03$.
Calculate:
(iv) $A_{x: \overline{10} \mid}^{1}$ and $\operatorname{Var}\left(Z_{x: \bar{n} \mid}^{1}\right)$.

Solution: (iv) We have that

$$
\begin{aligned}
& A_{x: \overline{10} \mid}^{1}=A_{x}-{ }_{10} \mid A_{x}=0.4200151407-0.2085733462=0.2114417945, \\
&{ }^{2} A_{x: \overline{10 \mid}}^{1}={ }^{2} A_{x}-{ }^{2}{ }_{10} \mid A_{x}=0.2619112429-0.08718267926 \\
&= 0.1747285636,
\end{aligned}
$$

$\operatorname{Var}\left(Z_{x: \overline{10} \mid}^{1}\right)={ }^{2} A_{x: \overline{10} \mid}^{1}-A_{x: \overline{10} \mid}^{1}{ }^{2}=0.1747285636-(0.2114417945)^{2}$
$=0.1300209311$.

Example 5

Suppose that $\delta=0.04$ and (x) has force of mortality $\mu=0.03$. Calculate: (v) $A_{x: \overline{10} \mid}$ and $\operatorname{Var}\left({ }_{x: \overline{10} \mid}\right)$.

Example 5

Suppose that $\delta=0.04$ and (x) has force of mortality $\mu=0.03$.
Calculate:
(v) $A_{x: \overline{10} \mid}$ and $\operatorname{Var}(x: \overline{10} \mid)$.

Solution: (v) We have that

$$
A_{x: \overline{10} \mid}=A_{x: \overline{10} \mid}^{1}+A_{x: \overline{10} \mid}^{1}=0.2114417945+0.4965853038
$$

$=0.7080270983$,

$$
{ }^{2} A_{x: \overline{10 \mid}}={ }^{2} A_{x: \overline{10} \mid}^{1}+{ }^{2} A_{x: 10 \mid} \frac{1}{10}=0.1747285636+0.3328710837
$$

$=0.5075996473$,

$$
\operatorname{Var}\left(Z_{x: \overline{10} \mid}^{1}\right)={ }^{2} A_{x: \overline{10} \mid}^{1}-A_{x: \overline{10} \mid}^{1}{ }^{2}=0.5075996473-(0.7080270983)^{2}
$$

$=0.006297275373$.

