Manual for SOA Exam MLC. Chapter 5. Life annuities. Section 5.4. *n*-year certain annuities.

©2009. Miguel A. Arcones. All rights reserved.

Extract from: "Arcones' Manual for the SOA Exam MLC. Fall 2009 Edition". available at http://www.actexmadriver.com/

n-year certain life annuity-due

Definition 1

A *n*-year certain due life annuity *pays* at the beginning of the year while either the individual is alive or the number of payments does not exceed *n*.

Under the n-year certain due life annuity, the first n payments are guaranteed.

Definition 2

The present value of a n-year certain due life annuity for (x) with unit payment is denoted by $\ddot{Y}_{\overline{x:\overline{n}|}}$.

Definition 3

The actuarial present value of a n-year certain due life annuity for (x) with unit payment is denoted by $\ddot{a}_{x:\overline{n}|}$.

We have that $\ddot{a}_{\overline{x:\overline{n}|}} = E[\ddot{Y}_{\overline{x:\overline{n}|}}].$

Theorem 1 We have that

$$\begin{split} \ddot{Y}_{\overline{x:\overline{n}|}} &= \ddot{a}_{\overline{\max(n,K_x)}|} = \ddot{a}_{\overline{n}|} + {}_{n}|\ddot{Y}_{x} = \ddot{a}_{\overline{n}|} + \sum_{k=n}^{\infty} Z_{x:\overline{k}|}, \\ \ddot{a}_{\overline{x:\overline{n}|}} &= \ddot{a}_{\overline{n}|} \cdot {}_{n}q_{x} + \sum_{k=n+1}^{\infty} \ddot{a}_{\overline{k}|} \cdot {}_{k-1}|q_{x} = \ddot{a}_{\overline{n}|} + {}_{n}|\ddot{a}_{x} = \ddot{a}_{\overline{n}|} + \sum_{k=n}^{\infty} {}_{v}{}^{k} \cdot {}_{k}p_{x}, \\ \operatorname{Var}(\ddot{Y}_{\overline{x:\overline{n}|}}) = \operatorname{Var}({}_{n}|\ddot{Y}_{x}). \end{split}$$

Theorem 1 We have that

$$\begin{split} \ddot{Y}_{\overline{x:\overline{n}|}} &= \ddot{a}_{\overline{\max(n,K_x)|}} = \ddot{a}_{\overline{n}|} + {}_{n}|\ddot{Y}_x = \ddot{a}_{\overline{n}|} + \sum_{k=n}^{\infty} Z_{x:\overline{k}|}, \\ \ddot{a}_{\overline{x:\overline{n}|}} &= \ddot{a}_{\overline{n}|} \cdot {}_{n}q_x + \sum_{k=n+1}^{\infty} \ddot{a}_{\overline{k}|} \cdot {}_{k-1}|q_x = \ddot{a}_{\overline{n}|} + {}_{n}|\ddot{a}_x = \ddot{a}_{\overline{n}|} + \sum_{k=n}^{\infty} v^k \cdot {}_{k}p_x, \\ \operatorname{Var}(\ddot{Y}_{\overline{x:\overline{n}|}}) = \operatorname{Var}({}_{n}|\ddot{Y}_x). \end{split}$$

Proof: Since payments go until $\max(n, K_x)$, $\ddot{Y}_{x:\overline{n}|} = \ddot{a}_{\max(n,K_x)|}$. If $K_x \leq n$, the obtained cashflow consists of n payments. If $K_x > n$, the obtained cashflow consists of n payments as well as n deferred payments until the end of the year of death. Hence, $\ddot{Y}_{x:\overline{n}|} = \ddot{a}_{\overline{n}|} + n | \ddot{Y}_x$.

Example 1

A special pension plan pays \$30000 at the beginning of the year guaranteed for 10 years and continuing thereafter per life. Suppose that i = 0.06 and mortality follows the life table in the manual. Calculate the APV of this life insurance for (65).

Example 1

A special pension plan pays \$30000 at the beginning of the year guaranteed for 10 years and continuing thereafter per life. Suppose that i = 0.06 and mortality follows the life table in the manual. Calculate the APV of this life insurance for (65).

Solution: $\ddot{a}_{\overline{10}|0.06} = 7.801692274$. From the table, $A_{75} = 0.52383$. Hence, $\ddot{a}_{75} = \frac{1-0.52383}{6/106} = 8.412336667$. From the table, $\ell_{65} = 83114$ and $\ell_{75} = 66605$. So, $A_{\overline{65:10}|} = \frac{66605}{83114} (1.06)^{-10} = 0.4474803778$. Hence, $_{10}|\ddot{a}_{65} = (0.4474803778)(8.412336667) = 3.76435559$. The APV of this insurance is

 $(30000)(\ddot{a}_{\overline{10}|0.06} + {}_{10}|\ddot{a}_{65}) = (30000)(7.801692274 + 3.76435559)$ =346981.4359.

n-year certain life annuity-immediate

Definition 4

A *n*-year certain life annuity-immediate pays at the end of the year while either the individual is alive or the number of payments does not exceed *n*.

Under the n-year certain immediate life annuity, the first n payments are guaranteed.

Definition 5

The present value of a n-year certain immediate life annuity for (x) with unit payment is denoted by $Y_{\overline{x:\overline{n}|}}$.

Definition 6

The actuarial present value of a n-year certain immediate life annuity for (x) with unit payment is denoted by $a_{\overline{x:\overline{n}}|}$.

We have that $a_{\overline{x:\overline{n}}|} = E[Y_{\overline{x:\overline{n}}|}].$

Theorem 2 We have that

 ∞

$$Y_{\overline{x:\overline{n}|}} = a_{\overline{\max(n,K_{x-1})|}} = a_{\overline{n}|} + {}_{n}|Y_{x} = a_{\overline{n}|} + \sum_{k=n+1}^{\infty} Z_{\underline{x:\overline{k}|}} = \ddot{Y}_{\overline{x:\overline{n+1}|}} - 1,$$

$$a_{\overline{x:\overline{n}|}} = a_{\overline{n}|} \cdot {}_n q_x + \sum_{k=n+1}^{\infty} a_{\overline{k-1}|} \cdot {}_{k-1}|q_x = a_{\overline{n}|} + {}_n|a_x|$$

$$= a_{\overline{n}|} + \sum_{k=n+1}^{\infty} v^k \cdot {}_k p_x = \ddot{a}_{\overline{x:\overline{n+1}|}} - 1,$$
$$\operatorname{Var}(Y_{\overline{x:\overline{n}|}}) = \operatorname{Var}({}_n|Y_x).$$

n-year certain life continuous annuity

Definition 7

A *n*-year certain continuous life annuity makes continuous payments while either an individual is alive or the length of the period of payments does not exceed *n*.

Definition 8

The present value of a n-year certain continuous life annuity for (x) with unit rate is denoted by $\overline{Y}_{x:\overline{n}|}$.

Definition 9

The actuarial present value of a n-year certain continuous life annuity for (x) with unit rate is denoted by $\overline{a}_{\overline{x} \cdot \overline{n}|}$.

We have that $\overline{a}_{\overline{x:\overline{n}}|} = E[\overline{Y}_{\overline{x:\overline{n}}|}].$

Theorem 3 We have that

$$\begin{split} \overline{Y}_{\overline{x:\overline{n}|}} &= \overline{a}_{\overline{\max(n,T_x)}|} = \overline{a}_{\overline{n}|} + {}_{n}|\overline{Y}_{x}, \\ \overline{a}_{\overline{x:\overline{n}|}} &= \overline{a}_{\overline{n}|} \cdot {}_{n}q_{x} + \int_{n}^{\infty} \overline{a}_{\overline{t}|} \cdot {}_{t}p_{x}\mu_{x+t} \, dt = \overline{a}_{\overline{n}|} + {}_{n}|\overline{a}_{x} \\ = \overline{a}_{\overline{n}|} + \int_{n}^{\infty} v^{t} \cdot {}_{t}p_{x} \, dt, \\ \operatorname{Var}(\overline{Y}_{\overline{x:\overline{n}|}}) = \operatorname{Var}({}_{n}|\overline{Y}_{x}). \end{split}$$