Manual for SOA Exam MLC.

Chapter 5. Life annuities.
Section 5.7. Computing present values from a life table
(C)2009. Miguel A. Arcones. All rights reserved.

Extract from:
"Arcones' Manual for the SOA Exam MLC. Spring 2010 Edition". available at http://www.actexmadriver.com/

Recall that:
Theorem 1
Assuming a uniform distribution of deaths, we have that:
(i) $\bar{A}_{x}=\frac{i}{\delta} A_{x}$.
(ii) $\bar{A}_{x: \bar{n} \mid}^{1}=\frac{i}{\delta} A_{x: \bar{n} \mid}^{1}$.
(iii) ${ }_{n}\left|\bar{A}_{x}=\frac{i}{\delta} \cdot{ }_{n}\right| A_{x}$.
(iv) $\bar{A}_{x: \bar{n} \mid}=\frac{i}{\delta} A_{x: \bar{n} \mid}^{1}+A_{x: \bar{n} \mid}$.

Theorem 2
Assuming a uniform distribution of deaths, we have that:
(i) $A_{x}^{(m)}=\frac{i}{i(m)} A_{x}$.
(ii) ${ }_{x: \bar{n} \mid}^{(m)}=\frac{i}{i(m)} A_{x: \bar{n} \mid}^{1}$.
(iii) ${ }_{n}\left|A_{x}^{(m)}=\frac{i}{i(m)} \cdot{ }_{n}\right| A_{x}$.
(iv) $A_{x: \bar{n} \mid}^{(m)}=\frac{i}{i(m)} A_{x: \bar{n} \mid}^{1}+A_{x: \bar{n} \mid}$.

Whole life annuities

Recall that:

$$
\begin{aligned}
& \ddot{a}_{x}=\frac{1-A_{x}}{d}, \\
& a_{x}=\frac{v-A_{x}}{d} \\
& \bar{a}_{x}=\frac{1-\bar{A}_{x}}{\delta} \\
& \ddot{a}_{x}^{(m)}=\frac{1-A_{x}^{(m)}}{d^{(m)}}, \\
& a_{x}^{(m)}=\frac{v^{1 / m}-A_{x}^{(m)}}{d^{(m)}} .
\end{aligned}
$$

Theorem 3
Under a uniform distribution of deaths within each year,

$$
\begin{aligned}
& \ddot{a}_{x}^{(m)}=\frac{1-\frac{i}{i^{(m)}} A_{x}}{d^{(m)}}=\frac{i d}{i^{(m)} d^{(m)}} \ddot{a}_{x}+\frac{i^{(m)}-i}{i^{(m)} d^{(m)}}, \\
& a_{x}^{(m)}=\frac{v^{1 / m}-\frac{i}{i^{(m)}} A_{x}}{d^{(m)}}=\frac{i d}{i^{(m)} d^{(m)}} a_{x}+\frac{d^{(m)}-d}{i^{(m)} d^{(m)}}, \\
& \bar{a}_{x}=\frac{1-\frac{i}{\delta} A_{x}}{\delta}=\frac{i d}{\delta^{2}} \ddot{a}_{x}+\frac{\delta-i}{\delta^{2}} .
\end{aligned}
$$

Theorem 3
Under a uniform distribution of deaths within each year,

$$
\begin{aligned}
& \ddot{a}_{x}^{(m)}=\frac{1-\frac{i}{i^{(m)}} A_{x}}{d^{(m)}}=\frac{i d}{i^{(m)} d^{(m)}} \ddot{a}_{x}+\frac{i^{(m)}-i}{i^{(m)} d^{(m)}} \\
& a_{x}^{(m)}=\frac{v^{1 / m}-\frac{i}{i^{(m)}} A_{x}}{d^{(m)}}=\frac{i d}{i^{(m)} d^{(m)}} a_{x}+\frac{d^{(m)}-d}{i^{(m)} d^{(m)}} \\
& \bar{a}_{x}=\frac{1-\frac{i}{\delta} A_{x}}{\delta}=\frac{i d}{\delta^{2}} \ddot{a}_{x}+\frac{\delta-i}{\delta^{2}} .
\end{aligned}
$$

Proof: Using that $\ddot{a}_{x}^{(m)}=\frac{1-A_{x}^{(m)}}{d^{(m)}}, A_{x}^{(m)}=\frac{i}{i^{(m)}} A_{x}$ and $\ddot{a}_{x}=\frac{1-A_{x}}{d}$, we get that

$$
\begin{aligned}
& \ddot{a}_{x}^{(m)}=\frac{1-A_{x}^{(m)}}{d^{(m)}}=\frac{1-\frac{i}{i^{(m)}} A_{x}}{d^{(m)}}=\frac{1-\frac{i}{i^{(m)}}\left(1-d \ddot{a}_{x}\right)}{d^{(m)}} \\
= & \frac{d i}{d^{(m)} i^{(m)}} \ddot{a}_{x}+\frac{1-\frac{i}{i^{(m)}}}{d^{(m)}}=\frac{i d}{i^{(m)} d^{(m)}} \ddot{a}_{x}+\frac{i^{(m)}-i}{i^{(m)} d^{(m)}} .
\end{aligned}
$$

Theorem 3
Under a uniform distribution of deaths within each year,

$$
\begin{aligned}
& \ddot{a}_{x}^{(m)}=\frac{1-\frac{i}{i^{(m)}} A_{x}}{d^{(m)}}=\frac{i d}{i^{(m)} d^{(m)}} \ddot{a}_{x}+\frac{i^{(m)}-i}{i^{(m)} d^{(m)}}, \\
& a_{x}^{(m)}=\frac{v^{1 / m}-\frac{i}{i^{(m)}} A_{x}}{d^{(m)}}=\frac{i d}{i^{(m)} d^{(m)}} a_{x}+\frac{d^{(m)}-d}{i^{(m)} d^{(m)}}, \\
& \bar{a}_{x}=\frac{1-\frac{i}{\delta} A_{x}}{\delta}=\frac{i d}{\delta^{2}} \ddot{a}_{x}+\frac{\delta-i}{\delta^{2}} .
\end{aligned}
$$

Proof: Using that $a_{x}^{(m)}=\frac{v^{1 / m}-A_{x}^{(m)}}{d^{(m)}}, A_{x}^{(m)}=\frac{i}{i^{(m)}} A_{x}$ and $a_{x}=\frac{v-A_{x}}{d}$, we get that

$$
\begin{aligned}
& a_{x}^{(m)}=\frac{v^{1 / m}-A_{x}^{(m)}}{d^{(m)}}=\frac{v^{1 / m}-\frac{i}{i^{(m)}} A_{x}}{d^{(m)}} \\
= & \frac{v^{1 / m}-\frac{i}{i^{(m)}}\left(v-d a_{x}\right)}{d^{(m)}}=\frac{d^{\frac{i}{i(m)}}}{d^{(m)}} a_{x}+\frac{v^{1 / m}+v \frac{i}{i^{(m)}}}{d^{(m)}} .
\end{aligned}
$$

Theorem 3
Under a uniform distribution of deaths within each year,

$$
\begin{aligned}
& \ddot{a}_{x}^{(m)}=\frac{1-\frac{i}{i^{(m)}} A_{x}}{d^{(m)}}=\frac{i d}{i^{(m)} d^{(m)}} \ddot{a}_{x}+\frac{i^{(m)}-i}{i^{(m)} d^{(m)}} \\
& a_{x}^{(m)}=\frac{v^{1 / m}-\frac{i}{i^{(m)}} A_{x}}{d^{(m)}}=\frac{i d}{i^{(m)} d^{(m)}} a_{x}+\frac{d^{(m)}-d}{i^{(m)} d^{(m)}} \\
& \bar{a}_{x}=\frac{1-\frac{i}{\delta} A_{x}}{\delta}=\frac{i d}{\delta^{2}} \ddot{a}_{x}+\frac{\delta-i}{\delta^{2}} .
\end{aligned}
$$

Proof: We have that

$$
\frac{v^{1 / m}+v \frac{i}{i^{(m)}}}{d^{(m)}}=\frac{v^{1 / m_{i}}(m)-v i}{i^{(m)} d^{(m)}}=\frac{d^{(m)}-d}{i^{(m)} d^{(m)}}
$$

So,

$$
a_{x}^{(m)}=\frac{i d}{i^{(m)} d^{(m)}} a_{x}+\frac{d^{(m)}-d}{i^{(m)} d^{(m)}} .
$$

Theorem 3
Under a uniform distribution of deaths within each year,

$$
\begin{aligned}
& \ddot{a}_{x}^{(m)}=\frac{1-\frac{i}{i^{(m)}} A_{x}}{d^{(m)}}=\frac{i d}{i^{(m)} d^{(m)}} \ddot{a}_{x}+\frac{i^{(m)}-i}{i^{(m)} d^{(m)}}, \\
& a_{x}^{(m)}=\frac{v^{1 / m}-\frac{i}{i^{(m)}} A_{x}}{d^{(m)}}=\frac{i d}{i^{(m)} d^{(m)}} a_{x}+\frac{d^{(m)}-d}{i^{(m)} d^{(m)}}, \\
& \bar{a}_{x}=\frac{1-\frac{i}{\delta} A_{x}}{\delta}=\frac{i d}{\delta^{2}} \ddot{a}_{x}+\frac{\delta-i}{\delta^{2}} .
\end{aligned}
$$

Proof: We know that $\bar{a}_{x}=\frac{1-\bar{A}_{x}}{\delta}, \bar{A}_{x}=\frac{i}{\delta} A_{x}$ and $\ddot{a}_{x}=\frac{1-A_{x}}{d}$. Hence,

$$
\bar{a}_{x}=\frac{1-\bar{A}_{x}}{\delta}=\frac{1-\frac{i}{\delta} A_{x}}{\delta}=\frac{1-\frac{i}{\delta}\left(1-d \ddot{a}_{x}\right)}{\delta}=\frac{i d}{\delta^{2}} \ddot{a}_{x}+\frac{\delta-i}{\delta^{2}} .
$$

Example 1

Consider the life table

x	80	81	82	83	84	85	86
ℓ_{x}	250	217	161	107	62	28	0

Suppose that $i=6.5 \%$.
(i) Calculate $\ddot{a ̈}_{80}^{(12)}, a_{80}^{(12)}$ and \bar{a}_{80} using that $A_{80}=0.8161901166$.
(ii) Calculate $\ddot{a}_{80}^{(12)}, a_{80}^{(12)}$ and \bar{a}_{80} using that $\ddot{a}_{80}=3.011654244$.

Solution: (i) We have that $i=6.5 \%$, $d=\frac{0.065}{1+0.065}=6.103286385 \%$, $i^{(12)}=12\left((1+0.065)^{\frac{1}{12}}-1\right)=6.314033132 \%$, $d^{(12)}=12\left(1-(1+0.065)^{-\frac{1}{12}}\right)=6.280984512 \%$. So,

$$
\dddot{a}_{80}^{(12)}=(50000) \frac{1-\frac{i}{i(12)} A_{x}}{d^{(12)}}=\frac{1-\frac{0.065}{0.06314033132}(0.8161901166)}{0.06280984512}
$$

$=2.543720348$,

$$
a_{80}^{(12)}=\ddot{a}_{80}^{(12)}-1=2.543720348-1=1.543720348,
$$

$$
\bar{a}_{80}=\frac{1-\frac{i}{\delta} A_{x}}{\delta}=\frac{1-\frac{0.065}{\ln (1.065)} 0.8161901166}{\ln (1.065)}=2.501986537 .
$$

Solution: (ii)

$$
\begin{aligned}
& \ddot{a}_{80}^{(12)}=\frac{i d}{i^{(12)} d^{(12)}} \ddot{a}_{x}+\frac{i^{(12)}-i}{i^{(12) d} d^{(12)}} \\
= & \frac{(0.065)(0.06103286385)}{(0.06314033132)(0.06280984512)}(3.011654244) \\
& +\frac{0.06314033132-0.065}{(0.06314033132)(0.06280984512)} \\
= & 2.543720349, \\
& a_{80}^{(12)}=\ddot{a}_{80}^{(12)}-1=2.543720349-1=1.543720349, \\
& \bar{a}_{80}=\frac{i d}{\delta^{2}} \ddot{a}_{x}+\frac{\delta-i}{\delta^{2}}=\frac{(0.065)(0.06103286385)}{(\ln (1.065))^{2}}(3.011654244) \\
& +\frac{\ln (1.065)-(0.065)}{(\ln (1.065))^{2}} \\
= & 2.501986538 .
\end{aligned}
$$

Deferred annuities

Recall that:

$$
\begin{aligned}
& { }_{n} \left\lvert\, \ddot{a}_{x}={ }_{n} E_{x} \ddot{a}_{x+n}=\frac{{ }_{n} E_{x}-{ }_{n} \mid A_{x}}{d}\right., \\
& { }_{n} \left\lvert\, \bar{a}_{x}={ }_{n} E_{x} \bar{a}_{x+n}=\frac{{ }_{n} E_{x}-{ }_{n} \mid A_{x}}{d}\right., \\
& { }_{n} \left\lvert\, \ddot{a}_{x}^{(m)}={ }_{n} E_{x} \ddot{a}_{x+n}^{(m)}=\frac{{ }_{n} E_{x}-{ }_{n} \mid A_{x}^{(m)}}{d^{(m)}}\right., \\
& { }_{n}\left|a_{x}^{(m)}={ }_{n}\right| \ddot{a}_{x}^{(m)}-\frac{1}{m}{ }_{n} E_{x},
\end{aligned}
$$

Theorem 4

Under a uniform distribution of deaths within each year,

$$
\begin{aligned}
& { }_{n}\left|\ddot{a}_{x}^{(m)}=\frac{\left.{ }_{n} E_{x}-\frac{i}{i^{(m)}} \cdot{ }_{n} \right\rvert\, A_{x}}{d^{(m)}}=\frac{i d}{i^{(m)} d^{(m)}} \cdot{ }_{n}\right| \ddot{a}_{x}+\frac{i^{(m)}-i}{i^{(m)} d^{(m)}} \cdot{ }_{n} E_{x}, \\
& \left.{ }_{n}\left|a_{x}^{(m)}={ }_{n}\right| \ddot{a}_{x}^{(m)}-\frac{1}{m}{ }_{n} E_{x}=\frac{i d}{i^{(m)} d^{(m)}} \cdot{ }_{n} \right\rvert\, a_{x}+\frac{d^{(m)}-d}{i^{(m)} d^{(m)}} \cdot{ }_{n} E_{x}, \\
& { }_{n}\left|\bar{a}_{x}=\frac{\left.{ }_{n} E_{x}-\frac{i}{\delta} \cdot{ }_{n} \right\rvert\, A_{x}}{\delta}=\frac{i d}{\delta^{2}} \cdot{ }_{n}\right| \ddot{a}_{x}+\frac{\delta-i}{\delta^{2}}{ }_{n} E_{x} .
\end{aligned}
$$

Proof: For the deferred life annuity due, using that
${ }_{n}\left|\ddot{a}_{x}^{(m)}={ }_{n} E_{x} \ddot{a}_{x+n}^{(m)}, \ddot{a}_{x+n}^{(m)}=\frac{1-A_{x}^{(m)}}{d^{(m)}}, A_{x}^{(m)}=\frac{i}{i^{(m)}} A_{x},{ }_{n} E_{x} A_{x+n}={ }_{n}\right| A_{x}$ and ${ }_{n} \left\lvert\, \ddot{a}_{x}=\frac{{ }_{n} E_{x}-n \mid A_{x}}{d}\right.$, we get that

$$
\begin{aligned}
& { }_{n} \left\lvert\, \ddot{a}_{x}^{(m)}={ }_{n} E_{x} \ddot{a}_{x+n}^{(m)}={ }_{n} E_{x} \frac{1-A_{x+n}^{(m)}}{d^{(m)}}={ }_{n} E_{x} \frac{1-\frac{i}{i^{(m)}} A_{x+n}}{d^{(m)}}\right. \\
= & \frac{\left.{ }_{n} E_{X}-\frac{i}{i^{(m)}} \cdot{ }_{n} \right\rvert\, A_{x}}{d^{(m)}}=\frac{{ }_{n} E_{x}-\frac{i}{i^{(m)}} \cdot\left({ }_{n} E_{x}-d \cdot{ }_{n} \mid \ddot{a}_{x}\right)}{d^{(m)}} \\
= & \frac{i d}{{ }_{i(m)}^{(m)} d^{(m)}} \cdot{ }_{n} \left\lvert\, \ddot{a}_{x}+\frac{i^{(m)}-i}{i^{(m)} d^{(m)}} \cdot{ }_{n} E_{x} .\right.
\end{aligned}
$$

Proof: For a deferred life annuity immediate, using that
${ }_{n}\left|a_{x}^{(m)}={ }_{n}\right| \ddot{a}_{x}^{(m)}-\frac{1}{m} n E_{x},{ }_{n} \mid \ddot{a}_{x}^{(m)}={ }_{n} E_{x} \ddot{a}_{x+n}^{(m)}, \ddot{a}_{x}^{(m)}=\frac{1-A_{x}^{(m)}}{d^{(m)}}$,
$A_{x}^{(m)}=\frac{i}{i(m)} A_{x}$, we get that

$$
\begin{aligned}
& { }_{n}\left|a_{x}^{(m)}={ }_{n}\right| \ddot{a}_{x}^{(m)}-\frac{1}{m}{ }_{n} E_{X}={ }_{n} E_{x} \ddot{a}_{x+n}^{(m)}-\frac{1}{m}{ }_{n} E_{X}={ }_{n} E_{x} \frac{1-A_{x+n}^{(m)}}{d^{(m)}}-\frac{1}{m}{ }_{n} E_{X} \\
= & { }_{n} E_{x} \frac{1-\frac{i}{i(m)} A_{x+n}}{d^{(m)}}-\frac{1}{m}{ }_{n} E_{x}=\frac{{ }_{n} E_{X}\left(1-\frac{d^{(m)}}{m}\right)-{ }_{n} E_{x} \frac{i}{i(m)} A_{x+n}}{d^{(m)}} \\
= & \frac{\left.v^{1 / m} \cdot{ }_{n} E_{x}-\frac{i}{i(m)} \cdot{ }_{n} \right\rvert\, A_{x}}{d^{(m)}}
\end{aligned}
$$

and

$$
\begin{aligned}
& { }_{n} \left\lvert\, a_{x}^{(m)}={ }_{n} E_{x} a_{x+n}^{(m)}={ }_{n} E_{x}\left(\frac{i d}{i(m) d^{(m)}} a_{x}+\frac{d^{(m)}-d}{i^{(m)} d^{(m)}}\right)\right. \\
= & \frac{i d}{i^{(m)} d^{(m)}} \cdot{ }_{n} \left\lvert\, a_{x}+\frac{d^{(m)}-d}{i^{(m)} d^{(m)}} \cdot{ }_{n} E_{x}\right.
\end{aligned}
$$

Proof: For a deferred continuous life annuity, using that ${ }_{n}\left|\bar{a}_{x}={ }_{n} E_{x} \bar{a}_{x+n}, \bar{a}_{x}=\frac{1-\bar{A}_{x}}{\delta} \bar{A}_{x: \bar{n} \mid}^{1}=\frac{i}{\delta} A_{x: \bar{n} \mid}^{1},{ }_{n} E_{x} A_{x+n}={ }_{n}\right| A_{x}$ and ${ }_{n} \left\lvert\, \ddot{a}_{x}=\frac{{ }_{n} E_{x}-{ }_{n} \mid A_{x}}{d}\right.$, we get that

$$
\begin{aligned}
& { }_{n} \left\lvert\, \bar{a}_{x}={ }_{n} E_{x} \bar{a}_{x+n}={ }_{n} E_{x} \frac{1-\bar{A}_{x+n}}{\delta}={ }_{n} E_{x} \frac{1-\frac{i}{\delta} A_{x+n}}{\delta}=\frac{\left.{ }_{n} E_{x}-\frac{i}{\delta} \cdot{ }_{n} \right\rvert\, A_{x}}{\delta}\right. \\
= & \left.\frac{{ }_{n} E_{x}-\frac{i}{\delta} \cdot\left({ }_{n} E_{x}-d \cdot{ }_{n} \mid \ddot{a}_{x}\right)}{\delta}=\frac{i d}{\delta^{2}} \cdot{ }_{n} \right\rvert\, \ddot{a}_{x}+\frac{\delta-i}{\delta^{2}} \cdot{ }_{n} E_{x} .
\end{aligned}
$$

Temporary annuities

Recall that

$$
\begin{aligned}
& \ddot{a}_{x: \bar{n} \mid}=\frac{1-A_{x: \bar{n} \mid}}{d}, \\
& \bar{a}_{x: \bar{n} \mid}=\frac{1-\bar{A}_{x: \bar{n} \mid}}{\delta}, \\
& \ddot{a_{x: \bar{n} \mid}^{(m)}}=\frac{1-A_{x: \bar{n} \mid}^{(m)}}{d^{(m)}}, \\
& a_{x: \bar{n} \mid}^{(m)}=\ddot{a}_{x: \bar{n} \mid}^{(m)}-\frac{1}{m}+\frac{1}{m}{ }_{n} E_{x},
\end{aligned}
$$

Theorem 5

Under a uniform distribution of deaths within each year,

$$
\begin{aligned}
& \ddot{a}_{x: \bar{n} \mid}^{(m)}=\frac{1-{ }_{n} E_{x}-\frac{i}{i(m)} A_{x: \bar{n} \mid}^{1}=\frac{i d}{d^{(m)}} \ddot{i d}^{(m)} d^{(m)}}{a_{x: \bar{n} \mid}+\frac{i^{(m)}-i}{i^{(m)} d^{(m)}}\left(1-{ }_{n} E_{x}\right),} \\
& a_{x: \bar{n} \mid}^{(m)}=\frac{i d}{i^{(m)} d^{(m)}} a_{x: \bar{n} \mid}+\frac{d^{(m)}-d}{i^{(m)} d^{(m)}}\left(1-{ }_{n} E_{x}\right), \\
& \bar{a}_{x: \bar{n} \mid}=\frac{1-{ }_{n} E_{x}-\frac{i}{\delta} A_{x: \bar{n} \mid}^{1}=\frac{i d}{\delta^{2}} \ddot{a}_{x: \bar{n} \mid}+\frac{\delta-i}{\delta^{2}}\left(1-{ }_{n} E_{x}\right) .}{} .
\end{aligned}
$$

Proof: For a n-year term life annuity due, using that $\ddot{a}_{x: \bar{n} \mid}^{(m)}=\frac{1-A_{x: \bar{n} \mid}^{(m)}}{d^{(m)}}, A_{x: \bar{n} \mid}=A_{x: \bar{n} \mid}^{1}+{ }_{n} E_{x}, A_{x}^{(m)}=\frac{i}{i^{(m)}} A_{x}, \ddot{a}_{x: \bar{n} \mid}=\frac{1-A_{x: \bar{n} \mid}}{d}$, we get that

$$
\begin{aligned}
& \ddot{a}_{x: \bar{n} \mid}^{(m)}=\frac{1-A_{x: \bar{n} \mid}^{(m)}}{d^{(m)}}=\frac{1-A_{x: \bar{n} \mid}^{1}(m)}{d^{(m)}}{ }_{n} E_{x} \\
= & \frac{1-{ }_{n} E_{x}-\frac{i}{i^{(m)}}\left(1-d \ddot{a}_{x: \bar{n} \mid}-{ }_{n} E_{x}\right)}{d_{x}-\frac{i}{i^{(m)}} A_{x: \bar{n} \mid}^{1}} d^{(m)} \\
= & \frac{i d}{i^{(m)} d(m)} \ddot{a}_{x: \bar{n} \mid}+\frac{i^{(m)}-i}{i^{(m)} d^{(m)}}\left(1-{ }_{n} E_{x}\right)
\end{aligned}
$$

Proof: For a n-year term life annuity immediate, using that

$$
\begin{aligned}
& a_{x: \bar{n} \mid}^{(m)}=\ddot{a}_{x: \bar{n} \mid}^{(m)}-\frac{1}{m}+\frac{1}{m}{ }^{n} E_{x}, \ddot{a}_{x: \bar{n} \mid}^{(m)}=\frac{1-A_{x \cdot \bar{n} \mid}^{(m)}, A_{x: \bar{n} \mid}=A_{x: \bar{n} \mid}^{1}+{ }_{n} E_{x},}{d_{x}^{(m)}}=\frac{i}{i(m)} A_{x}, \ddot{a}_{x: \bar{n} \mid}=\frac{1-A_{x: \bar{n} \mid}}{d}, \text { we get that }
\end{aligned}
$$

$$
a_{x: \bar{n} \mid}^{(m)}=\ddot{a}_{x: \bar{n} \mid}^{(m)}-\frac{1}{m}+\frac{1}{m}{ }^{n} E_{x}
$$

$$
=\frac{i d}{i(m) d^{(m)}} \ddot{a}_{x: \bar{n} \mid}+\frac{i^{(m)}-i}{i^{(m)} d^{(m)}}\left(1-{ }_{n} E_{x}\right)-\frac{1}{m}+\frac{1}{m}{ }_{n} E_{x}
$$

$$
=\frac{i d}{i^{(m)} d^{(m)}}\left(1+a_{X: \bar{n} \mid}-{ }_{n} E_{X}\right)+\frac{i^{(m)}-i}{i(m) d^{(m)}}\left(1-{ }_{n} E_{X}\right)-\frac{1}{m}\left(1-{ }_{n} E_{X}\right)
$$

$$
=\frac{i d}{i^{(m)} d^{(m)}} a_{x: \bar{n} \mid}+\left(1-{ }_{n} E_{x}\right)\left(\frac{i d}{i^{(m)} d^{(m)}}+\frac{i^{(m)}-i}{i^{(m)} d^{(m)}}-\frac{1}{m}\right) .
$$

Proof: We have that

$$
\begin{aligned}
& \frac{i d}{i^{(m)} d^{(m)}}+\frac{i^{(m)}-i}{i^{(m)} d^{(m)}}-\frac{1}{m}=\frac{i d+i^{(m)}-i+\frac{i^{(m)} d^{(m)}}{m}}{i^{(m)} d^{(m)}} \\
= & \frac{i^{(m)}\left(1-\frac{d^{(m)}}{m}\right)-i(1-d)}{i^{(m)} d^{(m)}} \\
= & \frac{i^{(m)} v^{1 / m}-i v}{i^{(m)} d^{(m)}}=\frac{d^{(m)}-d}{i^{(m)} d^{(m)}} .
\end{aligned}
$$

Hence,

$$
a_{x: \bar{n} \mid}^{(m)}=\frac{i d}{i^{(m)} d(m)} a_{x: \bar{n} \mid}+\frac{d^{(m)}-d}{i^{(m)} d(m)}\left(1-{ }_{n} E_{x}\right) .
$$

For a n-year term life continuous annuity, using that
$\bar{a}_{x: \bar{n} \mid}=\frac{1-\bar{A}_{x: \bar{n} \mid}}{\delta}, \bar{A}_{x: \bar{n} \mid}=\bar{A}_{x: \bar{n} \mid}^{1}+{ }_{n} E_{x}, \bar{A}_{x: \bar{n} \mid}^{1}=\frac{i}{\delta} A_{x: \bar{n} \mid}^{1}, \ddot{a}_{x: \overline{\bar{n}} \mid}=\frac{1-A_{x: \bar{n} \mid}}{d}$, we get that

$$
\begin{aligned}
& \bar{a}_{x: \overline{\bar{n}} \mid}=\frac{1-\bar{A}_{x: \bar{n} \mid}}{\delta}=\frac{1-\bar{A}_{x: \bar{n} \mid}^{1}-{ }_{n} E_{x}}{\delta}=\frac{1-{ }_{n} E_{x}-\frac{i}{\delta} A_{x: \bar{n} \mid}^{1}}{\delta} \\
= & \frac{1-{ }_{n} E_{x}-\frac{i}{\delta}\left(1-d \ddot{a}_{x: \bar{n} \mid}-{ }_{n} E_{x}\right)}{d^{(m)}}=\frac{i d}{\delta^{2}} \ddot{a}_{x: \bar{n} \mid}+\frac{\delta-i}{\delta^{2}}\left(1-{ }_{n} E_{x}\right) .
\end{aligned}
$$

Linear interpolation of the actuarial discount factor.

Another way to interpolate is to assume that actuarial discount factor is linear. If we assume ${ }_{k+\frac{j}{m}} E_{X}=v^{k+\frac{j}{m}} ._{k+\frac{j}{m}} p_{X}$ is linear in j, then

$$
{ }_{k+\frac{j}{m}} E_{X}={ }_{k} E_{X}-\frac{j}{m}\left(k+1 E_{X}-{ }_{k} E_{X}\right), j=0,1, \ldots, m-1 .
$$

The actuarial discount factor appears in annuities computations.
We have that

$$
\ddot{a}_{x}^{(m)}=\frac{1}{m} \sum_{k=0}^{\infty} v^{\frac{k}{m}} \cdot \frac{k}{m} p_{x}=\frac{1}{m} \sum_{k=0}^{\infty} \sum_{j=0}^{m-1} v^{k+\frac{j}{m}}{ }_{k+\frac{j}{m}} p_{x}=\frac{1}{m} \sum_{k=0}^{\infty} \sum_{j=0}^{m-1}{ }_{k+\frac{j}{m}} E_{x} .
$$

Theorem 6

Assuming that ${ }_{k+\frac{j}{m}} E_{X}$ is linear in j, then

$$
\begin{aligned}
& \ddot{a}_{x}^{(m)}=\ddot{a}_{x}-\frac{m-1}{2 m}, \\
& \ddot{a}_{x: \bar{n} \mid}^{(m)}=\ddot{a}_{x: \bar{n} \mid}-\frac{m-1}{2 m}\left(1-{ }_{n} E_{x}\right), \\
& { }_{n}\left|\ddot{a}_{x}^{(m)}={ }_{n}\right| \ddot{a}_{x}-\frac{m-1}{2 m} \cdot{ }_{n} E_{x} .
\end{aligned}
$$

Proof: Using that $\sum_{j=0}^{m-1} j=\frac{(m-1) m}{2}$, we have that

$$
\begin{aligned}
& \ddot{a}_{x}^{(m)}=\frac{1}{m} \sum_{k=0}^{\infty} \sum_{j=0}^{m-1}{ }_{k+\frac{j}{m}} E_{X}=\frac{1}{m} \sum_{k=0}^{\infty} \sum_{j=0}^{m-1}\left({ }_{k} E_{X}-\frac{j}{m}\left(k+1 E_{X}-{ }_{k} E_{X}\right)\right) \\
= & \frac{1}{m} \sum_{k=0}^{\infty}\left({ }_{k} E_{X}-\frac{m-1}{2}\left(k+1 E_{X}-{ }_{k} E_{X}\right)\right) \\
= & \frac{m+1}{2 m} \sum_{k=0}^{\infty}{ }_{k} E_{X}+\frac{m-1}{2 m} \sum_{k=0}^{\infty} k+1 E_{X} \\
= & \frac{m+1}{2 m} \sum_{k=0}^{\infty}{ }_{k} E_{X}+\frac{m-1}{2 m} \sum_{k=1}^{\infty}{ }_{k} E_{X} \\
= & \frac{m+1}{2 m} \sum_{k=0}^{\infty} k E_{X}+\frac{m-1}{2 m} \sum_{k=0}^{\infty}{ }_{k} E_{X}-\frac{m-1}{2 m}=\ddot{a}_{X}-\frac{m-1}{2 m} .
\end{aligned}
$$

We have that

$$
\begin{aligned}
& \ddot{a}_{x: \bar{n} \mid}^{(m)}=\frac{1}{m} \sum_{k=0}^{n-1} \sum_{j=0}^{m-1}{ }_{k+\frac{j}{m}} E_{X}=\frac{1}{m} \sum_{k=0}^{n-1} \sum_{j=0}^{m-1}\left(v^{k} \cdot{ }_{k} E_{X}-\frac{j}{m}\left({ }_{k+1} E_{X}-{ }_{k} E_{X}\right)\right) \\
= & \frac{1}{m} \sum_{k=0}^{n-1}\left(v^{k} \cdot{ }_{k} E_{X}-\frac{m-1}{2}\left({ }_{k+1} E_{X}-{ }_{k} E_{X}\right)\right) \\
= & \frac{m+1}{2 m} \sum_{k=0}^{n-1}{ }_{k} E_{x}+\frac{m-1}{2 m} \sum_{k=0}^{n-1}{ }_{k+1} E_{X} \\
= & \frac{m+1}{2 m} \sum_{k=0}^{n-1}{ }_{k} E_{X}+\frac{m-1}{2 m} \sum_{k=1}^{n}{ }_{k} E_{x}=\frac{m+1}{2 m} \sum_{k=0}^{n-1}{ }_{k} E_{X} \\
& +\frac{m-1}{2 m} \sum_{k=0}^{n-1}{ }_{k} E_{X}-\frac{m-1}{2 m}+\frac{m-1}{2 m}{ }_{n} E_{X} \\
= & \ddot{a}_{X: \bar{n}}-\frac{m-1}{2 m}\left(1-{ }_{n} E_{X}\right) .
\end{aligned}
$$

Using that $\ddot{a}_{x}^{(m)}=\ddot{a}_{x: \bar{n} \mid}^{(m)}+{ }_{n} \mid \ddot{a}_{x}^{(m)}$ and $\ddot{a}_{x}=\ddot{a}_{x: \bar{n} \mid}+{ }_{n} \mid \ddot{a}_{x}$, we can get the last formula.

Example 2

Consider the life table

x	80	81	82	83	84	85	86
ℓ_{x}	250	217	161	107	62	28	0

Suppose that $i=6.5 \%$. Calculate $\ddot{a}_{80}^{(12)}$ assuming that the actuarial discount factor is linear.

Example 2

Consider the life table

x	80	81	82	83	84	85	86
ℓ_{x}	250	217	161	107	62	28	0

Suppose that $i=6.5 \%$. Calculate $\ddot{a}_{80}^{(12)}$ assuming that the actuarial discount factor is linear.

Solution: Using that ${ }_{80}=3.011654244$, we get that

$$
\ddot{a}_{80}^{(12)}=3.011654244-\frac{12-1}{(2)(12)}=2.553320911 .
$$

In the continuous case, we assume ${ }_{k+t} E_{X}=v^{k+t} \cdot{ }_{k+t} p_{x}$ is linear in $t, 0 \leq t \leq 1$. In this case

$$
{ }_{k+t} E_{x}={ }_{k} E_{x}-t\left({ }_{k+1} E_{x}-{ }_{k} E_{x}\right), 0 \leq t \leq 1
$$

Letting $m \rightarrow \infty$ in the previous theorem, we get that:
Theorem 7
Assuming that ${ }_{k+t} E_{x}$ is linear in $t, 0 \leq t \leq 1$,

$$
\begin{aligned}
& \bar{a}_{x}=\ddot{a}_{x}-\frac{1}{2}, \\
& \bar{a}_{x: \bar{n} \mid}=\ddot{a}_{x: \bar{n} \mid}-\frac{1}{2}\left(1-{ }_{n} E_{x}\right), \\
& { }_{n}\left|\bar{a}_{x}={ }_{n}\right| \ddot{a}_{x}-\frac{1}{2} \cdot{ }_{n} E_{x} .
\end{aligned}
$$

