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Abstract

Assuming that the data comes from a parametric family of d.f.’s, we build confidence
regions for the unknown parameter of a fixed volume based on the likelihood ratio test.
We study the asymptotics of the coverage probability of these regions in two different
situations.

1 Introduction.

We consider the estimation of a finite dimensional parameter. Suppose that a random sample

X1, . . . , Xn from a parametric family {f(x, θ) : θ ∈ Θ} of densities in Rd, is observed, where Θ

is a Borel set of Rd. We construct confidence regions for θ with volume bounded by a constant

such that the probability that the confidence region contains the unknown parameter is as

large as possible. Usually, confidence regions are constructed so that the coverage probability

is larger than a constant and letting the volume of the region as small as possible. Here, we

proceed in opposite way.

We use standard notation. | · | denotes the Euclidean norm in Rd. t′ denotes the transpose

of the vector t. X will denote a copy of X1.

The constructed regions are based in inverting the likelihood ratio test. Constructing con-

fidence regions inverting the likelihood ration test is a very well known elementary statistical

procedure (see for example Section 9.2 Casella and Berger, 2001; and Section 7.1 in Shao,
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2003). In Brown, Cai and DasGupta (2003), it is argued that the likelihood ratio confidence

regions are best overall for the exponential families.

Let

ân(ε) := sup{η > 0 : µ{θ ∈ Θ : sup
t∈Θ

(Gn(t)−Gn(θ)) < η} ≤ ε},

where µ is the Lebesgue measure in Rd and Gn(t) = n−1
∑n

j=1 log f(Xj, t). By the monotone

convergence theorem,

µ{θ ∈ Θ : sup
t∈Θ

(Gn(t)−Gn(θ)) < ân(ε)} ≤ ε, (1.1)

We take as a confidence region for θ,

Clrt(X1, . . . , Xn, ε) := {θ ∈ Θ : sup
t∈Θ

(Gn(t)−Gn(θ)) < ân(ε)}. (1.2)

This region has (Lebesgue measure) volume at most ε.

In this paper, we study the asymptotics of the coverage probability of the previous regions

in different situations. When the volume of the region is of the order n−d/2, the coverage

probability converges to a nonzero limit, i.e. for each ε > 0,

Pθ{θ ∈ Clrt(X1, . . . , Xn, εn
−d/2)} (1.3)

converges to a positive number, where Pθ denotes the pm when the underlying r.v.’s has

pdf f(·, θ). Sufficient conditions to this to happen are presented in Section 2. Since mle’s

are asymptotically efficient, it is expected that the limit of the regions obtained using the

asymptotic distribution of the mle have the most possible asymptotic coverage probability.

We obtain that the limit in (1.3) agrees with the limit when the clt of the mle is used to

construct the fixed volume confidence region.

In Section 3, we consider the limit of the coverage probabilities, when ε is a non–zero

constant. In this section, we prove that, under regularity conditions,

n−1 log(Pθ{θ ∈ Clrt(X1, . . . , Xn, ε)}) (1.4)

converges to a nonzero limit. For an regular exponential families, the limit in (1.4) agrees with

the limit when the LDP of the mle is used to construct the fixed volume confidence region.

2 Asymptotics of coverage probabilities of the CLT type.

In this section, we study the asymptotic of the coverage probabilities of the confidence regions

in (1.2) when the volume of the region converges to zero with the rate n−d/2.

Theorem 2.1. Let θ be in the interior of Θ. Suppose that the following conditions are satisfied:

(i) There exists a function φ(·, θ) : Rd → Rd such that Eθ[φ(X, θ)] = 0, Eθ[|φ(X, θ)|2] <∞
and for each t ∈ Rd,

nEθ[|rθ(X,n−1/2t)| ∧ |rθ(X,n−1/2t)|2] → 0,
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where

rθ(x, t) = log f(x, θ + t)− log f(x, θ)− t′φ(x, θ)

and Eθ indicates expectation when the underlying r.v. has pdf f(·, θ).
(ii) For each t ∈ Rd,

nEθ[log f(X, θ + n−1/2t)− log f(X, θ)] → −2−1t′v(θ)t,

where v(θ) = (vi,j(θ))1≤i,j≤θ, vi,j(θ) = Eθ [φi(X, θ)φj(X, θ)] and

φ(X, θ) = (φ1(X, θ), . . . , φd(X, θ)).

(iii) For each x ∈ Rd, log f(x, ·) is a strictly concave function.

(iv) Θ is a convex set.

Then,

Pθ{θ ∈ Clrt(X1, . . . , Xn, εn
−d/2)} → P{|Zd| ≤ ε1/dc

−1/d
d (J((v(θ))1/2))1/d},

as n→∞, where Zd is a standard Rd–valued normal r.v., cd is the volume of the unit ball of

Rd, and J(A) denotes the Jacobian of the matrix A.

Observe that when f(x, θ) is first differentiable with respect to θ, φ(x, θ) is the gradient

with respect to θ of log f(x, θ). The matrix v(θ) is known as the Fisher information matrix.

Hypotheses (i) in Theorem 2.1 hold under some minor smoothness and moment conditions

on the function log f(x, θ).

As it is well known, hypothesis (ii) in Theorem 2.1 holds if f(x, θ) is second differentiable

with respect to θ in Θ, and it is possible to take derivatives inside the integral and to integrate

by parts:

∂
∂θ(j)

Eθ[log f(X, θ)] = Eθ[
∂

∂θ(j)
log f(X, θ)] =

∫
Rd

∂
∂θ(j)

f(x, θ) dx = ∂
∂θ(j)

∫
Rd f(x, θ) dx = 0

and
∂2

∂θ(i)∂θ(j)
Eθ[log f(X, θ)] = Eθ[

∂2 log f(X,θ)

∂θ(i)∂θ(j)
] =

∫
Rd

∂2 log f(x,θ)

∂θ(i)∂θ(j)
f(x, θ) dx

= −
∫

Rd

∂ log f(x,θ)

∂θ(j)
∂f(x,θ)

∂θ(i)
dx = −

∫
Rd

∂ log f(x,θ)

∂θ(j)
∂ log f(x,θ)

∂θ(i)
f(x, θ) dx

= −Eθ[∂ log f(X,θ)

∂θ(i)
∂ log f(X,θ)

∂θ(j)
] = −vi,j(θ).

Instead of using the likelihood ratio test, we could the confidence regions based on the

asymptotics of an estimator. Let Tn = Tn(X1, . . . , Xn) be an estimator of θ. Suppose that

when θ obtains, (A(θ))1/2(Tn − θ) converges in distribution to a Rd–valued standard normal

r.v., where A(θ) is a d× d matrix. Let

b̂n(ε) := sup{λ > 0 : µ{θ ∈ Θ : |(A(Tn))
1/2(Tn − θ)| < λ} ≤ ε}.

Then,

µ{θ ∈ Θ : |(A(Tn))
1/2(Tn − θ)| < b̂n(ε)} ≤ ε.

We take as a confidence region for θ,

CTn,clt(X1, . . . , Xn, ε) := {θ ∈ Θ : |(A(Tn))
1/2(Tn − θ)| < b̂n(ε)}.
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This region has volume at most ε.

If Tn is in the interior of Θ and n is large enough, then b̂n(ε) = ε1/dc
−1/d
d (J((A(Tn))

1/2))1/d.

Notice that by the change of variables t = (A(Tn))
1/2(Tn − θ),∫

Rd I{θ ∈ Θ : |(A(Tn))
1/2(Tn − θ)| < ε1/dc

−1/d
d (J((A(Tn))

1/2))1/d} dθ
= (J((A(Tn))

1/2))−1
∫

Rd I{t ∈ Θ : |t| < ε1/dc
−1/d
d (J((A(Tn))

1/2))1/d} dt = ε

Theorem 2.2. Let θ be in the interior of Θ. Let Tn be an estimator of θ. Suppose that:

(i) A(θ) is a nondegenerate matrix.

(ii) When θ obtains, n1/2(Tn−θ) converges in distribution to a Rd-valued normal r.v. with

mean zero and covariance matrix (A(θ))−1.

(iii) A(t), t ∈ Θ, is continuous at θ.

Then, when θ obtains,

Pθ{θ ∈ CTn,clt(X1, . . . , Xn, εn
−d/2)} → P{|Zd| ≤ ε1/dc

−1/d
d (J((A(θ))1/2))1/d},

as n→∞, where Zd is a standard Rd-valued normal r.v.

Let θ̂n be a r.v. such that

n−1

n∑
j=1

log f(Xj, θ̂n) = sup
θ∈Θ

n−1

n∑
j=1

log f(Xj, θ). (2.1)

θ̂n is an mle of θ. Under regular conditions, the mle θ̂n satisfies the conditions in the previous

theorem with A(θ) = v(θ), where v(θ) is the Fisher information matrix (see e.g. Theorem

6.5.1 in Lehmann and Casella, 1998; or Theorem 7.12 in van der Vaart, 1998). Hence, we

obtain the limits of the coverage probabilities in theorems 2.1 and 2.2 agree when the mle is

used.

3 Asymptotics of coverage probabilities of the large de-

viations type.

Before presenting the results in this section, we recall some notation on the large deviation

principle (LPD) of empirical processes. General references on the large deviation principle

are Deuschel and Stroock (1989) and Dembo and Zeitouni (1998). We will use techniques

from the LDP of stochastic processes in Arcones (2003a, 2003b). Given an index set T , l∞(T )

denotes the set of bounded functions in T with the norm |z|∞ := supt∈T |z(t)|. We say that

a sequence of stochastic processes {Un(t) : t ∈ T} is said to follow the LDP in l∞(T ) with

speed ε−1
n , where {εn} is a sequence of positive numbers converging to zero, and with good

rate function I if:

(i) For each 0 ≤ c <∞, {z ∈ l∞(T ) : I(z) ≤ c} is a compact set of l∞(T ).
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(ii) For each set A ⊂ l∞(T ),

− inf{I(z) : z ∈ Ao} ≤ lim infn→∞ εn ln(Pr ∗{{Un(t) : t ∈ T} ∈ A})
≤ lim supn→∞ εn ln(Pr ∗{{Un(t) : t ∈ T} ∈ A}) ≤ − inf{I(z) : z ∈ Ā},

where Ao (resp. Ā) denotes the interior (resp. closure) of A in l∞(T ).

We determine the rate function of the LDP of empirical processes using Orlicz spaces

theory. A reference in Orlicz spaces is Rao and Ren (1991). A function Φ : R → R̄ is

said to be a Young function if it is convex, Φ(0) = 0; Φ(x) = Φ(−x) for each x > 0; and

limx→∞ Φ(x) = ∞. Let X be a r.v. with values in a measurable space (S,S). The Orlicz space

LΦ(S,S) (abbreviated to LΦ) associated with the Young function Φ is the class of measurable

functions f : (S,S) → R such that E[Φ(λf(X))] < ∞ for some λ > 0. The Minkowski (or

gauge) norm of the Orlicz space LΦ(S,S) by

NΦ(f) = inf{t > 0 : E[Φ(f(X)/t)] ≤ 1}.

It is well known that the vector space LΦ with the norm NΦ is a Banach space. Define

LΦ1 := {f : S → R : E[Φ1(λ|f(X)|)] <∞ for some λ > 0},

where Φ1(x) = e|x| − |x| − 1. Let (LΦ1)∗ be the dual of (LΦ1 , NΦ1). The function f ∈ LΦ1 7→
ln
(
E[ef(X)]

)
∈ R is a convex lower semicontinuous function. The Fenchel–Legendre conjugate

of the previous function is:

J(l) := sup
f∈LΦ1

(
l(f)− ln

(
E[ef(X)]

))
, l ∈ (LΦ1)∗. (3.1)

J is a function with values in [0,∞]. Since J is a Fenchel–Legendre conjugate, it is a nonneg-

ative convex lower semicontinuous function. If J(l) <∞, then:

(i) l(1) = 1, where 1 denotes the function constantly 1.

(ii) l is a nonnegative definite functional: if f(X) ≥ 0 a.s., then l(f) ≥ 0.

Since the double Fenchel–Legendre transform of a convex lower semicontinuous function

coincides with the original function (see e.g. Theorem 4.2.1 in Borwein and Lewis, 2000), we

have that

sup
l∈LΦ1

(l(f)− J(l)) = logE[ef(X)].

The previous function J can be used to determine the rate function in the large deviation

of statistics. Let {Xj}∞j=1 be a sequence of i.i.d.r.v.’s with the distribution of X. If f ∈ LΦ1 ,

then {n−1
∑n

j=1 f(Xj)} satisfies the LDP with rate function

If (t) := sup
λ∈R

(λt− log (E[exp(λf(X))])) , t ∈ R (3.2)

(see for example Theorem 2.2.3 in Dembo and Zeitouni, 1998). By Lemma 2.2 in Arcones

(2003b),

If (t) := inf
{
J(l) : l ∈ (LΦ1)∗, l(f) = t

}
. (3.3)
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It is well known that If (µf ) = 0, where µf = E[f(X)], If is convex, If is nondecreasing in

[µf ,∞) and I is nonincreasing in (−∞, µf ] (see e.g. Lemma 2.2.5 in Dembo and Zeitouni,

1998). In particular, if t ≥ µf ,

inf{J(l) : l ∈ (LΦ1)∗, l(f) ≥ t} = If (t) (3.4)

and for each t ≤ µf ,

inf{J(l) : l ∈ (LΦ1)∗, l(f) ≤ t} = If (t)

(see for example Corollary 2.2.19 in Dembo and Zeitouni, 1998).

Given functions f1, . . . , fm ∈ LΦ1 , then

{(n−1

n∑
j=1

f1(Xj), . . . , n
−1

n∑
j=1

fm(Xj))}

satisfies the LDP in Rm with speed n and rate function

I(u1, . . . , um) := sup
λ1,...,λm∈R

(
m∑
j=1

λjuj − logE[exp(
m∑
j=1

λjfj(X))]

)
(3.5)

(see for example Corollary 6.1.16 in Dembo and Zeitouni, 1998). This rate function can be

written as

inf
{
J(l) : l ∈ (LΦ1)∗, l(fj) = uj for each 1 ≤ j ≤ m

}
, (3.6)

(see Lemma 2.2 in Arcones, 2003b).

When θ obtains, we denote LΦ1
θ , (LΦ1

θ )∗ and Jθ.

Theorem 3.1. Let {KM}M≥1 be a sequence of compact convex sets of Rd contained in Θ and

containing θ. Suppose that the following conditions are satisfied:

(i) Θ is a convex set of Rd.

(ii) For each t ∈ Θ, log f(X, t) ∈ LΦ1
θ .

(iii) For each x, log f(x, ·) is a strictly concave function.

(iv)

lim
M→∞

sup
t∈∂KM

inf
λ∈R

Eθ[exp(λ(log f(X, t)− log f(X, θ)))] = 0.

Then,

− inf{Jθ(l) : l ∈ (LΦ1
θ )∗,

∫
Rd I(t ∈ Θ : l(log f(·, t)− log f(·, θ)) > 0) dt > ε} (3.7)

≤ lim infn→∞ n−1 log (Pθ{θ 6∈ Clrt(X1, . . . , Xn, ε)})
≤ lim supn→∞ n−1 log (Pθ{θ 6∈ Clrt(X1, . . . , Xn, ε)})
≤ − inf{Jθ(l) : l ∈ (LΦ1

θ )∗,
∫

Rd I(t ∈ Θ : l(log f(·, t)− log f(·, θ)) ≥ 0) dt ≥ ε}.

We also can use the LDP of an estimator to find confidence regions for a parameter.
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Theorem 3.2. Let {Tn} be a sequence of estimators of θ. Let θ ∈ Θ. Suppose that:

(i) When t ∈ Θ obtains, Tn satisfies the LDP with speed n and rate function It(·).
(ii) mθ(·) is a continuous function, where

mθ(a) :=

∫
Rd

I(t ∈ Θ : It(a) ≤ Iθ(a)) dt, a ∈ Θ.

(iii) Given a ∈ Θ and ε > 0 such that mθ(a) < ε, then there exists θ1 ∈ Θ such that

Iθ(a) < Iθ(θ1) and ∫
Θ

I(t ∈ Θ : It(a) < Iθ(θ1)) dt ≤ ε.

Then,

− inf{Iθ(a) : mθ(a) > ε} ≤ lim infn→∞ n−1 log (Pθ{θ 6∈ CTn,ld(X1, . . . , Xn, ε)}) (3.8)

≤ lim supn→∞ n−1 log (Pθ{θ 6∈ CTn,ld(X1, . . . , Xn, ε)}) ≤ − inf{Iθ(a) : mθ(a) ≥ ε}.

where

CTn,ld(X1, . . . , Xn, ε) := {t ∈ Θ : It(Tn) < ĉn(ε)}

and

ĉn(ε) = sup{η > 0 :

∫
Rd

I(t ∈ Rd : It(Tn) < η) dt ≤ ε.

In Arcones (2003b), it was proved that the mle θ̂n satisfies the LDP with speed n and rate

function

Iθ(t) = − inf
λ∈Rd

logEθ[exp (λ′∇t ln f(X, t))], (3.9)

when θ obtains, where ∇t denotes the (vector of partial derivatives) gradient of log f(x, t)

with respect to the different coordinates of t.

Example 3.1. (Exponential family). Given a measure µ on Rd, define ψ(t) := ln
∫

Rd e
t′x dµ(x),

t ∈ Rd. Let Θ := {t ∈ Rd : ψ(t) < ∞}. Let f(x, t) := et
′x−ψ(t). The family of pdf ’s

{f(x, t) : t ∈ Θ} is a full exponential family with a canonical representation. The next

theorem give manageable expressions for the rate functions in theorems 3.1 and 3.2 for an

exponential family:

Theorem 3.3. (i) For each θ ∈ Θ, and each ε > 0,

inf{Jθ(l) : l ∈ (LΦ1
θ )∗, µ{t ∈ Θ : l(log f(·, t)− log f(·, θ)) ≥ 0} ≥ ε}

= inf{supt∈Rd(ψ(θ)− ψ(t)− (θ − t)′a) : a ∈ Rd, µ{t ∈ Rd : ψ(θ)− ψ(t)− (θ − t)′a ≥ 0} ≥ ε}.

(ii) For each θ ∈ Θ, and each ε > 0,

inf{Iθ(a) : µ{t ∈ Θ : It(a) ≤ Iθ(a)} ≥ ε}
= inf{ψ(θ)− ψ(a)− (θ − a)′∇ψ(a) : a ∈ Rd,

µ{t ∈ Rd : ψ(θ)− ψ(t)− (θ − t)′∇ψ(a) ≥ 0} ≥ ε}.

where Iθ(t) is as in (3.6) and ∇ψ is the gradient of ψ.
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If {∇ψ(a) : a ∈ Rd} = Rd, then

inf{supt∈Rd(ψ(θ)− ψ(t)− (θ − t)′a) : a ∈ Rd, µ{t ∈ Rd : ψ(θ)− ψ(t)− (θ − t)′a ≥ 0} ≥ ε}
= inf{supt∈Rd(ψ(θ)− ψ(t)− (θ − t)′∇ψ(a)) : a ∈ Rd,

µ{t ∈ Rd : ψ(θ)− ψ(t)− (θ − t)′∇ψ(a) ≥ 0} ≥ ε}
= inf{ψ(θ)− ψ(a)− (θ − a)′∇ψ(a) : a ∈ Rd,

µ{t ∈ Rd : ψ(θ)− ψ(a)− (θ − a)′∇ψ(a) ≥ 0} ≥ ε},

because by convexity
supt∈Rd(ψ(θ)− ψ(t)− (θ − t)′∇ψ(a))

= ψ(θ)− ψ(a)− (θ − a)′∇ψ(a)

Hence, if {∇ψ(a) : a ∈ Rd} = Rd, the rate functions in theorem 3.1 and 3.2 agree for an

exponential family.

4 Proofs.

Proof of Theorem 2.1. If θ ∈ Clrt(X1, . . . , Xn, εn
−d/2), then supt∈Θ(Gn(t) − Gn(θ)) <

ân(εn
−m/2). Using the previous estimation and (1.1), we get that

Clrt(X1, . . . , Xn, εn
−d/2) (4.1)

⊂ {θ ∈ Θ :
∫

Rd I(s ∈ Θ : supt∈Θ(Gn(t)−Gn(s)) ≤ supt∈Θ(Gn(t)−Gn(θ)) ds ≤ εn−d/2}
= {θ ∈ Θ :

∫
Rd I(s ∈ Θ : Gn(s) ≥ Gn(θ)) ds ≤ εn−d/2}

= {θ ∈ Θ :
∫

Rd I(t ∈ Rd : θ + n−1/2t ∈ Θ, Gn(θ + n−1/2t) ≥ Gn(θ)) dt ≤ ε}.

Hence, for each 0 < M <∞,

Pθ{θ ∈ Clrt(X1, . . . , Xn, εn
−d/2)} (4.2)

≤ Pθ{
∫

Rd I(t ∈ Rd : θ + n−1/2t ∈ Θ, Gn(θ + n−1/2t) ≥ Gn(θ)) dt ≤ ε}
≤ Pθ{

∫
Rd I(t ∈ Rd : θ + n−1/2t ∈ Θ, |t| ≤M,Gn(θ + n−1/2t) ≥ Gn(θ)) dt ≤ ε}

+Pθ{Gn(θ + n−1/2t) ≥ Gn(θ) for some t such that θ + n−1/2t ∈ Θ and |t| > M}

By hypothesis (i), for each t ∈ Rd,

Eθ[|
∑n

i=1(rθ(Xi, n
−1/2t)I(|rθ(Xi, n

−1/2t)| ≤ 1)− E[rθ(Xi, n
−1/2t)I(|rθ(Xi, n

−1/2t)| ≤ 1)])|]
≤ 2nE[|rθ(X,n−1/2t)|I(|rθ(X,n−1/2t)| ≤ 1)] → 0.

and
Varθ(

∑n
i=1(rθ(Xi, n

−1/2t)I(|rθ(Xi, n
−1/2t)| > 1)

−Eθ[rθ(Xi, n
−1/2t)I(|rθ(Xi, n

−1/2t)| > 1)]))

= nVarθ(rθ(X,n
−1/2t)I(|rθ(X,n−1/2t)| > 1))

≤ nEθ[|rθ(X,n−1/2t)|2I(|rθ(X,n−1/2t)| > 1)] → 0.
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Hence, for each t ∈ Rd,

n∑
i=1

(rθ(Xi, n
−1/2t)− Eθ[rθ(Xi, n

−1/2t)])
Pθ→ 0. (4.3)

By hypothesis (ii), for each t ∈ Rd,

nEθ[rθ(X,n
−1/2t)] → −2−1t′v(θ)t. (4.4)

By hypothesis (i),

n−1/2

n∑
j=1

(φ(Xj, θ)− Eθ[φ(Xj, θ)])
d→ (v(θ))1/2Zd, (4.5)

when θ obtains. By (4.3)–(4.5), for each t ∈ Rd,

n∑
j=1

(log f(Xj, θ + n−1/2t)− log f(Xj, θ))
d→ t′(v(θ))1/2Zd − 2−1t′v(θ)t,

when θ obtains. By Theorem 1 in Arcones (1998), if the finite dimensional distributions of a

sequence of concave stochastic processes defined in a subset of Rd converge, then the sequence

of stochastic processes converges weakly uniformly over any compact set of its domain. Hence,

for each θ ∈ Θ and each 0 < M <∞,

{
n∑
j=1

(log f(Xj, θ + n−1/2t)− log f(Xj, θ)) : |t| ≤M} w→ {t′(v(θ))1/2Zd − 2−1t′v(θ)t : |t| ≤M},

(4.6)

in l∞({t ∈ Rd : |t| ≤M}), when θ obtains. Hence,

Pθ{
∫

Rd I(t ∈ Rd : θ + n−1/2t ∈ Θ, |t| ≤M,Gn(θ + n−1/2t) ≥ Gn(θ)) dt ≤ ε} (4.7)

→ P{
∫

Rd I(t ∈ Rm : |t| ≤M, t′(v(θ))1/2Zd − 2−1t′v(θ)t ≥ 0) dt ≤ ε}.

By concavity, for n large enough,

Pθ{Gn(θ + n−1/2t) ≥ Gn(θ) for some t such that θ + n−1/2t ∈ Θ and |t| > M} (4.8)

= Pθ{Gn(θ + n−1/2t) ≥ Gn(θ) for some t such that θ + n−1/2t ∈ Θ and |t| = M}
→ P{t′(v(θ))1/2Zd − 2−1t′v(θ)t ≥ 0, for some t ∈ Rd such that |t| = M}.

By (4.2) and (4.7)–(4.8), for each 0 < M <∞,

lim supn→∞ Pθ{Clrt(X1, . . . , Xn, εn
−d/2)}

≤ P{
∫

Rd I(t ∈ Rd : |t| ≤M, t′(v(θ))1/2Z − 2−1t′v(θ)t ≥ 0) dt ≤ ε}
+P{t′(v(θ))1/2Zd − 2−1t′v(θ)t ≥ 0, for some t ∈ Rd such that |t| = M}.
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Letting M →∞, we get that

lim supn→∞ Pθ{Clrt(X1, . . . , Xn, εn
−d/2)} (4.9)

≤ P{
∫

Rd I(t ∈ Rd : t′(v(θ))1/2Zd − 2−1t′v(θ)t ≥ 0) dt ≤ ε}
= P{

∫
Rd I(t ∈ Rd : −2−1|Zd − (v(θ))1/2t|2 + 2−1|Zd|2 ≥ 0) dt ≤ ε}

= P{
∫

Rd I(t ∈ Rd : |Zd − (v(θ))1/2t| ≤ |Zd|) dt ≤ ε}
= P{cd|Zd|d(J((v(θ))1/2))−1 ≤ ε}
= P{|Zd| ≤ ε1/dc

−1/d
d (J((v(θ))1/2))1/d}.

Given θ ∈ Θ such that
∫

Rd I(s ∈ Θ : Gn(s) ≥ Gn(θ)) ds < εn−d/2, using concavity, there

exists θ1 ∈ Θ such that Gn(θ1) < Gn(θ) and∫
Rd

I(s ∈ Θ : Gn(s) ≥ Gn(θ1)) ds < εn−d/2.

Hence,

sup
t∈Θ

(Gn(t)−Gn(θ)) < sup
t∈Θ

(Gn(t)−Gn(θ1)) ≤ ân(εn
−d/2).

Therefore,

{θ ∈ Θ :

∫
Rd

I(s ∈ Θ : Gn(s) ≥ Gn(θ)) ds < εn−d/2} ⊂ Clrt(X1, . . . , Xn, εn
−d/2) (4.10)

Hence, for each 0 < M <∞,

Pθ{Clrt(X1, . . . , Xn, εn
−d/2)} (4.11)

≥ Pθ{
∫

Rd I(t ∈ Θ : Gn(t) ≥ Gn(θ)) dt < εn−d/2}
= Pθ{

∫
Rd I(t ∈ Rd : θ + n−1/2t ∈ Θ, Gn(θ + n−1/2t) ≥ Gn(θ)) dt < ε}

≥ Pθ{
∫

Rd I(t ∈ Rd : θ + n−1/2t ∈ Θ, |t| ≤M,Gn(θ + n−1/2t) ≥ Gn(θ)) dt < ε}
−Pθ{Gn(θ + n−1/2t) ≥ Gn(θ) for some t such that θ + n−1/2t ∈ Θ and |t| > M}

→ P{
∫

Rd I(t ∈ Rd : |t| ≤M, t′(v(θ))1/2Z − 2−1t′v(θ)t ≥ 0) dt < ε}
−Pθ{t′(v(θ))1/2Z − 2−1t′v(θ)t ≥ 0 for some t such that θ + n−1/2t ∈ Θ and |t| > M}.

Letting M →∞, we get that,

lim infn→∞ Pθ{Clrt(X1, . . . , Xn, ε)} (4.12)

≥ P{
∫

Rd I(t ∈ Rd : t′(v(θ))1/2Zd − 2−1t′v(θ)t ≥ 0) dt < ε}
= P{|Zd| ≤ ε1/dc

−1/d
d (J((v(θ))1/2))1/d},

Finally, the claim follows from (4.9) and (4.12).
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Proof of Theorem 2.2. Since Tn
Pθ→ θ and θ is in the interior of Θ,

b̂n(ε) = ε1/dc
−1/d
d (J((A(Tn))

1/2))1/d for n large enough, and with probability as close as one as

wished. Hence,

Pθ{θ ∈ CTn,clt(X1, . . . , Xn, εn
−d/2)}

is asymptotically equivalent to

Pθ{|(A(Tn))
1/2(Tn − θ)| < ε1/dn−1/2c

−1/d
d (J((A(Tn))

1/2))1/d}

By hypotheses (ii) and (ii), the last quantity converges to

P{|Zd| ≤ ε1/dc
−1/d
d (J((A(θ))1/2))1/d},

as n→∞.

Proof of Theorem 3.1. Using (4.1), we get that for each 0 < M <∞,

Pθ{θ 6∈ Clrt(X1, . . . , Xn, ε)} (4.13)

≥ Pθ{
∫

Rd I(t ∈ Θ : Gn(t) ≥ Gn(θ)) dt > ε}
≥ Pθ{

∫
Rd I(t ∈ KM : Gn(t) ≥ Gn(θ)) dt > ε}

= Pθ{
∫

Rd I(t ∈ KM : Gn(t) > Gn(θ)) dt > ε}

where the concavity of the function Gn has being used to get the last equation.

We claim that {Gn(t) : t ∈ KM} satisfies the LDP in l∞(Km). By (3.8) and hypothesis

(ii), the finite dimensional distributions satisfy the LDP. Since the process {Gn(t) : t ∈ KM} is

concave, by Corollary 3.5 in Arcones (2003c), {Gn(t) : t ∈ KM} satisfies the LDP in l∞(Km).

Let

B∞(Km) = {x ∈ l∞(Km) : x is Borel measurable}.

Since B∞(Km) is a closed set of {x ∈ l∞(Km), {Gn(t) : t ∈ KM} satisfies the LDP in l∞(Km).

Next, we prove that the set

{x ∈ B∞(KM) : µ{t ∈ KM : x(t) > x(θ)} > ε} (4.14)

is an open set of B∞(KM). Given x ∈ B∞(KM) such that µ{t ∈ KM : x(t) > x(θ)} > ε, there

exists an η > 0 such that µ{t ∈ KM : x(t) > 2η+x(θ)} > 2η+ ε. Hence, if ‖y−x‖l∞(KM ) < η,

then

{t : y(t) > y(θ)} ⊃ {t : x(t) ≥ x(θ) + η}

and µ{t ∈ KM : y(t) > y(θ)} > ε. So, the set in (4.14) is an open set.

Using (4.13) and (4.14), we get that

− inf{Jθ(l) : l ∈ (LΦ1
θ )∗, µ{t ∈ KM : l(log f(·, t)− log f(·, θ)) > 0} > ε}

≤ lim infn→∞ n−1 log (Pθ{θ 6∈ Clrt(X1, . . . , Xn, ε)})
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Letting M →∞, we get that

− inf{Jθ(l) : l ∈ (LΦ1
θ )∗, µ{t ∈ Θ : l(log f(·, t)− log f(·, θ)) > 0} > ε} (4.15)

≤ lim infn→∞ n−1 log (Pθ{θ 6∈ Clrt(X1, . . . , Xn, ε)})

Using (4.10),

Pθ{θ 6∈ Clrt(X1, . . . , Xn, ε)} (4.16)

≤ Pθ{µ{t ∈ Θ : Gn(t) ≥ Gn(θ)} ≥ ε}
≤ Pθ{µ{t ∈ KM : Gn(t) ≥ Gn(θ)} ≥ ε}
+ Pθ{Gn(t) ≥ Gn(θ) for some t 6∈ KM}

Next, we prove that the set

{x ∈ B∞(KM) : µ{t ∈ KM : x(t) ≥ x(θ)} ≥ ε} (4.17)

is a closed set of B∞(KM). To prove that the set in (4.17) is a closed set, we show that if

{xn} is a sequence in B∞(KM) such that xn → x for some x ∈ B∞(KM), then x belongs to

the set in (4.17). Let An := {t ∈ KM : xn(t) ≥ xn(θ)} and let A := {t ∈ KM : x(t) ≥ x(θ)}.
Since lim supn→∞An ⊂ A, using Fatou’s lemma, we get that

µ(A) ≥ µ(lim sup
n→∞

An) ≥ lim sup
n→∞

µ(An) ≥ ε.

Hence, x belongs to the set in (4.17). Therefore, the set in (4.17) is a closed.

Using that {Gn(t) : t ∈ KM} satisfies the LDP in B∞(Km), and the closedness of the set

in (4.17), we get that

lim supn→∞ n−1 log (Pθ{µ{t ∈ KM : Gn(t) ≥ Gn(θ)} ≥ ε}) (4.18)

≤ − inf{Jθ(l) : l ∈ (LΦ1
θ )∗, µ{t ∈ KM : l(log f(·, t)− log f(·, θ)) ≥ 0} ≥ ε}

Using the concavity of the function Gn(·),

lim supn→∞ n−1 log (Pθ{Gn(t) ≥ Gn(θ), for some t ∈ KM}) (4.19)

= lim supn→∞ n−1 log (Pθ{Gn(t) ≥ Gn(θ), for some t ∈ ∂KM})
≤ − inf{Jθ(l) : l ∈ (LΦ1

θ )∗, l(log f(·, t)− log f(·, θ)) ≥ 0, for some t ∈ ∂KM}.
= − inft∈∂KM

inf{Jθ(l) : l ∈ (LΦ1
θ )∗, l(log f(·, t)− log f(·, θ)) ≥ 0}.

= supt∈∂KM
infλ∈R{Eθ[exp(λ(log f(X, t)− log f(X, θ)))]

→ −∞, as M →∞.

where we have used (3.4).

Using (4.16), (4.18) and (4.19), we get that

lim supn→∞ n−1 log (Pθ{θ 6∈ Clrt(X1, . . . , Xn, ε)}) (4.20)

≤ − inf{Jθ(l) : l ∈ (LΦ1
θ )∗, µ{t ∈ Θ : l(log f(·, t)− log f(·, θ)) ≥ 0} ≥ ε}
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The claim of the theorem follows from (4.15) and (4.20).

Proof of Theorem 3.2. By hypothesis (iii),

{θ ∈ Θ : mθ(Tn) < ε}
⊂ {θ ∈ CTn,ld(X1, . . . , Xn, ε)}.

Hence
Pθ{θ 6∈ CTn,ld(X1, . . . , Xn, ε)}

≤ Pθ{θ ∈ Θ : mθ(Tn) ≥ ε}.

Therefore, the upper inequality in (3.7) follows from the previous estimation and hypotheses

(i) and (ii).

Since
{θ ∈ CTn,ld(X1, . . . , Xn, ε)}

⊂ {θ ∈ Θ :
∫

Rd I(t ∈ Θ : It(Tn) ≤ Iθ(Tn)) dt ≤ ε}
= {θ ∈ Θ : mθ(Tn) ≤ ε},

we have that
Pθ{θ 6∈ CTn,ld(X1, . . . , Xn, ε)}

≥ Pθ{θ ∈ Θ : mθ(Tn) > ε}.

Hence, the lower inequality in (3.7) follows from the previous estimation and hypotheses (i)

and (ii).

Proof of Theorem 3.3. (i) Since

l(log f(·, t)− log f(·, θ)) = (t− θ)′l(x)− ψ(t) + ψ(θ)

and
inf{Jθ(l) : l ∈ (LΦ1

θ )∗, l(x) = a} = supλ∈Rd(λ′a− logEθ[exp(λ′X)])

= supλ∈Rd(λ′a− ψ(λ+ θ) + ψ(θ)) = supt∈Rd(ψ(θ)− ψ(t)− (θ − t)′a),

we have that

inf{Jθ(l) : l ∈ (LΦ1
θ )∗, µ{t ∈ Θ : l(log f(·, t)− log f(·, θ)) ≥ 0} ≥ ε}

= inf{supt∈Rd(ψ(θ)− φ(t)− (θ − t)′a) : a ∈ Rd, µ{t ∈ Rd : ψ(θ)− ψ(t)− (θ − t)′a) ≥ 0} ≥ ε}.

(ii) For t ∈ Θo and θ ∈ Θ,

Iθ(t) = ψ(θ)− ψ(t)− (θ − t)′∇ψ(t).

Hence,
inf{Iθ(a) : µ{t ∈ Θ : It(a) ≤ Iθ(a)} ≥ ε}

= inf{ψ(θ)− ψ(a)− (θ − a)′∇ψ(a) : a ∈ Rd,

µ{t ∈ Rd : ψ(θ)− ψ(t)− (θ − t)′∇ψ(a) ≥ 0} ≥ ε}.
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