Manual for SOA Exam MLC.

Chapter 6. Benefit premiums. Section 6.9. Computing benefits premiums from a life table.

©2008. Miguel A. Arcones. All rights reserved.

Extract from: "Arcones' Manual for SOA Exam MLC. Fall 2010 Edition", available at http://www.actexmadriver.com/

Interpolation for life insurance APV's.

Theorem 1

Assuming a uniform distribution of deaths, we have that:

(i)
$$A_{x}^{(m)} = \frac{i}{i^{(m)}} A_{x}.$$

(ii) $A_{x:\overline{n}|}^{(m)} = \frac{i}{i^{(m)}} A_{x:\overline{n}|}^{1}.$
(iii) $_{n}|A_{x}^{(m)} = \frac{i}{i^{(m)}} \cdot _{n}|A_{x}.$
(iv) $A_{x:\overline{n}|}^{(m)} = \frac{i}{i^{(m)}} A_{x:\overline{n}|}^{1} + A_{x:\overline{n}|}^{1}.$

Theorem 2

Assuming a uniform distribution of deaths, we have that: (i) $\overline{A}_{x} = \frac{i}{\delta} A_{x}$. (ii) $\overline{A}_{x:\overline{n}|}^{1} = \frac{i}{\delta} A_{x:\overline{n}|}^{1}$. (iii) $_{n}|\overline{A}_{x} = \frac{i}{\delta} \cdot _{n}|A_{x}$. (iv) $\overline{A}_{x:\overline{n}|} = \frac{i}{\delta} A_{x:\overline{n}|}^{1} + A_{x:\overline{n}|}^{1}$.

Interpolation of APV's of life annuities

Recall that:

$$\ddot{a}_x = rac{1-A_x}{d}, \quad \ddot{a}_x^{(m)} = rac{1-A_x^{(m)}}{d^{(m)}}, \quad \overline{a}_x = rac{1-\overline{A}_x}{\delta},$$
 $\ddot{a}_{x:\overline{n}|} = rac{1-A_{x:\overline{n}|}}{d}, \quad \ddot{a}_{x:\overline{n}|}^{(m)} = rac{1-A_{x:\overline{n}|}}{d^{(m)}}, \quad \overline{a}_{x:\overline{n}|} = rac{1-\overline{A}_{x:\overline{n}|}}{\delta}.$

To find the interpolated values of life annuities, find the interpolated value of the corresponding life insurance, I am use the corresponding formula from above.

Interpolation of APV's of annual benefit premiums

The annual benefit premium *P* is $\frac{A}{\ddot{a}}$, where *A* and \ddot{a} can have many different forms. Use the corresponding formula from above to find *A* and \ddot{a} .

Example 1

Consider the life table

x	80	81	82	83	84	85	86
ℓ_x	250	217	161	107	62	28	0

Assume that i = 6.5% and uniform distribution of deaths over each year of death. Find $P_{80}^{(12)}$, using that $A_{80} = 0.8161901166$. Solution: We have that

$$\begin{aligned} A_{80}^{(12)} &= \frac{i}{i^{(12)}} A_{80} = \frac{0.065}{0.06314033132} (0.8161901166) = 0.8402293189, \\ \ddot{a}_{80}^{(12)} &= \frac{1 - A_{80}^{(12)}}{d^{(12)}} = \frac{1 - 0.8402293189}{0.06103286385} = 2.543720348, \\ P_{80}^{(12)} &= \frac{A_{80}}{\ddot{a}_{80}^{(12)}} = \frac{0.8161901166}{2.543720348} = 0.3208647198. \end{aligned}$$

Example 2

Consider the life table

ſ	x	80	81	82	83	84	85	86
	ℓ_x	250	217	161	107	62	28	0

Assume that i = 6.5% and uniform distribution of deaths over each year of death. Find $P(\overline{A}_{80})$ using that $A_{80} = 0.8161901166$. Solution: We have that

$$\overline{A}_{80} = \frac{i}{\delta} A_{80} = \frac{0.065}{\ln(1.065)} (0.8161901166) = 0.8424379003,$$

$$\overline{a}_{80} = \frac{1 - A_{80}}{d} = \frac{1 - 0.8161901166}{6.5/106.5} = 3.011654243,$$

$$P(\overline{A}_{80}) = \frac{\overline{A}_{80}}{\overline{a}_{80}} = \frac{0.8424379003}{3.011654243} = 0.2797259686.$$

Example 3

Consider the life table

	80						
ℓ_x	250	217	161	107	62	28	0

Assume that i = 6.5% and uniform distribution of deaths over each year of death. Find $\overline{P}(\overline{A}_{80})$, using that $A_{80} = 0.8161901166$.

Solution: We have that

$$\overline{A}_{80} = \frac{i}{\delta} A_{80} = \frac{0.065}{\ln(1.065)} (0.8161901166) = 0.8424379003,$$

$$\overline{P}(\overline{A}_{80}) = \frac{\delta \overline{A}_{80}}{1 - \overline{A}_{80}} = \frac{\ln(1.065)(0.8424379003)}{(1 - 0.8424379003)} = 0.3367076072.$$