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1. INTRODUCTION.

We consider different kinds of laws of the iterated logarithm (L.I.L.) for Gaussian pro-

cesses. In the considered situations the limit set is the unit ball of a reproducing kernel

Hilbert space (r.k.h.s.) of a covariance function. So, first we will review the definition of this

concept. Let T be a parameter set and let R(s, t) be a covariance function defined on T × T ,

i.e.
m∑

j=1

m∑
k=1

ajakR(tj, tk) ≥ 0 (1.1)

for each a1, . . . , am ∈ IR and each t1, . . . , tm ∈ T . Then, there exists a mean–zero Gaussian

process {Z(t) : t ∈ T} such that E[Z(s)Z(t)] = R(s, t) for each s, t ∈ T . Let L be the linear

subspace of L2, generated by {Z(t) : t ∈ T}. Then, the reproducing kernel Hilbert space

(r.k.h.s.) of the covariance function R(s, t) is the following class of functions on T

{(E[Z(t)ξ])t∈T : ξ ∈ L}. (1.2)

This space is endowed of the inner product

< f1, f2 >:= E[ξ1ξ2], (1.2)

where fi(t) = E[Z(t)ξi] for each t ∈ T and each i = 1, 2. The unit ball of this r.k.h.s. is

K := {(E[Z(t)ξ])t∈T : ξ ∈ L and E[ξ2] ≤ 1}. (1.4)

We refer to Aronszajn [3] for more in r.k.h.s.’s.

In Section 2, we consider the compact L.I.L. for Gaussian processes and random vectors

with values in a separable Banach space. Given a sequence {Xn(t) : t ∈ T}, n ≥ 1, of jointly

Gaussian processes (any linear combination of the random variables Xn(t), n ∈ IN , t ∈ T , is

Gaussian), we examine the problem of when there exists a compact set K, such that, with

probability one, the sequence {(2 log n)−1/2Xn(t) : t ∈ T} is relatively compact in l∞(T )

and its limit set is K, where l∞(T ) is the Banach space consisting of the uniformly bounded

functions on T with the norm ‖x‖∞ := supt∈T |x(t)|. This problem has been considered before

by several authors: Nisio [15], Oodaira [16], Lai [9], [10], Mangano [14] and Carmona and

Kôno [6], among others. Here, we present some sufficient conditions for the L.I.L. of sequences

of Gaussian processes, which are simpler than those from these authors, and have some

optimality properties. We also consider the L.I.L. of {(2n log log n)−1/2∑n
j=1 Xj(t) : t ∈ T},

where {Xn(t) : t ∈ T} is a stationary sequence of Gaussian processes.

In Section 3, we discuss the local L.I.L. for a Gaussian process. We say that a subset

{x(u) : 0 ≤ u ≤ 1} of metric space is relatively compact as u → 0+, if any sequence of

positive numbers {un}∞n=1, converging to 0, has a further subsequence {unk
}∞k=1 such that

x(unk
) converges as k →∞. Let T be a parameter set which is a subset of a space having a

scalar product defined for t ∈ T and 0 ≤ u ≤ 1. Let {X(t) : t ∈ T} be a Gaussian process

indexed by T . Our main result is to give some sufficient conditions in order that the process
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{(w(u))−1(2 log log u−1)−1/2X(ut) : t ∈ T} is a.s. relatively compact (as u → 0+) and its

limit set (for all sequences of positive numbers converging to zero) is the unit ball of a r.k.h.s.,

where w(u) is a weight function. Of course, there is nothing particular about 0, we could

have chosen another number, even infinity. A particular case, we will consider, is the local

law of the iterated logarithm for self–similar processes.

In Section 4, we apply the results in the previous section to the study of the L.I.L. for

compositions of Gaussian processes.

2. ON THE STRASSEN LAW OF THE ITERATED LOGARITHM FOR

SEQUENCES OF GAUSSIAN RANDOM PROCESSES.

First, we consider the case of a sequence of jointly Gaussian random variables. The

following lemma extends Theorem 2 in Lai [9] (see also Theorem 2 in Nisio [15]).

Lemma 2.1. Let {ξn}∞n=1 be a sequence of centered, jointly Gaussian random variables.

Assume that:

(i) limn→∞ E[ξ2
n] exists.

(ii) For each 0 < ε < 1,

lim
r→1−

lim sup
n→∞

sup
m: n+nε≤m≤n+nr

E[ξnξm] ≤ 0. (2.1)

Then,

lim sup
n→∞

(2 log n)−1/2ξn = σ a.s. (2.2)

where σ2 := limn→∞ E[ξ2
n].

Proof. Since ∞∑
n=1

Pr{(2 log n)−1/2|ξn| ≥ σ + η} < ∞,

for each η > 0, by the lemma of Borel–Cantelli,

lim sup
n→∞

(2 log n)−1/2|ξn| ≤ σ a.s. (2.3)

This proves the lemma in the case σ = 0. If σ 6= 0, we may assume, without loss of generality,

that E[ξ2
n] = 1 for each n. Given 0 ≤ η < 1/3, take 0 < ε < r < 1 < q < p such that

ε < p(p + q)−1, 1− η < (p− 1)(p + q)−1, (p + q − 1)(p + q)−1 < r (2.4)

and

lim sup
n→∞

sup
m: n+nε≤m≤n+nr

E[ξnξm] < η. (2.5)

For example, take

p = (3− η2)η−1, q = 1 + η, 0 < ε < (3− η2)(3 + η)−1 and 3(3 + η)−1 < r.
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Then, there exists k0 such that n + nε ≤ m ≤ n + nr, where n = [kq(kp + j1)] and m =

[kq(kp + j2)], for each 1 ≤ j1 < j2 ≤ (k + 1)p − kp and each k ≥ k0. Hence, by (2.5), we have

that

E[ξ[kq(kp+j1)]ξ[kq(kp+j2)]] ≤ η,

for each k ≥ k0 and each 1 ≤ j1 < j2 ≤ [(k + 1)p − kp]. Let g, g1, g2, . . . be independent

centered normal random variables such that

E[g2] = η and E[g2
k] = 1− η, for k ≥ 1.

We have that

E[ξ[kq(kp+j1)]ξ[kq(kp+j2)]] ≤ E[(g + gj2)(g + gj1)]

for each 1 ≤ j1 < j2 ≤ (k + 1)p − kp; and

E[ξ2
[kq(kp+j)]] = 1 = E[(g + gj)

2],

for each 1 ≤ j ≤ (k + 1)p − kp. So, by the Slepian lemma (see e.g. Corollary 3.12 in Ledoux

and Talagrand [12]),

Pr{ max
1≤j≤[(k+1)p−kp]

(2 log([kq(kp + j)]))−1/2ξ[kq(kp+j)] ≤ (1− 3η)}

≤ Pr{ max
1≤j≤[(k+1)p−kp]

ξ[kq(kp+j)] ≤ (1− 2η)(2 log(kp+q))1/2}

≤ Pr{ max
1≤j≤[(k+1)p−kp]

(g + gj) ≤ (1− 2η)(2 log(kp+q))1/2}

≤ Pr{g ≤ −η(2 log(kp+q))1/2}+ Pr{ max
1≤j≤[(k+1)p−kp]

gj ≤ (1− η)(2 log(kp+q))1/2}.

By the usual bound on the tail of a normal distribution

∞∑
k=1

Pr{g ≤ −η(2 log(kp+q))1/2} < ∞

(by (2.4) 1 < η(p + q)). We also have that

Pr{ max
1≤j≤[(k+1)p−kp]

gj ≤ (1− η)(2 log(kp+q))1/2}

=
(
Pr{g1 ≤ (1− η)(2 log(kp+q))1/2}

)[(k+1)p−kp]

≤ exp
(
−[(k + 1)p − kp] Pr{g1 > (1− η)(2 log(kp+q))1/2}

)
.

Again, by the usual bound on the tail of a normal distribution

∞∑
k=1

exp
(
−[(k + 1)p − kp] Pr{g1 > (1− η)(2 log(kp+q))1/2}

)
< ∞.
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Therefore,

∞∑
k=1

Pr{ max
1≤j≤[(k+1)p−kp]

(2 log([kq(kp + j)]))−1/2ξ[kq(kp+j)] ≤ (1− 3η)} < ∞

and the result follows from this, the lemma of Borel–Cantelli and (2.3). 2

The difference between Lemma 2.1 and Theorem 2 in Lai [9] lies in condition (ii). In

Theorem of Lai [9], the author impose the stronger condition

lim sup
n, m−n→∞

E[ξnξm] ≤ 0. (2.6)

In the study of self–similar Gaussian processes, we need a weaker condition. For example if

{B(t) : 0 ≤ t ≤ 1} is a Brownian motion and ξn = 2n/2B(2−n) + 2nB(2−2n), then E[ξ2
n] → 2

and E[ξnξ2n] → 1. In this case condition (2.6) is not satisfied, but condition (2.1) is.

Obviously, some condition similar to (2.1) is needed. If ξj = ξ1 for each j ≥ 1, then

lim
n→∞

(2 log n)−1/2|ξn| = 0 a.s.

The following example shows that condition (2.1) is sharp. Let {gj}∞j=1 be a sequence of

i.i.d.r.v.’s with standard normal distribution. Fix p > 1, let nk = [kp−1]. Define ξn = gj if∑k
l=1 nl < n ≤ ∑k+1

l=1 nl and n =
∑k

l=1 nl + j. Then
∑k

j=1 nj ' p−1kp. Hence,

lim sup
n→∞

(2 log n)−1/2ξn = lim sup
k→∞

(2 log
k+1∑
l=1

nl)
−1/2gk = p−1/2 a.s.

We have that E[ξ2
n] = 1 and

lim sup
n→∞

sup
m: n≤m≤n+nr

|E[ξnξm]| = 0,

for 0 < r < p−1(p − 1), but (2.2) is not satisfied. Of course, (2.1) does not hold for this

sequence:

lim
r→1−

lim sup
n→∞

sup
m: n+nr≤m≤n+nε

E[ξnξm] = 1,

for 0 < ε < p−1(p− 1). So, Lemma 2.1 is not true if the group of words ”for each 0 < ε < 1”

is substituted by ”for some 0 < ε < 1”.

A standard argument (see the proof of Lemma 2 in Finkelstein [8]) gives the compact

L.I.L. in the finite dimensional case:

Lemma 2.2. Let {ξn = (ξ(1)
n , . . . , ξ(d)

n )}∞n=1 be a sequence of centered jointly Gaussian

random vectors with values in IRd. Assume that

(i) For each 1 ≤ j, k ≤ d, E[ξ(j)
n ξ(k)

n ] converges as n →∞.

(ii) For each λ1, . . . , λd ∈ IR and each 0 < ε < 1

lim
r→1−

lim sup
n→∞

sup
m: n+nε≤m≤n+nr

d∑
j,k=1

λjλkE[ξ(j)
n ξ(k)

m ] ≤ 0.
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Then, with probability one, {(2 log n)−1/2ξn} is relatively compact and its limit set is the

unit ball K of the reproducing kernel Hilbert space of the covariance function

R(s, t) = limn→∞
∑d

j,k=1 sjtkE[ξ(j)
n ξ(k)

n ], where s = (s1, . . . , sd) and t = (t1, . . . , td).

To get the compact L.I.L. for processes, we need the following two consequences of the

Ascoli–Arzela theorem (see e.g. Theorems 4.1 and 4.3 in Arcones and Giné [2]):

Lemma 2.3. Let {Xn(t) : t ∈ T}, n ≥ 1, be a sequence of random processes indexed by

T . Let ρ(s, t) be a pseudometric in T . Let K be a compact subset of the space Cu(T, ρ) of

uniformly bounded and uniformly continuous functions on (T, ρ). Assume that the sequence

of processes {Xn(t) : t ∈ T} satisfies the following conditions:

(i) (T, ρ) is totally bounded.

(ii) limδ→0 lim supn→∞ supρ(t1,t2)≤δ |Xn(t1)−Xn(t2)| = 0 a.s.

(iii) For each m ∈ IN and each t1, . . . , tm ∈ T , with probability one, the sequence

{(Xn(t1), . . . , Xn(tm))}∞n=1 is relatively compact in IRm and its limit set is {(x(t1), . . . , x(tm)) :

x ∈ K}.
Then, with probability one, the sequence {Xn(t) : t ∈ T} (whose terms are eventually a.s.

in l∞(T )) is relatively compact in l∞(T ) and its limit set is K.

Lemma 2.4. Let {Xn(t) : t ∈ T}, n ≥ 1, be a sequence of stochastic processes indexed

by T . Suppose that

(i) There is a set K ⊂ l∞(T ) such that for each t1, . . . , tm ∈ T , the sequence

{(Xn(t1), . . . , Xn(tm))}∞n=1 is a.s. relatively compact in IRm and its limit set is

{(x(t1), . . . , x(tm)) : x ∈ K}.
(ii) There is a set L such that, with probability one, the sequence {Xn(t) : t ∈ T} is

relatively compact in l∞(T ) and its limit set is L.

Then,

(a) (T, ρ) is totally bounded where ρ(t, s) = supx∈K |x(t)− x(s)|, t, s ∈ T ,

(b) limδ→0 lim supn→∞ supρ(t,s)≤δ |Xn(t)−Xn(s)| = 0 a.s.

(c) The set L coincides with the set K and is compact.

Lemma 2.3 (maybe in a less abstract version) has been used by many authors in similar sit-

uations. Lemma 2.4 was probably introduced in the cited reference. Observe that conditions

(a) and (b) in Lemma 2.4, and Xn(t)
Pr−→ 0 for each t ∈ T , imply that supt∈T |Xn(t)| Pr−→ 0.

This follows from the fact that condition (b) in Lemma 2.4 implies that

lim
δ→0

lim sup
n→∞

Pr{ sup
ρ(s,t)≤δ

|Xn(s)−Xn(t)| ≥ η} = 0

for each η > 0.

We also need the following upper bound on the tail probability of a Gaussian process (see

e.g. Lemma 3.1 in Ledoux and Talagrand [12]) (a more refined inequality on the tail of a

Gaussian process is in Borell [5]):
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Lemma 2.5. Let {X(t) : t ∈ T} be a centered Gaussian process. Let M be the median

of supt∈T |X(t)| and let σ2 = supt∈T E[X2(t)]. Then, for each u > 0,

Pr{| sup
t∈T

|X(t)| −M | ≥ u} ≤ exp

(
− u2

2σ2

)
.

Now, we are ready to prove a compact L.I.L. for Gaussian processes.

Theorem 2.1. Let {Xn(t) : t ∈ T}, n ≥ 1, be a sequence of Gaussian processes and let

ρ be a pseudometric on T . Suppose:

(i) supt∈T (2 log n)−1/2|Xn(t)| Pr−→ 0.

(ii) For each s, t ∈ T , E[Xn(s)Xn(t)] converges as n →∞.

(iii) For each d ≥ 1, each 1 > ε > 0, each t1, . . . , td ∈ T and each λ1, . . . , λd ∈ IR,

lim
r→1−

lim sup
n→∞

sup
m: n+nε≤m≤n+nr

d∑
j,k=1

λjλkE[Xn(tj)Xm(tk)] ≤ 0 (2.7)

(iv) (T, ρ) is totally bounded.

(v) For each η > 0,

lim
δ→0

∞∑
n=1

exp

(
− η log n

supρ(s,t)≤δ ‖Xn(t)−Xn(s)‖2
2

)
< ∞, (2.8)

where ‖X‖2 := (E[X2])1/2.

Then, with probability one, {(2 log n)−1/2Xn(t) : t ∈ T} is relatively compact and its

limit set is the unit ball K of the reproducing kernel Hilbert space of the covariance function

R(s, t) = limn→∞ E[Xn(s)Xn(t)].

Proof. By Lemmas 2.1 and 2.3 (and hypotheses (ii)–(iv)), it suffices to show that

lim
δ→0

lim sup
n→∞

sup
ρ(s,t)≤δ

(2 log n)−1/2|Xn(t)−Xn(s)| = 0 a.s.

By the lemma of Borel–Cantelli, it suffices to show that, for each η, there is a δ > 0 such that

∞∑
n=1

Pr{ sup
ρ(s,t)≤δ

(2 log n)−1/2|Xn(t)−Xn(s)| ≥ η} < ∞.

This follows from Lemma 2.5, using hypotheses (i) and (v). 2

A choice of pseudometric, intrisic to the problem, is ρ(s, t) = limn→∞ ‖Xn(t) −Xn(s)‖2.

Condition (i) in Theorem 2.1 can be restated in terms of majorizing measures (see Talagrand

[17]). Condition (v) is satisfied if

lim
δ→0

lim sup
n→∞

sup
ρ(s,t)≤δ

‖Xn(t)−Xn(s)‖2 = 0. (2.9)
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Next, we will discuss the optimality of the conditions in Theorem 2.1. Hypotheses (ii)

and (iii) are conditions to get the L.I.L. for the finite dimensional projections of the process.

They are quite reasonable conditions.

Proposition 2.1. Let {Xn(t) : t ∈ T}, n ≥ 1, be a sequence of centered, jointly Gaussian

processes. Suppose that:

(i) For each s, t ∈ T , E[Xn(s)Xn(t)] converges as n →∞.

(ii) There is compact set K in l∞(T ) such that, with probability one, the sequence

{(2 log n)−1/2Xn(t) : t ∈ T} is relatively compact and its limit set is K.

Then

(a) (T, ρ) is totally bounded, where ρ(s, t) := sup{|x(s)− x(t)| : x ∈ K}.
(b) limδ→0 lim supn→∞ supρ(s,t)≤δ(2 log n)−1/2|Xn(t)−Xn(s)| = 0 a.s.

(c) supt∈T (2 log n)−1/2|Xn(t)| Pr−→ 0.

If, in addition, {Xn(t) : t ∈ T}, n ≥ 1, is a sequence of independent Gaussian processes,

then

(d)

lim
δ→0

∞∑
n=1

exp

(
− η log n

supρ(s,t)≤δ ‖Xn(t)−Xn(s)‖2
2

)
< ∞ (2.10)

for each η > 0.

Proof. Assertions (a) and (b) follow by Lemma 2.4. By the remark after Lemma 2.4,

(c) follows. If we also assume independence of the sequence of processes, by the Kolmogorov

zero–one law, for each δ > 0, there is a constant c(δ) such that

lim sup
n→∞

sup
ρ(s,t)≤δ

(2 log n)−1/2|Xn(t)−Xn(s)| = c(δ) a.s.

and limδ→0 c(δ) = 0. So, by the lemma of Borel–Cantelli

lim
δ→0

∞∑
n=1

Pr{ sup
ρ(s,t)≤δ

(2 log n)−1/2|Xn(t)−Xn(s)| ≥ η} < ∞

for each η > 0. For a standard normal random variable g, we have that if Pr{|g| ≥ x} ≤ 1/4,

then x−1e2−1x2 ≤ Pr{|g| ≥ x}. So, for n large, and ρ(s, t) ≤ δ,

Pr{ sup
ρ(s,t)≤δ

(2 log n)−1/2|Xn(t)−Xn(s)| ≥ η}

≥ Pr{(2 log n)−1/2|Xn(t)−Xn(s)| ≥ η}

≥ 2−1η−1(2 log n)−1/2‖Xn(t)−Xn(s)‖2 exp

(
− η2 log n

‖Xn(t)−Xn(s)‖2
2

)
,

assuming that the processes are Gaussian. Therefore,

∞∑
n=1

sup
ρ(s,t)≤δ

(
(2 log n)−1/2‖Xn(t)−Xn(s)‖2 exp

(
− η2 log n

‖Xn(t)−Xn(s)‖2
2

))
< ∞
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and (d) follows. 2

Observe that in the previous proposition

ρ(s, t) = lim sup
n→∞

(2 log n)−1/2|Xn(t)−Xn(s)| a.s.

As a consequence of Theorem 2.1, we easily obtain the following:

Theorem 2.2. Let {Xn}∞n=1 be a sequence of centered random vectors with values in a

separable Banach space B. Let X be a another B–valued Gaussian centered random vector.

Assume that the following conditions are satisfied:

(i) (2 log n)−1/2‖Xn‖
Pr−→ 0, as n →∞.

(ii) For each f, g ∈ B∗, limn→∞ E[f(Xn)g(Xn)] = E[f(X)g(X)].

(iii) For each f ∈ B∗ and each η > 0

lim
δ→0

∞∑
n=1

exp

− η log n

sup ‖f‖,‖g‖≤1

‖f(X)−g(X)‖2≤δ
‖f(Xn)− g(Xn)‖2

2

 < ∞.

Then, with probability one, {(2 log n)−1/2Xn}∞n=1 is relatively compact in B and its limit

set is the unit ball K of the reproducing kernel Hilbert space of X.

The observations about the optimality of the conditions in Theorem 2.1 also apply to this

case. In particular, we have the following:

Proposition 2.2. Let {Xn}∞n=1 be a sequence of independent B–valued centered random

vectors and let X be a another B–valued Gaussian centered random vector. Suppose that

lim
n→∞

E[f(Xn)g(Xn)] = E[f(X)g(X)]

for each f, g ∈ B∗. Then, the sequence {(2 log n)−1/2Xn}∞n=1 satisfies the compact L.I.L. if

and only if

(2 log n)−1/2‖Xn‖
Pr−→ 0, as n →∞,

and

lim
δ→0

∞∑
n=1

exp

− η log n

sup ‖f‖,‖g‖≤1

‖f(X)−g(X)‖2≤δ
‖f(Xn)− g(Xn)‖2

2

 < ∞

for each η > 0.

Next, we will consider the laws of the iterated logarithm of the process

{(n2 log log n)−1/2
n∑

j=1

Xj(t) : t ∈ T}

where {Xj(t) : t ∈ T}∞j=1 is a stationary sequence of Gaussian processes.
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Theorem 2.3. Let {Xn(t) : t ∈ T}, n ≥ 1, be a sequence of mean–zero jointly Gaussian

processes. Assume that the following conditions are satisfied:

(i) E[X1(t)Xn(s)] = E[Xm+1(t)Xm+n(s)], for each n,m ∈ IN and each s, t ∈ T .

(ii)
∑∞

n=1 r(n) < ∞, where r(n) = sups,t∈T |E[X1(t)Xn+1(s)]|.
(iii) E[supt∈T |Y (t)|] < ∞, where {Y (t) : t ∈ T} is a mean–zero Gaussian processes with

covariance given by

E[Y (t)Y (s)] =
∞∑

k=−∞
2−1 (|E[X1(t)Xk+1(t)]|+ |E[X1(s)Xk+1(s)]|

−2|E[(X1(t)−X1(s))(Xk+1(t)−Xk+1(s))]|) .

Then, with probability one,

{(n2 log log n)−1/2
[ns]∑
j=1

Xj(t) : 0 ≤ s ≤ 1, t ∈ T} (2.11)

is relatively compact in l∞([0, 1]×T ) and its limit set is the unit ball K of the r.k.h.s. of the

covariance function

R((s1, t1), (s2, t2)) := min(s1, s2)
∞∑

k=−∞
E[X1(t1)Xk+1(t2)].

Proof. Let {Yn(t) : t ∈ T}, n ≥ 1, be a sequence of i.i.d. mean–zero Gaussian processes

with covariance given by E[Yn(t1)Yn(t2)] = E[Y (t1)Y (t2)]. Define Ss(t) =
∑[s]

j=1 Xj(t) and

Us(t) =
∑[s]

j=1 Xj(t), for s > 0 and t ∈ T .

First, we prove that, for each λ > 1, with probability one,

{(λn2 log n)−1/2
[λns]∑
j=1

Xj(t) : 0 ≤ s ≤ 1, t ∈ T} (2.12)

is relatively compact in l∞([0, 1]×T ) and its limit set is K. We apply Theorem 2.1. We have

that for 0 ≤ s1 < s2 ≤ 1 and t1, t2 ∈ T ,

E[(Sλns1(t1)− Sλns2(t2))
2] (2.13)

≤ 2E[(Sλns1(t1)− Sλns1(t2))
2] + 2E[(Sλns1(t2)− Sλns2(t2))

2]

≤ 2[λns1]E[(Y (t1)− Y (t2))
2] + 2([λns2]− [λns1])E[Y 2

1 (t2)]

= 2E[(Uλns1(t1)− Uλns2(t2))
2].

From this inequality, the Gaussian comparison principle (see e.g. Theorem 3.15 in Ledoux

and Talagrand [12]) and the Lévy inequality, we get that

(λn2 log n)−1/2E[ sup
0≤s≤1

sup
t∈T

|Sλns(t)|]
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≤ 4(λn2 log n)−1/2E[ sup
0≤s≤1

sup
t∈T

|Uλns(t)|]

≤ 8(λn2 log n)−1/2E[sup
t∈T

|Uλn(t)|] ≤ 8(2 log n)−1/2E[sup
t∈T

|Y1(t)|] → 0.

So, condition (i) in Theorem 2.1 follows.

It is easy to see that

λ−nE[Sλns1(t1)Sλns2(t2)] → min(s1, s2)
∞∑

k=−∞
E[X1(t1)Xk+1(t2)],

i.e. condition (ii) in Theorem 2.1 holds.

Let 0 < ε < r < 1. If n + nε ≤ m ≤ n + nr, 0 ≤ s1, s2 ≤ 1 and t1, t2 ∈ T,

λ−n/2λ−m/2|E[Sλns1(t1)Sλms2(t2)]| ≤ b2λ−nε/2 → 0,

where b2 := supt∈T E[Y 2(t)] (condition (iii) of Theorem 2.1 holds).

Take ρ((s1, t1), (s2, t2)) := |s1 − s2| + d(t1, t2), where d2(t1, t2) = E[(Y (t1)− Y (t2))
2]. By

hypothesis (iii) and the Sudakov inequality (T, d) is totally bounded. So, ([0, 1]×T, ρ) is also

totally bounded (condition (iv) of Theorem 2.1 follows).

Hypothesis (v) in Theorem 2.1 follows from (2.13). Therefore, the assertion containing

equation (2.12) holds.

From a comparison principle (see e.g. Equation (3.12) in Ledoux and Talagrand [12]) and

the Lévy inequality, we get that

∞∑
k=1

Pr{ sup
[λk]≤n≤[λk+1]

sup
t∈T

|Sn(t)− S[λk](t)| ≥ 16(λ− 1)1/2b(2λk log k)1/2} < ∞.

So,

lim sup
k→∞

sup
[λk]≤n≤[λk+1]

sup
t∈T

(2λk log k)−1/2|Sn(t)− S[λk](t)| ≤ 16(λ− 1)1/2b a.s. (2.14)

By (2.14), given ε > 0, there exists a k0 finite (and maybe random) such that

sup
[λk]≤n≤[λk+1]

sup
t∈T

(2λk log k)−1/2|Sn(t)− S[λk](t)| ≤ 16(λ− 1)1/2b + ε,

for k ≥ k0. Let k ≥ k0 +1 and let [λk] ≤ n ≤ [λk+1]. If 0 ≤ s ≤ [λk0−k−1], then ns, λks ≤ λk0 .

So,

|Sns(t)− S[λk]s(t)| ≤ 2 sup
1≤j≤λk0

|Sj(t)|.

If λk0−k−1 ≤ s ≤ 1, then there exists an integer k1 such that [λk1 ] ≤ [λk]s ≤ [λk1+1]. Then,

[λk1 ] ≤ ns ≤ [λk1+3] . So,

|Sns(t)− Sλks(t)| ≤ 3(16(λ− 1)1/2b + ε)(2λk+2 log(k + 2))1/2.

Hence,

sup
[λk]≤n≤[λk+1]

sup
t∈T

sup
0≤s≤1

|Sns(t)− Sλks(t)|
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≤ 2 sup
1≤j≤λk0

sup
t∈T

|Sj(t)|+ 3(16(λ− 1)1/2b + ε)(2λk+2 log(k + 2))1/2.

Therefore,

lim sup
k→∞

sup
[λk]≤n≤[λk+1]

sup
0≤s≤1

sup
t∈T

(2λk log k)−1/2|Sns(t)− Sλks(t)| (2.15)

≤ 48λ(λ− 1)1/2b a.s.

This limit and the assertion containing equation (2.12) imply the thesis of the theorem. 2

From previous theorem we get immediately the following two corollaries:

Corollary 2.1. Let {ξn}∞n=1 be a stationary sequence of jointly Gaussian mean–zero

random variables. Assume that
∑∞

n=1 |r(n)| < ∞, where r(n) = E[X1Xn+1].

Then, with probability one,

{(n2 log log n)−1/2
[ns]∑
j=1

ξj : 0 ≤ s ≤ 1}

is relatively compact in l∞([0, 1]) and its limit set is{(
σ
∫ s

0
α(u) du

)
0≤s≤1

:
∫ 1

0
α2(u) du ≤ 1

}
,

where σ2 =
∑∞

k=−∞ E[ξ1ξk+1].

Corollary 2.2. Let {Xn(t)}t∈T , n ≥ 1, be a sequence of independent identically dis-

tributed mean–zero Gaussian processes. Then, the following are equivalent:

(a) E[supt∈T |X1(t)|] < ∞.

(b) With probability one,

{(n2 log log n)−1/2
n∑

j=1

Xj(t) : t ∈ T}

is relatively compact in l∞(T ) and its limit set is the unit ball K of the r.k.h.s. of the

covariance function

R(t1, t2) := E[X1(t1)X1(t2)].

Deo [7] obtained Corollary 2.1 under the stronger condition

lim
n→∞

nαr(n) = 0, for some α > 1.

Corollary 2.2 is easily deducible from the L.I.L. for empirical processes (see e.g. Theorem 8.6

in Ledoux and Talagrand [12]).

3. ON THE LOCAL L.I.L. FOR GAUSSIAN PROCESSES.

In this section, we consider the local L.I.L. for Gaussian processes.
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Theorem 3.1. Let {X(t) : t ∈ T} be a centered Gaussian process and let ρ be a

pseudometric on T . Let w be a positive function defined on (0, 1]. Assume that the following

conditions are satisfied:

(i) If t ∈ T and 0 ≤ u ≤ 1, then ut ∈ T .

(ii) For each s, t ∈ T , the following limit exists

lim
u→0+

E

[
X(ut)X(us)

w2(u)

]
=: R(s, t). (3.1)

(iii) For each m ≥ 1, each ε > 0, each t1, . . . , tm ∈ T and each λ1, . . . , λm ∈ IR

lim
r→1−

lim sup
u→0+

sup
v: ue−(log u−1)r≤v≤ue−(log u−1)ε

m∑
j,k=1

λjλkE

[
X(utj)X(vtk)

w(u)w(v)

]
≤ 0. (3.2)

(iv) supt∈T |Z(u, t)| Pr−→ 0 as u → 0+, where

Z(u, t) :=
X(ut)

w(u)(2 log log u−1)1/2
. (3.3)

(v) (T, ρ) is totally bounded.

(vi) For each η > 0, there is a δ > 0 such that

lim sup
θ→1−

∞∑
n=1

exp

 −ηw2(θn) log n

sup s,t∈T

ρ(s,t)≤δ
‖X(θnt)−X(θns)‖2

2

 < ∞. (3.4)

(vii) limu→1− ρ(t, ut) = 0 for each t ∈ T .

Then, with probability one, {Z(u, t) : t ∈ T} is relatively compact in l∞(T ), as u → 0+,

and its limit set in l∞(T ), as u → 0+, is the unit ball K of the reproducing kernel Hilbert

space of the covariance function R(s, t).

Proof. First, we see that condition (ii) implies that R(s, t) is the covariance function of a

self–similar Gaussian process. This fact is similar to Theorem 2 in Lamperti [11]. The differ-

ence is that we do not assume that the function w to be increasing. We refer to this reference

for the definition and main properties of self–similar (also called semi–stable) processes (see

also Mandelbrot and van Ness [13]). We claim that there exists a γ > 0 such that

R(as, at) = aγR(s, t) for each s, t ∈ T and each 0 < a ≤ 1. (3.5)

If R(t, t) = 0 for each t ∈ T , (3.5) is trivially true. Otherwise, there exists a t0 ∈ T such that

R(t0, t0) 6= 0. We have that

lim
u→0+

w2(au)

w2(u)
= lim

u→0+

w2(au)

E[X2(aut0)]

E[X2(aut0)]

w2(u)
=

R(at0, at0)

R(t0, t0)

for each 0 < a < 1. We also have that

ρ2(ut0, t0) = R(ut0, ut0)− 2R(ut0, t0) + R(t0, t0) → 0
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as u → 1−. So, R(t0, ut0) 6= 0, for any u in a left neighborhood of 1. Hence, by e.g. Theorem

1.4.1 in Bingham et al. [4], w(u) is a regularly varying function at 0 and there is a real

number γ such that

lim
u→0+

w2(au)

w2(u)
= aγ, for each a > 0.

Therefore, (3.5) holds. Since (T, ρ) is totally bounded, there are s, t ∈ T such that ρ(s, t) 6= 0.

We have that ρ(as, at) = aγ/2ρ(s, t) for each 0 < a < 1. Since (T, ρ) is totally bounded, γ > 0

(by Theorem 8.5.1 in Bingham et al. [4] γ 6= 0).

Next, we prove that

lim
u→1−

sup
t∈T

ρ(t, ut) = 0. (3.6)

Given ε > 0, take a δ–covering t1, . . . , tp of T , i.e. for each t ∈ T , there is 1 ≤ j ≤ p such

that ρ(t, tj) ≤ δ. We have that

ρ(t, ut) ≤ ρ(t, tj) + ρ(tj, utj) + ρ(utj, ut) ≤ δ(1 + uγ/2) + ρ(tj, utj).

From this and hypothesis (vii), (3.6) follows.

By Theorem 2.1, with probability one, {Z(θn, t) : t ∈ T} is relatively compact in l∞(T )

and its limit set is K, for each 0 < θ < 1. Here, we use hypotheses (ii)–(v.) So, to end the

proof, it suffices to show that there is a constant A(θ) such that

lim sup
n→∞

sup
θn+1≤u≤θn

sup
t∈T

|Z(u, t)− Z(θn, t)| ≤ A(θ) a.s. (3.7)

for each 0 < θ < 1, and A(θ) → 0 as θ → 1−. By hypothesis (vi) and (3.6), given η > 0,

there are δ > 0 and 0 < θ0 < 1 such that

∞∑
n=1

exp

 −ηw2(θn) log n

sup s,t∈T

ρ(s,t)≤δ
‖X(θnt)−X(θns)‖2

2

 < ∞ (3.8)

for each θ0 < θ < 1 and

sup
θ0≤u≤1

sup
t∈T

ρ(t, ut) ≤ δ. (3.9)

We have that

|Z(u, t)− Z(θn, t)| ≤ |X(θnt)−X(ut)|
w(u)(2 log log u−1)1/2

+

∣∣∣∣∣w(θn)(2 log log θ−n)1/2

w(u)(2 log log u−1)1/2
− 1

∣∣∣∣∣ |Z(θn, t)| (3.10)

and
|X(θnt)−X(ut)|

w(u)(2 log log u−1)1/2
≤ w(θn)(2 log log θ−n)1/2

w(u)(2 log log u−1)1/2
|Z(θn, t)− Z(θn, uθ−nt)|.

By Theorem 1.5.2 in Bingham et al. [4]

lim
n→∞

sup
θn+1≤u≤θn

∣∣∣∣∣w(θn)

w(u)

∣∣∣∣∣ = θ−γ/2. (3.11)
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By Lemma 2.5 and hypothesis (iv) and (3.8),

lim sup
n→∞

sup
s,t∈T

ρ(s,t)≤δ

|Z(θn, s)− Z(θn, t)| ≤ (2η)1/2 a.s.

for θ0 < θ < 1. From this and (3.9)

lim sup
n→∞

sup
θn+1≤u≤θn

sup
t∈T

|Z(θn, t)− Z(θn, uθ−nt)| ≤ (2η)1/2 a.s.

for θ0 < θ < 1. Last fact and (3.11) imply that

lim sup
n→∞

sup
θn+1≤u≤θn

sup
t∈T

|X(θnt)−X(ut)|
w(u)(2 log log u−1)1/2

≤ θ−γ/2(2η)1/2 a.s. (3.12)

for θ0 < θ < 1. Again, by Theorem 1.5.2 in Bingham et al. [4]

lim
n→∞

sup
θn+1≤u≤θn

∣∣∣∣∣w(θn)

w(u)
− 1

∣∣∣∣∣ = θ−γ/2 − 1 (3.13)

for each 0 < θ < 1. By Theorem 2.1

lim sup
n→∞

sup
t∈T

|Z(θn, t)| = sup
t∈T

(R(t, t))1/2 a.s. (3.14)

From (3.13) and (3.14), it follows that

lim sup
n→∞

sup
θn+1≤u≤θn

sup
t∈T

∣∣∣∣∣w(θn)(2 log log θ−n)1/2

w(u)(2 log log u−1)1/2
− 1

∣∣∣∣∣ |Z(θn, t)| (3.15)

≤ (θ−γ/2 − 1) sup
t∈T

(R(t, t))1/2 a.s.

for each 0 < θ < 1. Finally observe that (3.10), (3.12) and (3.15) imply (3.7). 2

The comments on Section 2 on optimality of hypotheses apply to previous theorem. Con-

ditions (i) and (ii) more than conditions are part of the set–up. A condition like (iii) is

needed to obtain the L.I.L. for the finite dimensional distributions (see Example 3.1 below).

This condition (iii) is weak enough to allow us to obtain the L.I.L. for self–similar Gaussian

processes under best possible conditions (see Corollary 3.1). Conditions (i) and (ii), and the

compact law of the iterated logarithm with limit set K, imply conditions (iv), (v) and

lim
δ→0

lim sup
n→∞

sup
s,t∈T

ρ(s,t)≤δ

|X(ut)−X(us)|
w(u)(2 log log u−1)1/2

= 0 a.s. (3.16)

with ρ2(s, t) = R(s, s) + R(t, t) − 2R(s, t). Condition (vi) seems to the right condition to

obtain (3.16), since an analogous condition is also sufficient in a similar L.I.L. for empirical

processes (see Arcones [1]). Observe that condition (vi) is satisfied if

lim
δ→0

lim
u→0+

sup
s,t∈T

ρ(s,t)≤δ

‖X(ut)−X(us)‖2

w(u)
= 0. (3.17)

15



Conditions (vii) is a very weak regularity condition. We also must observe that (iii) is implied

for the stronger condition:

(iii)’ For each m ≥ 1, each t1, . . . , tm ∈ T and each λ1, . . . , λm ∈ IR

lim
r→1+
c→0+

lim sup
u→0+

sup
v: ur≤v≤cu

m∑
j,k=1

λjλkE

[
X(utj)X(vtk)

w(u)w(v)

]
≤ 0, (3.18)

which is easier to check and holds in all the examples considered.

In the case that the Gaussian process is self–similar, the hypotheses in the previous

theorem simplify:

Corollary 3.1. Let {X(t) : t ∈ T} be a mean–zero Gaussian process and let γ > 0.

Suppose that the following conditions are satisfied:

(i) If t ∈ T and 0 ≤ u ≤ 1, then ut ∈ T .

(ii) E[X(ut)X(us)] = u2γE[X(t)X(s)] for each 0 ≤ u ≤ 1 and each s, t ∈ T .

(iii) supt∈T |X(t)| < ∞ a.s.

(iv) limu→1− E[X(ut)X(t)] = E[X2(t)] for each t ∈ T .

(v) For each m ≥ 1, each t1, . . . , tm ∈ T and each λ1, . . . , λm ∈ IR

lim sup
u→0+

m∑
j,k=1

λjλku
−γE[X(tj)X(utk)] ≤ 0.

Then, with probability one,{
X(ut)

uγ(2 log log u−1)1/2
: t ∈ T

}

is relatively compact in l∞(T ), as u → 0+, and its limit set, as u → 0+, is the unit ball K of

the reproducing kernel Hilbert space of the Gaussian process {X(t) : t ∈ T}.

Proof. Without loss of generality we may assume that E[X2(t0)] > 0 for some t0 ∈ T . We

apply Theorem 1. Observe that by self–similarity supt∈T
|X(ut)|

uγ(2 log log u−1)1/2 has the distribution

as supt∈T
|X(t)|

(2 log log u−1)1/2 . So, condition (ii) in Theorem 3.1 follows. We also have that by the

Sudakov inequality (see e.g. Theorem 3.18 in Ledoux and Talagrand [12]), (T, ρ) is totally

bounded, where ρ2(t, s) = E[(X(t) − X(s))2]. The rest of the conditions in that theorem

follow trivially. 2

Observe that condition (v) in Corollary 3.1 is satisfied if limu→0+ u−γE[X(t)X(us)] = 0,

for each s, t ∈ T .

Example 3.1. Let T = [0, 1], let g be a standard normal random variable and let γ > 0.

Consider the Gaussian process {X(t) : t ∈ T} defined by X(t) = tγg. This Gaussian process

satisfies conditions (i)–(iv) in Corollary 3.1. However, it does not satisfy neither condition

(v) nor the compact law of the iterated logarithm.
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Example 3.2. Let T be a collection of measurable subsets of IRd. Let λ be the Lebesgue

measure on IRd. Let {X(A) : A ∈ T} be a centered Gaussian process such that

E[X(A)X(B)] = λ(A ∩B).

Suppose that

(i) If 0 ≤ u ≤ 1 and A ∈ T , then uA ∈ T .

(ii) E[supA∈T |X(A)|] < ∞.

It follows from Corollary 3.1, that, with probability one,{
X(uA)

u1/2(2 log log u−1)1/2
: A ∈ T

}

is relatively compact, as u → 0, and its limit set, as u → 0, is the unit of the r.k.h.s. of the

covariance function λ(A ∩B), i.e., the limit set is{(∫
A

α(s1, . . . , sd) dsd · · · ds1

)
A∈T

:
∫

IRd
α2(s1, . . . , sd) dsd · · · ds1 ≤ 1

}
.

Observe that limu→1− λ((uA) ∩ A) = λ(A), for each measurable set A, with finite Lebesgue

measure, because a standard argument based on approximation by open sets. By the Sudakov

minorization (see e.g. Theorem 3.18 in Ledoux and Talagrand [12]), supA∈T λ(A) < ∞. So,

condition (iv) in Corollary 3.1 follows. We also have that u−1/2λ(A ∩ (uB)) ≤ u1/2λ(B) for

each A, B ∈ T . Hence, condition (v) in Corollary 3.1 is satisfied.

In particular, if T = {[0, t1]× · · · × [0, td] : 0 ≤ t1, . . . , td ≤ 1}, the process {X(t) : t ∈ T}
is a Brownian sheet, i.e.

E[X(t)X(s)] =
d∏

j=1

(tj ∧ sj)

for each t, s ∈ [0, 1]d, where t = (t1, . . . , td) and s = (s1, . . . , sd). So, we have that, with

probability one,

{u−1/2(2 log log u−1)−1/2X(ut) : t ∈ [0, 1]d}

is relatively compact, as u → 0, and its limit set, as u → 0, is{(∫ t1

0
· · ·

∫ td

0
α(s1, . . . , sd) dsd . . . ds1

)
t∈[0,1]d

:
∫ 1

0
· · ·

∫ 1

0
α2(s1, . . . , sd) dsd · · · ds1 ≤ 1

}
.

4. A LOCAL LAW OF THE ITERATED LOGARITHM FOR COMPOSI-

TIONS OF GAUSSIAN PROCESSES.

In this section, we consider the law of the iterated logarithm for compositions of Gaus-

sian processes. First, we present a variation of Theorem 3.1, which is more suited for the

applications in this section.

Theorem 4.1. Let {X(t) : t ∈ T} be a centered Gaussian process, let ρ be a pseudometric

on T and let w, τ : (0, 1] → (0,∞) be two functions. Assume that the following conditions

are satisfied:
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(i) If t ∈ T and 0 ≤ u ≤ 1, then ut ∈ T .

(ii) For each s, t ∈ T the following limit exists

lim
u→0+

E

[
X(τ(u)s)X(τ(u)t)

w2(u)

]
=: R(s, t).

(iii) For each m ≥ 1, each ε > 0, each t1, . . . , tm ∈ T and each λ1, . . . , λm ∈ IR

lim
r→1−

lim sup
u→0+

sup
v: ue−(log u−1)r≤v≤ue−(log u−1)ε

m∑
j,k=1

λjλkE

[
X(utj)X(vtk)

w(u)w(v)

]
≤ 0.

(iv)

sup
t∈T

|X(τ(u)t)|
w(u)(2 log log u−1)1/2

Pr−→ 0 as u → 0 + .

(v) (T, ρ) is totally bounded.

(vi) For each η > 0, there is a δ > 0 such that

lim sup
θ→1−

∞∑
n=1

exp

 −ηw2(θn) log n

sup s,t∈T

ρ(s,t)≤δ
‖X(τ(θn)t)−X(τ(θn)s)‖2

2

 < ∞.

(vii) τ(u) is an nondecreasing function, which tends to 0, as u → 0+, and

lim
θ→1−

lim sup
n→∞

∣∣∣∣∣τ(θn+1)

τ(θn)
− 1

∣∣∣∣∣ = 0.

(viii)

lim
θ→1−

lim sup
n→∞

sup
θn+1≤u≤θn

∣∣∣∣∣ w(u)

w(θn)
− 1

∣∣∣∣∣ = 0.

(ix) limu→1− supt∈T ρ(t, ut) = 0.

Then, with probability one,{
X(τ(u)t)

w(u)(2 log log u−1)1/2
: t ∈ T

}
(4.1)

is relatively compact in l∞(T ), as u → 0+, and its limit set is the unit ball K of the

reproducing kernel Hilbert space of the covariance function R(s, t).

The proof of last theorem is very similar to that of Theorem 3.1 and it is omited. If the

function τ(·) is not continuous, last theorem is not just a change of scale in Theorem 3.1.

Next, we recall the definition of r.k.h.s. of a covariance function in the multivariate case.

Let Tj be a parameter set for 1 ≤ j ≤ d. Let Rj,k(tj, tk), 1 ≤ j ≤ k ≤ d, be joint covariance

functions, i.e. Rj,k(tj, tk) = Rk,j(tk, tj) for each tj ∈ Tj and each tk ∈ Tk, and

d∑
j,k=1

p∑
l,m=1

aj,lak,mRj,k(tj,l, tk,m) ≥ 0 (4.2)
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where aj,l ∈ IR and tj,l ∈ Tj, for each 1 ≤ j ≤ d and each 1 ≤ l ≤ p. Then, there are Gaussian

processes {Zj(tj) : tj ∈ Tj}, 1 ≤ j ≤ d, defined in the same probability space, such that

Rj,k(tj, tk) = E[Zj(tj)Zk(tk)], for each tj ∈ Tj and each tk ∈ Tk. Let L be the linear subspace

of L2, generated by {Zj(tj) : tj ∈ Tj, 1 ≤ j ≤ d}. Then, the r.k.h.s. of the joint covariance

functions Rj,k(tj, tk) is the class of functions on T1 × · · · × Td

{(E[Z1(t1)ξ], . . . , E[Zd(td)ξ])t1∈T1,...,td∈Td
: ξ ∈ L} (4.3)

This space is endowed of the inner product

< f1, f2 >:= E[ξ1ξ2],

where fi(t1, . . . , td) = (E[Z1(t1)ξi], . . . , E[Zd(td)ξi]) each t1 ∈ T1, . . . , td ∈ Td and each i = 1, 2.

The unit ball of this r.k.h.s. is

K := {(E[Z1(t1)ξ], . . . , E[Zd(td)ξ])t1∈T1,...,td∈Td
: E[ξ2] ≤ 1}. (4.4)

Theorem 4.2. Let {Xj(t) : t ∈ Tj} be a centered Gaussian process, let ρj be a pseudo-

metric on Tj and let wj, τj : (0, 1] → (0,∞) be two functions, for j = 1, . . . , d. Assume that,

for each 1 ≤ j ≤ d, the conditions in Theorem 4.1 are satified for {Xj(t) : t ∈ Tj}, ρj, wj and

τj. Assume also that the following conditions are satisfied:

(i) For each tj ∈ Tj and each tk ∈ Tk, where 1 ≤ j, k ≤ d, the following limit exists

lim
u→0+

E

[
Xj(τj(u)tj)Xk(τk(u)tk)

wj(u)wk(u)

]
=: Rj,k(tj, tk).

(ii) For each p ≥ 1, each ε > 0, each tj,1, . . . , tj,p ∈ Tj and each λj,1, . . . , λj,p ∈ IR,

lim
r→1−

lim sup
u→0+

sup
v: ue−(log u−1)r≤v≤ue−(log u−1)ε

d∑
j,k=1

p∑
l,m=1

λj,lλk,mE

[
Xj(τj(u)tj,l)Xk(τk(v)tk,m)

wj(u)wk(v)

]
≤ 0.

Then, with probability one,{(
X1(τ1(u)t1)

w1(u)(2 log log u−1)1/2
, . . . ,

Xd(τd(u)td)

wd(u)(2 log log u−1)1/2

)
: t1 ∈ T1, . . . , td ∈ Td

}
(4.5)

is relatively compact in l∞(T1×· · ·×Td) and its limit set is the unit ball K of the reproducing

kernel Hilbert space of the covariance function Rj,k(tj, tk).

Proof. By Lemma 2.1

lim sup
n→∞

d∑
j=1

p∑
l=1

λj,l
Xj(τj(θ

n)tj,l)

wj(θn)(2 log n)1/2
=

 d∑
j,k=1

p∑
l,m=1

λj,lλk,mRj,k(tj,l, tk,m)

1/2

a.s.
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for each 0 < θ < 1, each λj,l ∈ IR and each tj,l ∈ Tj. So, this implies the compact law of the

iterated logarithm for the finite dimensional distributions of the process{(
X1(τ1(θ

n)t1)

w1(θn)(2 log log θ−n)1/2
, . . . ,

Xd(τd(θ
n)td)

wd(θn)(2 log log θ−n)1/2

)
: t1 ∈ T1, . . . , td ∈ Td

}
. (4.6)

The same arguments as in Theorem 3.1 imply the uniform L.I.L. for the process in (4.6).

Again, by the arguments in Theorem 3.1, the blocking, i.e. (3.7), holds for each 1 ≤ j ≤ d.

So, the result follows. 2

From Theorem 4.2, it is easy to get the following law of the iterated logarithm for com-

positions of Gaussian processes.

Corollary 4.1. Let {Xj(t) : t ∈ Tj} be a centered Gaussian process, let ρj be a pseudo-

metric on Tj and let wj, τj : (0, 1] → (0,∞) be functions, for 1 ≤ j ≤ d. Assume that the

conditions in Theorem 4.2 are satisfied. Assume also that:

(i) T1 = · · · = Td−1 = [−M, M ], where M is so large that there is a η > 0 such that

lim sup
u→0+

sup
tj∈Tj

| Xj(τj(u)tj)

wj(u)(2 log log u−1)1/2
| ≤ M − η a.s.

for j = 2, . . . , d.

(ii) τj(u) = wj+1(u)(2 log log u−1)1/2, for j = 1, . . . , d− 1.

Then, with probability one,{
X1 ◦ · · · ◦ Xd(τd(u)td)

w1(u)(2 log log u−1)1/2
: td ∈ Td

}

is relatively compact, as u → 0+, in l∞(Td) and its limit set, as u → 0+, is{
(f1 ◦ · · · ◦ fd(td))td∈Td

: (f1, . . . , fd) ∈ K
}

.

Of course, we could have taken absolute values, before taking a composition, i.e. get

a L.I.L for X1(| · · · (|Xd(τd(u)td)|) · · · |). Another variation is when a Gaussian process is

composed with itself:

Corollary 4.2. Let {X(t) : t ≥ 0} be a mean–zero Gaussian process, let b > 0 and let

γ > 0, γ 6= 1. Assume that the conditions are satisfied:

(i) E[X(ut)X(us)] = u2γE[X(t)X(s)] for each u, s, t ≥ 0.

(ii) sup0≤t≤1 |X(t)| < ∞ a.s.

(iii) limu→1− E[X(ut)X(t)] = E[X2(t)] for each t ≥ 0.

(iv) For each s, t ≥ 0

lim
u→0+

u−γE[X(s)X(ut)] = 0.
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Then, with probability one,

{ X(|X(ut)|)
uγ2(2 log log u−1)(γ+1)/2

: 0 ≤ t ≤ b} (4.7)

is relatively compact, as u → 0+, in l∞([0, b]) and its limit set is

{(α(|β(t)|))0≤t≤b : (α, β) ∈ K}

where K is the unit ball of the r.k.h.s. of the process {(X(s), Y (t)) : 0 ≤ s ≤ M, 0 ≤ t ≤ 1},
{Y (t) : t ∈ IR} is an independent copy of the process {X(t) : t ∈ IR} and M2 > E[X2(b)].

Moreover, with probability one,{
X(|X(ub)|)

uγ2(2 log log u−1)(γ+1)/2
:

}
(4.8)

is relatively compact, as u → 0+ and its limit set is [−σ, σ], where

σ := sup
0≤r≤m(b)

m(r)(1− r2(m(b))−2)1/2 a.s. (4.9)

and m(t) = (E[X2(t)])1/2.

Proof. Assume that 0 < γ < 1 (the case γ > 1 is similar). Let τ(u) = uγ(2 log log u−1)1/2.

By Theorem 4.2 and the conditions checked in Corollary 3.1, in order to prove the first part

of the claim, it suffices to show that

E

[
X(τ(u)s)X(ut)

(τ(u))γuγ

]
→ 0, as u → 0+, (4.10)

for each s, t ≥ 0, and that

sup
ur≤v≤cu

∣∣∣∣∣E
[
X(τ(u)s)X(vt)

(τ(u))γvγ

]∣∣∣∣∣→ 0 as u → 0+, (4.11)

and

sup
ur≤v≤cu

∣∣∣∣∣E
[
X(τ(v)s)X(u)t)

(τ(v))γuγ

]∣∣∣∣∣→ 0, as u → 0+, (4.12)

for each s, t ≥ 0, where 1 < r < γ−1 and 0 < c < 1. By hypotheses (i) and (iv)

E

[
X(τ(u)s)X(ut)

(τ(u))γuγ

]
= E

[
X(s)X((u/τ(u))t)

(u/τ(u))γ

]
→ 0 as u → 0 + .

(4.11) and (4.12) follow by the same argument.

To show (4.8), it suffices to show that

{α(|β(b)|) : (α, β) ∈ K} = [−σ, σ]. (4.13)
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Let L1 be the linear subspace of L2 generated by {X(s) : 0 ≤ s ≤ M}. Let L2 be the linear

subspace of L2 generated by {X(t) : 0 ≤ t ≤ b}. Then, it is easy to see that

K = {(E[X(s)ξ1], E[Y (t)ξ2])0≤s≤M, 0≤t≤b : ξ1 ∈ L1, ξ2 ∈ L2, E[ξ2
1 + ξ2

2 ] ≤ 1}.

It follows from this that {α(|β(b)|) : (α, β) ∈ K} is a symmetric closed interval. Hence, it

suffices to show that

sup{α(|β(b)|) : (α, β) ∈ K} = σ. (4.14)

Given ξ1 ∈ L1 and ξ2 ∈ L2 such that E[ξ2
1+ξ2

2 ] ≤ 1, let α(s) = E[X(s)ξ1], let β(t) = E[X(t)ξ2]

and let r = |β(b)|. By the Cauchy–Schwarz inequality

r ≤ m(b)‖ξ2‖2 ≤ m(b), (4.15)

‖ξ1‖2
2 ≤ 1− ‖ξ2‖2

2 ≤ 1− (m(b))−2r2

and

|α(r)| ≤ m(r)‖ξ1‖2 ≤ m(r)(1−m−2(b)r2)1/2 ≤ σ.

So, in (4.14), the left hand side is smaller o equal than the right hand side. Given 0 ≤ r ≤
m(b), if

ξ1 = (m(r))−1(1− (m(b))−2r2)1/2X(r) and ξ2 = rm−2(b)Y (b),

then α(β(b)) = m(r)(1− (m−2(b))−2r2)1/2. So, (4.14) follows. 2

Example 4.1. A mean–zero Gaussian process {X(t) : t ≥ 0} is called a fractional

Brownian motion of order γ, 1/2≤ γ ≤ 1, if its covariance is given by

E[X(t)X(s)] = 2−1(t2γ + s2γ − |t− s|2γ), s, t ≥ 0. (4.16)

This process was introduced in Mandelbrot and van Ness [13]. It is very easy to see that

previous corollary applies to this process, if 1/2 ≤ γ < 1: given b > 0, with probability one,

X(|X(ub)|)
uγ2(2 log log u−1)(γ+1)/2

is relatively compact, as u → 0+ and its limit set is [−σ, σ] where σ = bγ2
γγ/2(γ + 1)−(γ+1)/2.
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