# Manual for SOA Exam MLC. 

Chapter 5. Life annuities.
Section 5.4. $n$-year certain annuities.
(c)2009. Miguel A. Arcones. All rights reserved.

Extract from:
"Arcones' Manual for the SOA Exam MLC. Fall 2009 Edition". available at http://www.actexmadriver.com/

## $n$-year certain life annuity-due

## Definition 1

A n-year certain due life annuity pays at the beginning of the year while either the individual is alive or the number of payments does not exceed $n$.
Under the $n$-year certain due life annuity, the first $n$ payments are guaranteed.

## Definition 2

The present value of a n-year certain due life annuity for $(x)$ with unit payment is denoted by $\ddot{Y}_{\overline{x: \bar{n} \mid}}$.

## Definition 3

The actuarial present value of a n-year certain due life annuity for $(x)$ with unit payment is denoted by $\ddot{a}_{x: \bar{n} \mid}$.
We have that $\ddot{a}_{x: \overline{\overline{\mid}}}=E\left[\ddot{Y}_{\bar{x}: \bar{n} \mid}\right]$.

## Theorem 1

We have that
$\ddot{Y}_{\overline{x: \bar{n} \mid}}=\ddot{a}_{\overline{\max \left(n, K_{x}\right)} \mid}=\ddot{a}_{\bar{n} \mid}+{ }_{n} \mid \ddot{Y}_{x}=\ddot{a}_{\bar{n} \mid}+\sum_{k=n}^{\infty} Z_{x: \overline{\bar{k}}}$,
$\ddot{a}_{\bar{x}: \bar{n} \mid}=\ddot{a}_{\bar{n} \mid} \cdot{ }_{n} q_{x}+\sum_{k=n+1}^{\infty} \ddot{a}_{\bar{k} \mid} \cdot{ }_{k-1}\left|q_{x}=\ddot{a}_{\bar{n} \mid}+{ }_{n}\right| \ddot{a}_{x}=\ddot{a}_{\bar{n} \mid}+\sum_{k=n}^{\infty} v^{k} \cdot{ }_{k} p_{x}$,
$\operatorname{Var}\left(\ddot{Y}_{\overline{\chi: \bar{n} \mid}}\right)=\operatorname{Var}\left({ }_{n} \mid \ddot{Y}_{x}\right)$.

## Theorem 1

We have that
$\ddot{Y}_{\overline{x: \bar{n} \mid}}=\ddot{a}_{\max \left(n, K_{x}\right) \mid}=\ddot{a}_{\bar{n}}+{ }_{n} \mid \ddot{Y}_{x}=\ddot{a}_{\bar{n} \mid}+\sum_{k=n}^{\infty} Z_{x: \bar{k} \mid}$,
$\ddot{a}_{\bar{x}: \bar{n} \mid}=\ddot{a}_{\bar{n} \mid} \cdot{ }_{n} q_{x}+\sum_{k=n+1}^{\infty} \ddot{a}_{\bar{k} \mid} \cdot{ }_{k-1}\left|q_{x}=\ddot{a}_{\bar{n}}+{ }_{n}\right| \ddot{a}_{x}=\ddot{a}_{\bar{n}}+\sum_{k=n}^{\infty} v^{k} \cdot{ }_{k} p_{x}$,
$\operatorname{Var}\left(\ddot{Y}_{\overline{x: \bar{n}}}\right)=\operatorname{Var}\left({ }_{n} \mid \ddot{Y}_{x}\right)$.

Proof: Since payments go until $\max \left(n, K_{x}\right), \ddot{Y}_{\bar{x}: \bar{n} \mid}=\ddot{a}_{\max \left(n, K_{x}\right)}$. If $K_{x} \leq n$, the obtained cashflow consists of $n$ payments. If $K_{x}>n$, the obtained cashflow consists of $n$ payments as well as $n$ deferred payments until the end of the year of death. Hence, $\ddot{Y}_{\bar{x}: \bar{n} \mid}=\ddot{a}_{\bar{n} \mid}+{ }_{n} \mid \ddot{Y}_{x}$.

## Example 1

A special pension plan pays $\$ 30000$ at the beginning of the year guaranteed for 10 years and continuing thereafter per life. Suppose that $i=0.06$ and mortality follows the life table in the manual. Calculate the APV of this life insurance for (65).

## Example 1

A special pension plan pays $\$ 30000$ at the beginning of the year guaranteed for 10 years and continuing thereafter per life. Suppose that $i=0.06$ and mortality follows the life table in the manual.
Calculate the APV of this life insurance for (65).
Solution: $\ddot{a}_{\overline{10} \mid 0.06}=7.801692274$. From the table, $A_{75}=0.52383$. Hence, $\ddot{a}_{75}=\frac{1-0.52383}{6 / 106}=8.412336667$. From the table, $\ell_{65}=83114$ and $\ell_{75}=66605$. So, $A_{65: \left.\frac{1}{10} \right\rvert\,}=\frac{66605}{83114}(1.06)^{-10}=0.4474803778$. Hence, ${ }_{10} \mid \ddot{a}_{65}=(0.4474803778)(8.412336667)=3.76435559$. The APV of this insurance is
$(30000)\left(\ddot{a}_{\overline{10} \mid 0.06}+{ }_{10} \mid \ddot{a}_{65}\right)=(30000)(7.801692274+3.76435559)$
$=346981.4359$.

## n-year certain life annuity-immediate

## Definition 4

A n-year certain life annuity-immediate pays at the end of the year while either the individual is alive or the number of payments does not exceed $n$.

Under the $n$-year certain immediate life annuity, the first $n$ payments are guaranteed.

Definition 5
The present value of a n-year certain immediate life annuity for $(x)$ with unit payment is denoted by $Y_{\overline{x: \bar{n} \mid}}$.

## Definition 6

The actuarial present value of a n-year certain immediate life annuity for $(x)$ with unit payment is denoted by $a_{\overline{x: \bar{n} \mid}}$.
We have that $a_{\overline{x: \bar{n} \mid}}=E\left[Y_{\overline{x: \bar{n} \mid}}\right]$.

## Theorem 2

We have that

$$
\begin{aligned}
& Y_{\overline{x: \bar{n} \mid}}=a_{\overline{\max \left(n, K_{x-1}\right) \mid}}=a_{\bar{n} \mid}+{ }_{n} \mid Y_{x}=a_{\bar{n} \mid}+\sum_{k=n+1}^{\infty} Z_{x: \bar{k} \mid}=\ddot{Y}_{x: \overline{n+1} \mid}-1, \\
& a_{\overline{x: \bar{n} \mid}}=a_{\bar{n} \mid} \cdot{ }_{n} q_{x}+\sum_{k=n+1}^{\infty} a_{\overline{k-1} \mid} \cdot{ }_{k-1}\left|q_{x}=a_{\bar{n} \mid}+{ }_{n}\right| a_{x} \\
= & a_{\bar{n} \mid}+\sum_{k=n+1}^{\infty} v^{k} \cdot{ }_{k} p_{x}=\ddot{a}_{\overline{x: \overline{n+1} \mid}}-1, \\
& \operatorname{Var}\left(Y Y_{\bar{x}: \bar{n} \mid}\right)=\operatorname{Var}\left(n \mid Y_{x}\right) .
\end{aligned}
$$

## $n$-year certain life continuous annuity

## Definition 7

A n-year certain continuous life annuity makes continuous payments while either an individual is alive or the length of the period of payments does not exceed $n$.

## Definition 8

The present value of a n-year certain continuous life annuity for $(x)$ with unit rate is denoted by $\bar{Y}_{x: \bar{n} \mid}$.

Definition 9
The actuarial present value of a n-year certain continuous life annuity for $(x)$ with unit rate is denoted by $\bar{a}_{x: \bar{n} \mid}$.
We have that $\bar{a}_{\bar{x}: \overline{\bar{n}} \mid}=E\left[\bar{Y}_{\overline{x: \bar{n} \mid}}\right]$.

Theorem 3

## We have that

$$
\begin{aligned}
& \bar{Y}_{\overline{x: \bar{n} \mid}}=\bar{a}_{\overline{\max \left(n, T_{x}\right) \mid}}=\bar{a}_{\bar{n} \mid}+{ }_{n} \mid \bar{Y}_{x}, \\
& \bar{a}_{\bar{x}: \overline{\bar{n}} \mid}=\bar{a}_{\bar{n} \mid} \cdot{ }_{n} q_{x}+\int_{n}^{\infty} \bar{a}_{\bar{a} \mid} \cdot{ }_{t} p_{x} \mu_{x+t} d t=\bar{a}_{\bar{n} \mid}+{ }_{n} \mid \bar{a}_{x} \\
= & \bar{a}_{\bar{n} \mid}+\int_{n}^{\infty} v^{t} \cdot{ }_{t} p_{x} d t, \\
& \operatorname{Var}\left(\bar{Y}_{\overline{x: \bar{n} \mid}}\right)=\operatorname{Var}\left({ }_{n} \mid \bar{Y}_{x}\right) .
\end{aligned}
$$

