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1. INTRODUCTION.

We consider different kinds of laws of the iterated logarithm (L.I.L.) for Gaussian pro-
cesses. In the considered situations the limit set is the unit ball of a reproducing kernel
Hilbert space (r.k.h.s.) of a covariance function. So, first we will review the definition of this
concept. Let T be a parameter set and let R(s,t) be a covariance function defined on T'x T,

ie.
> > ajapR(t;, k) >0 (1.1)
j=1k=1

for each ay,...,a, € IR and each ty,...,t,, € T. Then, there exists a mean—zero Gaussian

process {Z(t) : t € T} such that E[Z(s)Z(t)] = R(s,t) for each s,t € T. Let L be the linear
subspace of Ls, generated by {Z(t) : t € T'}. Then, the reproducing kernel Hilbert space
(rk.h.s.) of the covariance function R(s,t) is the following class of functions on 7'

{(E[Z(t)])er : € € L} (1.2)

This space is endowed of the inner product

< f1, fo >= E[&i&), (1.2)

where f;(t) = E[Z(t)&;] for each t € T and each i = 1,2. The unit ball of this r.k.h.s. is
K :={(E[Z(t)¢])ier : € € L and E[?] <1}, (1.4)

We refer to Aronszajn [3] for more in r.k.h.s.’s.

In Section 2, we consider the compact L.I.L. for Gaussian processes and random vectors
with values in a separable Banach space. Given a sequence {X,(t) : t € T}, n > 1, of jointly
Gaussian processes (any linear combination of the random variables X,,(t), n € IN, t € T, is
Gaussian), we examine the problem of when there exists a compact set K, such that, with
probability one, the sequence {(2logn)~Y/2X,(t) : t € T} is relatively compact in lo(7T)
and its limit set is K, where [ (T") is the Banach space consisting of the uniformly bounded
functions on 7" with the norm ||z||o := sup,cp |2(¢)]. This problem has been considered before
by several authors: Nisio [15], Oodaira [16], Lai [9], [10], Mangano [14] and Carmona and
Kono [6], among others. Here, we present some sufficient conditions for the L.I.L. of sequences
of Gaussian processes, which are simpler than those from these authors, and have some
optimality properties. We also consider the L.LL. of {(2nloglogn)™/23" | X;(t) : t € T},
where {X,,(t) : t € T'} is a stationary sequence of Gaussian processes.

In Section 3, we discuss the local L.I.L. for a Gaussian process. We say that a subset
{z(u) : 0 < u < 1} of metric space is relatively compact as u — 0+, if any sequence of
positive numbers {u,}>°, converging to 0, has a further subsequence {u,, }3>, such that
x(un, ) converges as k — oo. Let T be a parameter set which is a subset of a space having a
scalar product defined for t € T and 0 < u < 1. Let {X(¢) : t € T} be a Gaussian process
indexed by T'. Our main result is to give some sufficient conditions in order that the process



{(w(u))"*(2loglogu)"Y2X (ut) : t € T} is a.s. relatively compact (as u — 0+) and its
limit set (for all sequences of positive numbers converging to zero) is the unit ball of a r.k.h.s.,
where w(u) is a weight function. Of course, there is nothing particular about 0, we could
have chosen another number, even infinity. A particular case, we will consider, is the local
law of the iterated logarithm for self-similar processes.

In Section 4, we apply the results in the previous section to the study of the L.I.LL. for
compositions of Gaussian processes.

2. ON THE STRASSEN LAW OF THE ITERATED LOGARITHM FOR
SEQUENCES OF GAUSSIAN RANDOM PROCESSES.

First, we consider the case of a sequence of jointly Gaussian random variables. The

following lemma extends Theorem 2 in Lai [9] (see also Theorem 2 in Nisio [15]).

Lemma 2.1. Let {£,}22, be a sequence of centered, jointly Gaussian random variables.
Assume that:
(1) lim,, oo E[£2] exists.

(ii) For each 0 < e < 1,

lim limsup sup El&.én] <0. (2.1)
r—=1— nooo’ m: ntne<m<n+tn”
Then,
limsup(2logn)~Y%¢, = o as. (2.2)

where 02 := lim,, .., E[¢2].

Proof. Since -
> Pr{(2logn) 26| > 0 4+ n} < oo,

n=1

for each n > 0, by the lemma of Borel-Cantelli,

lim sup(2logn)~Y2|¢,| < o as. (2.3)

n—o0

This proves the lemma in the case 0 = 0. If o # 0, we may assume, without loss of generality,
that F[¢?] =1 for each n. Given 0 <7 < 1/3, take 0 < e <r <1 < g < p such that

e<plp+q) ™, 1-n<(p-Dp+q9~ " (p+a—Dp+q ' <r (2.4)

and
lim sup sup El&:.&m] < n. (2.5)

n—00 m: n+nt<m<n+n”

For example, take

p=0B-m)" q=14+n,0<e<B-n)B+n) " and3(3+n)"' <



Then, there exists ko such that n +n® < m < n +n", where n = [k%(k? + j;)] and m =
[k1(kP + ja)], for each 1 < j; < jo < (k+ 1)?» — kP and each k > ko. Hence, by (2.5), we have
that

El&wawr i€ raertion) < 1

for each k > ko and each 1 < j; < jo < [(k+ 1)? — kP]. Let g¢,91, 9o, ... be independent
centered normal random variables such that

El¢’l =n and E[gi]=1—n, for k> 1.

We have that
El€war+i&ikair+inn) < El(g + 95,)(9 + g51)]

for each 1 < j; < jo < (k+ 1) — kP; and

E[S[QIgQ(kp+j)]] =1= E[(g + gj)2]7

for each 1 < j < (k+ 1)?» — kP. So, by the Slepian lemma (see e.g. Corollary 3.12 in Ledoux
and Talagrand [12]),

UEP £ D) Y2600 < (1 —
Pri _ _max  (2log([k*(K" + 7)) Epagrw+y) < (1= 3n)}

) _ p+q\\1/2
<Prl__max | Guaosy) < (1 20)(2log(k")"?)

< )< (1 — p+q\)1/2
<Pri _ _pax (9+g;) < (1—2n)(Zlog(k")) "}

< Pr{g < —n(2log(k")'*} + Pr{ __max  g; < (1—n)(2log(k"))"*}.

By the usual bound on the tail of a normal distribution
3" Pr{g < —5(2log(k"* )12} < oo
k=1

(by (2.4) 1 < n(p+ q)). We also have that

< (1-— p+a\\1/2
Pr{lﬁjﬁ[{gfi() 7kp}g]_(1 n)(21og(k"™)) "=}

= (Pr{gh < (1 — 77)(2 10g<kp+q))1/2})[(k:+1)p_kp]

< exp (—=[(k+ 1) = k] Pr{g: > (1 —n)(2log(k"*7))"/2}) .

Again, by the usual bound on the tail of a normal distribution

S~ exp (— [0+ 17 = 1] Pr{gs > (1 = n)(2log(k7)) /%)) < oo



Therefore,

S UEP + O Y2 ame < (1 —
k;Pr{lgjg[l(g%p_m(ﬂog([k (K + )™ *Epaqre+iy < (1= 3n)} < o0

and the result follows from this, the lemma of Borel-Cantelli and (2.3). O

The difference between Lemma 2.1 and Theorem 2 in Lai [9] lies in condition (ii). In
Theorem of Lai [9], the author impose the stronger condition

limsup FE[§.6,] < 0. (2.6)

In the study of self-similar Gaussian processes, we need a weaker condition. For example if

{B(t) : 0 <t < 1} is a Brownian motion and &, = 2"/2B(27") 4 2"B(272"), then E[£2] — 2

and E[¢,&2,] — 1. In this case condition (2.6) is not satisfied, but condition (2.1) is.
Obviously, some condition similar to (2.1) is needed. If {; = & for each j > 1, then

lim (2log n) 2|, =0 as.

The following example shows that condition (2.1) is sharp. Let {g;}32, be a sequence of
iid.r.v.s with standard normal distribution. Fix p > 1, let ny = [k*~!]. Define &, = g; if
Zle n<n< ijll n; and n = Zle n; + j. Then Z?Zl n; ~ p~1kP. Hence,

k1
limsup(2log n) /2¢, = limsup(2log > n;)~2gy = p~ /% as.
n—oo k—oo =1

We have that E[¢2] =1 and

lim sup sup |E[¢.6m]| =0,

n—o0  m:n<m<n+n”

for 0 < r < p~'(p—1), but (2.2) is not satisfied. Of course, (2.1) does not hold for this
sequence:

lim lim sup sup El.6n] =1,

r=l= nooo m: n+n"<m<n+n¢
for 0 < e <p~'(p—1). So, Lemma 2.1 is not true if the group of words ”for each 0 < € < 17
is substituted by "for some 0 < € < 17.

A standard argument (see the proof of Lemma 2 in Finkelstein [8]) gives the compact
L.IL. in the finite dimensional case:

Lemma 2.2. Let {¢, = (¢1),... . &@)}2 | be a sequence of centered jointly Gaussian
random vectors with values in IR?. Assume that

(i) For each 1 < j,k < d, E[¢V)¢)] converges as n — oo.

(i) For each A,...,As € R and each 0 <e <1

d
lim limsup sup Z )\j)\kE[fflj)fgf)] <0.

r—l— npnooo m: n+ne<m<n+n’ ;._
- Jvk_l
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Then, with probability one, {(2logn)~'/2¢,} is relatively compact and its limit set is the
unit ball K of the reproducing kernel Hilbert space of the covariance function
R(s,t) = limy, o0 0 oy 5t BIEPER], where s = (s1,...,50) and ¢ = (t1,... ,tq).

To get the compact L.I.L. for processes, we need the following two consequences of the
Ascoli-Arzela theorem (see e.g. Theorems 4.1 and 4.3 in Arcones and Giné [2]):

Lemma 2.3. Let {X,,(t):t € T}, n > 1, be a sequence of random processes indexed by
T. Let p(s,t) be a pseudometric in 7. Let K be a compact subset of the space C,(T, p) of
uniformly bounded and uniformly continuous functions on (7', p). Assume that the sequence
of processes {X,,(t) : t € T'} satisfies the following conditions:

(i) (T, p) is totally bounded.

(ii) limgs—o lim Sup,, oo SUP(¢, 1,)<s | Xn(t1) = Xn(t2)| =0 as.

(iii) For each m € IN and each t;,...,t,, € T, with probability one, the sequence
{(Xn(t1), ..., Xn(tm))}o is relatively compact in JR™ and its limit set is {(x(t1), ..., z(tm)) :
r e K}.

Then, with probability one, the sequence {X,,(t) : t € T'} (whose terms are eventually a.s.
in l(7)) is relatively compact in l,(7") and its limit set is K.

Lemma 2.4. Let {X,(t) :t € T}, n > 1, be a sequence of stochastic processes indexed
by T'. Suppose that

(i) There is a set K C l(T") such that for each ¢y,...,t, € T, the sequence
{(Xn(t1), ..., Xo(tm))}22, is a.s. relatively compact in IR™ and its limit set is
{(z(t1),...,z(tm)) : x € K}.

(ii) There is a set L such that, with probability one, the sequence {X,(t) : t € T} is
relatively compact in [ (7") and its limit set is L.

Then,

(a) (T, p) is totally bounded where p(t,s) = sup,cg |2(t) — z(s)|, t,s € T,

(b) lims .o im sup,,_, .. SUp; <5 [ Xn(t) — Xn(s)| =0 ass.

(c) The set L coincides with the set K and is compact.

Lemma 2.3 (maybe in a less abstract version) has been used by many authors in similar sit-
uations. Lemma 2.4 was probably introduced in the cited reference. Observe that conditions
(a) and (b) in Lemma 2.4, and X, (t) — 0 for each t € T, imply that supser | Xn(t)| 50.
This follows from the fact that condition (b) in Lemma 2.4 implies that

lim limsup Pr{ sup |X,(s) — X,(¢t)|>n} =0
0—0 n—oo p(s,t)<6
for each n > 0.
We also need the following upper bound on the tail probability of a Gaussian process (see
e.g. Lemma 3.1 in Ledoux and Talagrand [12]) (a more refined inequality on the tail of a

Gaussian process is in Borell [5]):



Lemma 2.5. Let {X(¢) : t € T'} be a centered Gaussian process. Let M be the median
of sup,ep | X (¢)] and let 0? = sup,c E[X?(t)]. Then, for each u > 0,

2
Pr{|sup|X ()] — M| > u} < exp (5 | .
teT 202

Now, we are ready to prove a compact L.I.L. for Gaussian processes.

Theorem 2.1. Let {X,,(f) : t € T}, n > 1, be a sequence of Gaussian processes and let
p be a pseudometric on T'. Suppose:

(i) sup,cp(2logn) ™2 X, (t)] =5 0.

(i) For each s,t € T, E[X,,(s)X,(t)] converges as n — oc.

(iii) For each d > 1, each 1 > € > 0, each ty,...,t4 € T and each A\q,...,\; € R,

lim lim sup sup Z MM E[ X ()Xo (t)] < 0 (2.7)

r—l— npnoco m: n—i-nﬁgmgn—&—nT]k, 1

(iv) (T, p) is totally bounded.
(v) For each n > 0,

I nlogn
lim ) exp <— ) < 0, (2.8)
=025 SUP (s 1y<s [ Xn (1) = Xn(5)]13

where || X |2 := (E[X?])"/2.

Then, with probability one, {(2logn)~/2X,(t) : t € T} is relatively compact and its
limit set is the unit ball K of the reproducing kernel Hilbert space of the covariance function
R(s,t) = lim, o E[Xn(5) X, (1)].

Proof. By Lemmas 2.1 and 2.3 (and hypotheses (ii)—(iv)), it suffices to show that

hmhmsup sup (2logn) 2| X, (t) — X, (s)| =0 a.s.

6—=0 n—oo p(s,t)<é

By the lemma of Borel-Cantelli, it suffices to show that, for each 7, there is a 6 > 0 such that

f: Pr{ sup (2logn) 2| X,(t) — Xn(s)| > 1} < cc.

n=1  p(s;t)<é
This follows from Lemma 2.5, using hypotheses (i) and (v). O
A choice of pseudometric, intrisic to the problem, is p(s,t) = lim,_ o || X, (t) — X, (5)]]2-

Condition (i) in Theorem 2.1 can be restated in terms of majorizing measures (see Talagrand
[17]). Condition (v) is satisfied if

limlimsup sup || X,(t) — X,(s)||2 =0. (2.9)

0—=0 n—oo p(s,t)<d



Next, we will discuss the optimality of the conditions in Theorem 2.1. Hypotheses (ii)
and (iii) are conditions to get the L.I.L. for the finite dimensional projections of the process.

They are quite reasonable conditions.

Proposition 2.1. Let {X,,(¢) : t € T}, n > 1, be a sequence of centered, jointly Gaussian
processes. Suppose that:

(i) For each s,t € T, E[X,,(s)X,(t)] converges as n — o0.

(ii) There is compact set K in l(T) such that, with probability one, the sequence
{(21logn)~Y/2X,,(t) : t € T} is relatively compact and its limit set is K.

Then

(a) (T, p) is totally bounded, where p(s,t) := sup{|z(s) — z(t)| : . € K}.

(b) lims_o limsup,, ., sup,, »<5(2logn) /2| X,(t) — Xu(s)| = 0 as.

(€) suprer(2logn) 2|, (1) £ 0.

If, in addition, {X,(¢) : t € T}, n > 1, is a sequence of independent Gaussian processes,
then

(d)

e nlogn
lim ) exp (— ) < 0 (2.10)
=0 2= SUD (s 1y<s [ Xn (1) = X ()13

for each n > 0.

Proof. Assertions (a) and (b) follow by Lemma 2.4. By the remark after Lemma 2.4,
(c) follows. If we also assume independence of the sequence of processes, by the Kolmogorov
zero—one law, for each § > 0, there is a constant ¢(J) such that

limsup sup (2logn) V2| X,(t) — X,.(s)| = ¢(8) as.

n—oo p(s,t)<s

and lims_ ¢(0) = 0. So, by the lemma of Borel-Cantelli

[e.9]

lim 3" Pr{ sup (2logn) V2| X,(t) — X,.(s)| > n} < oo
=002 p(sit)<s

for each n > 0. For a standard normal random variable g, we have that if Pr{|g| > z} < 1/4,
then 2 'e? '** < Pr{|g| > z}. So, for n large, and p(s,t) < 6,

Pr{ sup (2logn) "X, (t) — Xu(s)| = n}

p(s,t)<é
> Pr{(2logn) | X,(t) — X (s)| = n}

B n?logn )
1 Xn(t) = Xa(s)l3)

> 971y (2log n) Y2 X (£) = Xo(s) 2 exp (

assuming that the processes are Gaussian. Therefore,

[e.9]

2
_ n*logn
sup | (2logn) V2| X, (t) — X (s)]||2 exp (— )) < 00
<>< )0 = 150(t) = Xu(s)I13
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and (d) follows. O
Observe that in the previous proposition

p(s,t) = limsup(2logn) V2| X,(t) — Xa(s)| a.s.

n—oo

As a consequence of Theorem 2.1, we easily obtain the following:

Theorem 2.2. Let {X,}>°, be a sequence of centered random vectors with values in a
separable Banach space B. Let X be a another B—valued Gaussian centered random vector.
Assume that the following conditions are satisfied:

(i) (2logn) 2| X, || =5 0, as n — .

(ii) For each f,g € B*, lim, . E[f(X,)g9(X,)] = E[f(X)g(X)].

(iii) For each f € B* and each nn > 0

lim i exp | — nlogn
=07 Sup - jifiLligli<t 1f(Xn) — g(X0)|I3
[If(X)=g(X)]|2<0

Then, with probability one, {(2logn)~/2X,,}°, is relatively compact in B and its limit
set is the unit ball K of the reproducing kernel Hilbert space of X.

The observations about the optimality of the conditions in Theorem 2.1 also apply to this
case. In particular, we have the following:

Proposition 2.2. Let {X,,}22; be a sequence of independent B—valued centered random
vectors and let X be a another B—valued Gaussian centered random vector. Suppose that

lim E[f(X,)g(X,)] = E[f(X)g(X)]

n—oo

for each f,g € B*. Then, the sequence {(2logn)~'/2X,}> | satisfies the compact L.IL. if
and only if
(2logn) V2|X, | 250, as n — oo,

and

lim i exp nlogn
X J—
6=0-"71 sup  pigr<r (X)) — 9(X0)lI3
If(X)—g(X)]|2<d

< 00

for each n > 0.

Next, we will consider the laws of the iterated logarithm of the process

{(n2loglogn)~/? zn:Xj(t) teT}

J=1

where {X;(t) : t € T}52, is a stationary sequence of Gaussian processes.

9



Theorem 2.3. Let {X,,(t):t €T}, n> 1, be a sequence of mean—zero jointly Gaussian
processes. Assume that the following conditions are satisfied:

(i) E[X1()Xn(8)] = E[Xpmi1(t) Ximan(s)], for each n,m € IN and each s,t € T.

(i) 522, 7(n) < 00, where r(n) = sup, ez [E[X4 (6) Xos (5)].

(ili) Elsup,er |Y(t)|] < oo, where {Y () : t € T'} is a mean-—zero Gaussian processes with
covariance given by

EY@OY(s)] = 3 27 (EXG(0) Xk ()] + B (5) X ()]

k=—o0

—2[E[(X1(t) — X31(5)) (Xp4a (£) — Xy (s))]]) -
Then, with probability one,

[ns]
{(n2loglogn)~/? dX;(t):0<s<1, teT} (2.11)

j=1

is relatively compact in 1o ([0, 1] x T') and its limit set is the unit ball K of the r.k.h.s. of the
covariance function

[e.9]

R((s1,t1), (52, t2)) := min(sy, 82) Y E[X1(t1) Xpy1(t2)]-

k=—o0

Proof. Let {Y,(t):t € T}, n > 1, be a sequence of i.i.d. mean-zero Gaussian processes
with covariance given by E[Y,(t1)Y,(t2)] = E[Y (t1)Y (t2)]. Define Sq(t) = 2511 X;(t) and
Us(t) = X5, X5(t), for s > 0 and t € T

First, we prove that, for each A > 1, with probability one,

D]
{(A"2logn) ™23 X;(t):0<s<1, teT} (2.12)
j=1
is relatively compact in I ([0, 1] x T") and its limit set is K. We apply Theorem 2.1. We have
that for 0 < s; < s <1 and t1,t5 € T,
E[(Sxns (1) = Sansy (2))°] (2.13)

< 2B[(Sxnsy (1) = Sansy (£2))7] + 2E[(Sxrns, (t2) — Sy (£2))7]
< 2N E[(Y (1) = Y (t2))%] + 2([\"s2] — [\"s]) E[YY(t2)]
= 2E[(Unns, (t1) — Unnsy (12))7].

From this inequality, the Gaussian comparison principle (see e.g. Theorem 3.15 in Ledoux
and Talagrand [12]) and the Lévy inequality, we get that

(\"2logn) ™2 E[ sup sup [Sy(t)]]

0<s<1 teT

10



< 4(\"2logn) 2 E( sup sup ey (t)]]

< 8(\"2log )™ Elsup [U: (t)]] < 8(2log n)~*Efsup [Y1(#)[] — 0.

So, condition (i) in Theorem 2.1 follows.
It is easy to see that

)\_nE[S)\n51 (tl)SAnSQ(tQ)] — miH(Sl,SQ) Z E[Xl(tl)X]H_l(tQ)],
k=—00
i.e. condition (ii) in Theorem 2.1 holds.
Let 0<e<r<l.Ifn+n <m<n+4+n",0<s,5 <1landttyeT,

AN B[Sy, (t1) Sy (£2)]] < BPAT/2 = 0,

where b? := sup,cp E[Y2(¢)] (condition (iii) of Theorem 2.1 holds).

Take p((s1,t1), (s9,t2)) := |81 — sa| + d(t1,t2), where d*(ty,t2) = E[(Y (t1) — Y (t2))?]. By
hypothesis (iii) and the Sudakov inequality (7', d) is totally bounded. So, ([0,1] x T, p) is also
totally bounded (condition (iv) of Theorem 2.1 follows).

Hypothesis (v) in Theorem 2.1 follows from (2.13). Therefore, the assertion containing
equation (2.12) holds.

From a comparison principle (see e.g. Equation (3.12) in Ledoux and Talagrand [12]) and
the Lévy inequality, we get that

> Pr{ sup  sup|S,(t) — Spy(t)| > 16(\ — Y252\ log &)%) < oo0.
k=1 [NF]<n<[ARH] €T
So,
limsup  sup  sup(2\¥log k)~V2|S, (1) — Spw(t)] < 16(A — Y2 as. (2.14)

k—oo  [AF]<n<[\kH1] tET
By (2.14), given € > 0, there exists a ky finite (and maybe random) such that

sup  sup(2\*log k) ~?|S, (t) — Spwy(t)] < 16(A — DY2b +
[AF]<n<[ARHI] teT
for k > ko. Let k > ko+1 and let [\¥] <n < M. If 0 < s < [A7F71] then ns, \¥s < \ko,
So,
| Sns(t) — S[Ak}s(t)‘ <2 sup ’Sj(t)‘-

1<j<Ak0
If Mo—k=1 < g < 1, then there exists an integer ki such that [A1] < [M¥]s < [\F1F1]. Then,
[A] < ms < [ABF9] L So,

1S5 (1) — Saes(t)] < 3(16(N — 1)Y2b + €) (202 log(k 4 2))Y/2.
Hence,

sup  sup sup [Sps(t) — Syks(t)|
M| <n<[\E+1] teT 0<s<1

11



<2 sup supl|S;(t)] +3(16(\ — 1)%b + €)(2A¥ 2 log(k + 2)) /2.

1<j< ko teT
Therefore,
limsup  sup sup sup(2X\*log k) Y2|S,4(t) — Syes(t)] (2.15)

k—oo  [Ak]<n<[A+1]0<s<1 teT
<48 —1)Y% as.

This limit and the assertion containing equation (2.12) imply the thesis of the theorem. O
From previous theorem we get immediately the following two corollaries:

Corollary 2.1. Let {£,}5°, be a stationary sequence of jointly Gaussian mean-zero
random variables. Assume that >0, |r(n)| < oo, where r(n) = E[X1X,11].
Then, with probability one,

[ns]

{(n2loglogn) 23 ¢ :0<s <1}

J=1

is relatively compact in ([0, 1]) and its limit set is

{(J/Osa(u)du) : /Olaz(u)dugl},
0<s<1
where 02 = %% E[&1&p 1]

Corollary 2.2. Let {X,(t)}er, n > 1, be a sequence of independent identically dis-
tributed mean—zero Gaussian processes. Then, the following are equivalent:

(a) Elsup,er [X1(0)]] < oc.

(b) With probability one,

{(n2loglogn) 23" X;(t): te T}
=1

is relatively compact in [(7) and its limit set is the unit ball K of the r.k.h.s. of the
covariance function

R(ti,t) == E[X,) (1) X, (L)).

Deo [7] obtained Corollary 2.1 under the stronger condition

lim n%(n) =0, for some « > 1.

n—oo

Corollary 2.2 is easily deducible from the L.I.L. for empirical processes (see e.g. Theorem 8.6
in Ledoux and Talagrand [12]).

3. ON THE LOCAL L.I.L. FOR GAUSSIAN PROCESSES.

In this section, we consider the local L.I.L. for Gaussian processes.

12



Theorem 3.1. Let {X(t) : t € T} be a centered Gaussian process and let p be a
pseudometric on T'. Let w be a positive function defined on (0, 1]. Assume that the following
conditions are satisfied:

() IfteTand 0 <u <1, thenuteT.

(ii) For each s,t € T, the following limit exists

lim F
u—0+

lW] —: R(s,1). (3.1)

(iii) For each m > 1, each € > 0, each t,...,t,, € T and each Ay, ..., \,, € R

L X (ut;) X (vt
lim lim sup sup > NME [(u])(vk)] <0. (3.2)
=l w0 v:ue=(osu™H” <y<ye—(logu™h)e jp—1 HJ(U)U)(/U>

(iv) supyer | Z(u, t)| 2,0 as u — 04, where

X (ut)

Z(u,t) := ) 3.3
(1) w(u)(2loglogu=1)1/2 (3.3)
(v) (T, p) is totally bounded.
(vi) For each n > 0, there is a 6 > 0 such that
0 2(on
. —nw*(0") logn
lim su ex < . 34
RIS o e [X(070) = X(0ns)3 (34)
P 5,t)<

(vii) limy, ;- p(t,ut) = 0 for each t € T

Then, with probability one, {Z(u,t) : t € T} is relatively compact in l(T), as u — 0+,
and its limit set in Ioo(T), as v — 0+, is the unit ball K of the reproducing kernel Hilbert
space of the covariance function R(s,t).

Proof. First, we see that condition (ii) implies that R(s,t) is the covariance function of a
self-similar Gaussian process. This fact is similar to Theorem 2 in Lamperti [11]. The differ-
ence is that we do not assume that the function w to be increasing. We refer to this reference
for the definition and main properties of self-similar (also called semi-stable) processes (see
also Mandelbrot and van Ness [13]). We claim that there exists a v > 0 such that

R(as,at) = a"R(s,t) for each s,t € T and each 0 < a < 1. (3.5)

If R(t,t) =0 for each t € T, (3.5) is trivially true. Otherwise, there exists a ¢ty € 1" such that
R(to,to) # 0. We have that

lim w?(au) ~ lim w?(au)  E[X?*(auty)] _ Rlaty, aty)
u—0+ w2(u) u—0+ E[XQ(auto)] w2<u> R(to,to)

for each 0 < a < 1. We also have that
p?(utg, to) = R(uto,uty) — 2R (utg, o) + R(to,to) — 0

13



as u — 1—. So, R(tg, uty) # 0, for any w in a left neighborhood of 1. Hence, by e.g. Theorem
1.4.1 in Bingham et al. [4], w(u) is a regularly varying function at 0 and there is a real
number v such that
w?(au)
u—0+ wQ(U)
Therefore, (3.5) holds. Since (7', p) is totally bounded, there are s,t € T such that p(s,t) # 0.
We have that p(as, at) = a?/?p(s,t) for each 0 < a < 1. Since (T, p) is totally bounded, v > 0
(by Theorem 8.5.1 in Bingham et al. [4] v # 0).
Next, we prove that

=a’, for each a > 0.

lim sup p(t, ut) = 0. (3.6)

u—1— teT
Given € > 0, take a d—covering t,...,t, of T, i.e. for each t € T, there is 1 < 57 < p such
that p(t,t;) < 0. We have that

p(t,ut) < p(t,ts) + p(ty, uty) + pluty, ut) < 6(1+u"?) + p(t;, uty).

From this and hypothesis (vii), (3.6) follows.

By Theorem 2.1, with probability one, {Z(0",t) : t € T} is relatively compact in [ (7")
and its limit set is K, for each 0 < # < 1. Here, we use hypotheses (ii)—(v.) So, to end the
proof, it suffices to show that there is a constant A(#) such that

limsup sup supl|Z(u,t) — Z(0",t)| < A(f) a.s. (3.7)
n—oo  gntl<y<gn teT

for each 0 < 6 < 1, and A(f) — 0 as # — 1—. By hypothesis (vi) and (3.6), given n > 0,
there are 6 > 0 and 0 < 0y < 1 such that

—nw?(0") logn

ex < 00 3.8
2O Sip e X0 - XEIR 3
p(s,t)<é
for each 6y < 60 < 1 and
sup sup p(t, ut) < 4. (3.9)
fo<u<l teT
We have that

|Z(u’t) - Z(@n,t)| <

| X (07) — X (ut)| |w(9">(210g10g9_")1/ " 1Z(0",1)| (3.10)

w(u)(2loglogu=1)12 | w(u)(2loglogu=—1)1/2

and

| X (0t) — X (ut)] - w(6™)(21og log H~™)1/2
w(u)(2loglogu=1)1/2 = w(u)(2loglogu=1)1/2
By Theorem 1.5.2 in Bingham et al. [4]

1Z(07 1) — Z(0", ufd™"t)).

wl™)| _ gz, (3.11)

lim  sup
w(u)

n—oo on+1 Sugen
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By Lemma 2.5 and hypothesis (iv) and (3.8),

limsup sup |Z(6",s)— Z(0",t)] < (2n)'/? as.
S

for 8y < 6 < 1. From this and (3.9)

limsup sup sup|Z(6",t) — Z(0",ubd~"t)| < (2n0)'/?  as.

n—oo gn+l <u<Hn teT

for y < 6 < 1. Last fact and (3.11) imply that

_ | X (0"t) — X (ut)| _
1 <0 (2n)'? as. 3.12
Py 9n+?1§15§9n Stlelzfl? w(u)(2loglogu=1)1/2 — (2n) " as (3:12)

for 0y < 6 < 1. Again, by Theorem 1.5.2 in Bingham et al. [4]

en
lim  sup w(o") 1|=602-1 (3.13)
n—oo ol <y<on U}(U)
for each 0 < 8 < 1. By Theorem 2.1
limsupsup | Z(6",t)| = sup(R(t,t))"? as. (3.14)
n—oo tcT teT

From (3.13) and (3.14), it follows that

w(0™)(21og log 6~™)1/?
w(u)(2loglog u=1)1/2

limsup sup sup
n—oo  gnil<y<on teT

. 1‘ 1Z(67, 1) (3.15)

< (0772 — 1) sup(R(t,1))V? as.
teT

for each 0 < § < 1. Finally observe that (3.10), (3.12) and (3.15) imply (3.7). O

The comments on Section 2 on optimality of hypotheses apply to previous theorem. Con-
ditions (i) and (ii) more than conditions are part of the set—up. A condition like (iii) is
needed to obtain the L.I.LL. for the finite dimensional distributions (see Example 3.1 below).
This condition (iii) is weak enough to allow us to obtain the L.I.L. for self-similar Gaussian
processes under best possible conditions (see Corollary 3.1). Conditions (i) and (ii), and the
compact law of the iterated logarithm with limit set K, imply conditions (iv), (v) and

lim lim sup sup | X (ut) = X(us)|

0—0 n—oo s,teT U)(U)(2 lOg IOg U71>1/2
p(st)<o

=0 as. (3.16)

with p%(s,t) = R(s,s) + R(t,t) — 2R(s,t). Condition (vi) seems to the right condition to
obtain (3.16), since an analogous condition is also sufficient in a similar L.I.L. for empirical

processes (see Arcones [1]). Observe that condition (vi) is satisfied if

[ X (ut) — X (us)l|

}Sl—r%ulg& ftuE}; w(u) =0 (8:17)
p(st)<6
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Conditions (vii) is a very weak regularity condition. We also must observe that (iii) is implied
for the stronger condition:
(iii)” For each m > 1, each ty,...,t,, € T and each \y,..., A\, € IR

Ui X(ut;) X (vt
lim limsup sup Y MME X (ut) X(vly) <0, (3.18)
I 0+ v <esen 5T w(u)w(v)

which is easier to check and holds in all the examples considered.
In the case that the Gaussian process is self-similar, the hypotheses in the previous

theorem simplify:

Corollary 3.1. Let {X(¢) : t € T'} be a mean-zero Gaussian process and let v > 0.
Suppose that the following conditions are satisfied:

(i) IfteT and 0 <u <1, thenut € T.

(i) E[X (ut)X (us)] = v*'E[X (t)X (s)] for each 0 < u <1 and each s,t € T.

(ili) sup,eq | X (£)] < 00 as.

(iv) lim, ., E[X (ut)X(t)] = E[X?(t)] for each t € T'.

(v) For each m > 1, each ty,...,t, € T and each \y,..., A\, € R

lim sup Z N TE[X () X (uty)] < 0.

u—0+ jk=1

Then, with probability one,

{ X (ut) te T}

uY(2loglogu—1)1/2

is relatively compact in [ (7"), as u — 04, and its limit set, as u — 0+, is the unit ball K of
the reproducing kernel Hilbert space of the Gaussian process {X(t) : t € T'}.

Proof. Without loss of generality we may assume that E[X? ()] > 0 for some t, € T. We

apply Theorem 1. Observe that by self-similarity sup;c, — (21(1?1’(3?11'_1)1 73 has the distribution
as SUPyer % So, condition (ii) in Theorem 3.1 follows. We also have that by the

Sudakov inequality (see e.g. Theorem 3.18 in Ledoux and Talagrand [12]), (T, p) is totally
bounded, where p*(t,s) = E[(X(t) — X(s))?]. The rest of the conditions in that theorem
follow trivially. O

Observe that condition (v) in Corollary 3.1 is satisfied if lim, o u=7E[X ()X (us)] = 0,
for each s,t € T.

Example 3.1. Let T' = [0, 1], let g be a standard normal random variable and let « > 0.
Consider the Gaussian process {X(¢) : t € T'} defined by X (t) = t7¢. This Gaussian process
satisfies conditions (i)—(iv) in Corollary 3.1. However, it does not satisfy neither condition

(v) nor the compact law of the iterated logarithm.
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Example 3.2. Let T be a collection of measurable subsets of IR?. Let A be the Lebesgue
measure on IRY. Let {X(A): A € T} be a centered Gaussian process such that

E[X(A)X(B)] = A(AN B).

Suppose that
i) Ifo<u<land AeT, thenuAeT.
(i) Elsupser [X(A)]] < .
It follows from Corollary 3.1, that, with probability one,

X (uA)
cAeT
{u1/2(2 loglogu=1)1/2 © }

is relatively compact, as u — 0, and its limit set, as u — 0, is the unit of the r.k.h.s. of the

covariance function A(A N B), i.e., the limit set is

{(/ a(sl,...,sd)dsd~~dsl) :/ az(sl,...,sd)dsd-~dslgl}.
A AeT JR

Observe that lim, ;- A((uA) N A) = A(A), for each measurable set A, with finite Lebesgue
measure, because a standard argument based on approximation by open sets. By the Sudakov
minorization (see e.g. Theorem 3.18 in Ledoux and Talagrand [12]), sup e A(A) < 00. So,
condition (iv) in Corollary 3.1 follows. We also have that u~*/2X\(A N (uB)) < u'/?\(B) for
each A, B € T. Hence, condition (v) in Corollary 3.1 is satisfied.

In particular, if 7= {[0,t1] x -+ x [0,tq] : 0 < tq,...,tq < 1}, the process {X(t) :t € T'}

is a Brownian sheet, i.e.
d
E[X( =[] Asy)
J:
nd s

for each t,s € [0,1]¢, where t = (t1,...,t4) a
probability one,

= (s1,...,84). So, we have that, with

{u2(2loglogu™) V2 X (ut) : t € [0,1]%)

is relatively compact, as u — 0, and its limit set, as u — 0, is

t t
{(/1 /d 317..., de dSl) / / 81,..., dsd d81§1}.
telo,1]@

4. A LOCAL LAW OF THE ITERATED LOGARITHM FOR COMPOSI-
TIONS OF GAUSSIAN PROCESSES.

In this section, we consider the law of the iterated logarithm for compositions of Gaus-
sian processes. First, we present a variation of Theorem 3.1, which is more suited for the
applications in this section.

Theorem 4.1. Let {X(t) : t € T'} be a centered Gaussian process, let p be a pseudometric
on T and let w,7 : (0,1] — (0,00) be two functions. Assume that the following conditions
are satisfied:
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(i) IfteT and 0 <u <1, then ut € T.
(i) For each s,t € T the following limit exists

L [X )X (r(wt)

u—0+ wQ(u)

| =m0,

(iii) For each m > 1, each € > 0, each t1,...,t,, € T and each Ay,..., A\, € R

X (ut;) X (vt
lim lim sup sup Z AN\ E [()(Uk)] < 0.
Tl w0t viue—(ogu™ T <y<ye—(ogu=h)e 4 pq w(u)w(v)
(iv)
| X (7 (u)t)] Pr
0 0+.
?gg w(u)(2loglog u=1)1/2 U um T
(v) (T, p) is totally bounded.
(vi) For each n > 0, there is a § > 0 such that
2(gn
—nw*(0") logn
limsup » exp < 00.
e 59 | SR ) - XCER

(s 1)<é
(vii) 7(u) is an nondecreasing function, which tends to 0, as u — 0+, and

(6
()

lim limsup

0—1— nooco

—1’20.

(viii)

lim limsup sup
0—=1= n—oo gnti<y<gn

(ix) lim,—1— sup,ep p(t, ut) = 0.
Then, with probability one,

Xy
{w(u)(2loglogu—1)1/2 te T}

reproducing kernel Hilbert space of the covariance function R(s,t).

(4.1)

is relatively compact in [(7), as u — 0+, and its limit set is the unit ball K of the

The proof of last theorem is very similar to that of Theorem 3.1 and it is omited. If the

function 7(+) is not continuous, last theorem is not just a change of scale in Theorem 3.1.

Next, we recall the definition of r.k.h.s. of a covariance function in the multivariate case.

d P

> ajapmRk(tin, tem) >0

§,k=11m=1

18

Let T; be a parameter set for 1 < j <d. Let R;;(t;,tx), 1 < j <k <d, be joint covariance
functions, i.e. R;i(t;,tx) = Ry ;(tx, t;) for each t; € T; and each t; € T}, and

(4.2)



where a;; € IR and t;; € T}, for each 1 < j < d and each 1 <[ < p. Then, there are Gaussian
processes {Z;(t;) : t; € T;}, 1 < j < d, defined in the same probability space, such that
R;i(tj, ty) = E[Z;(t;) Zy(tx)], for each t; € T; and each t), € T). Let £ be the linear subspace
of Ly, generated by {Z;(t;) : t; € T;,1 < j < d}. Then, the r.k.h.s. of the joint covariance
functions R, x(t;, tx) is the class of functions on 77 x - x Ty

{(E[Z1(t1)E], - - ElZa(ta)é])tyery,...tyery  § € L} (4.3)

This space is endowed of the inner product

< fi, fa >:= E[§1&),

where f;(t1,...,tq) = (E[Z1(t1)&], ..., E[Z4(tq)&]) each ty € Ty, ...ty € Tyand each i = 1, 2.
The unit ball of this r.k.h.s. is

= {(E[Z:(t)g], -, ElZa(ta)é])nen....taer, + BIEY] < 1} (4.4)

Theorem 4.2. Let {X,(t) : t € T;} be a centered Gaussian process, let p; be a pseudo-
metric on 7; and let w;, 7; : (0,1] — (0, 00) be two functions, for j =1,...,d. Assume that,
for each 1 < j < d, the conditions in Theorem 4.1 are satified for {X;(¢) : t € T}}, p;, w; and
7;. Assume also that the following conditions are satisfied:

(i) For each t; € T; and each tj, € T}, where 1 < j, k < d, the following limit exists

X (0t X (m()te) |
Jig, 7| PO =

ik (L k).
(ii) For each p > 1, each € > 0, each t;1,...,t;, € T; and each \;;,...,\;, € IR,

X (7 (w)tj.0) X (73 (V) m)
w; (W) (v) ]go'

lim lim sup sup Z Z AjiNemE [

Tl w0t viue—(logu™ )T <y<ye—(logu™1)€ 51| m=1

Then, with probability one,

Xy (7 (uw)t1) Xa(1a(u)ty) .
{( (u)(2loglog u=1)1/2" """ wy(u)(2log logu—1)1/2> el ta€ Td} (4.5)

is relatively compact in [ (T} X - - - X T;;) and its limit set is the unit ball K of the reproducing

kernel Hilbert space of the covariance function R;(¢;,t).

Proof. By Lemma 2.1

i o (6", 1/2
lim sup A X5(7; = AjiNem Jtlem a.s.
;; W i (0m) (210gn 1/2 (Z Z 3 M B (L0, i, ))

n—oo 7,k=11m=1
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for each 0 < 0 < 1, each \;; € IR and each t;; € T;. So, this implies the compact law of the
iterated logarithm for the finite dimensional distributions of the process

{ ( X1 (1(6™)ty) Xa(7a(0")ta)
wy(67)(2loglog 8=)1/27 "7 wy(0)(21og log ™)

1/2>:t1€T1,...,td€Td}. (46)

The same arguments as in Theorem 3.1 imply the uniform L.I.L. for the process in (4.6).
Again, by the arguments in Theorem 3.1, the blocking, i.e. (3.7), holds for each 1 < j < d.
So, the result follows. O

From Theorem 4.2, it is easy to get the following law of the iterated logarithm for com-

positions of Gaussian processes.

Corollary 4.1. Let {X;(t) : t € T}} be a centered Gaussian process, let p; be a pseudo-
metric on 7} and let w;,7; : (0,1] — (0,00) be functions, for 1 < j < d. Assume that the
conditions in Theorem 4.2 are satisfied. Assume also that:

(i) Ty =---=Ty1 =[—M, M], where M is so large that there is a > 0 such that

X
lim sup sup | i(73(w)t)

M —n as.
u—0+ tyeT; Wi(u )(210g10gu‘1)1/2| - "

for j =2,....,d.
(ii) 7j(u) = wj1(v)(2loglogu=)Y/2 for j=1,...,d — 1.
Then, with probability one,

{ Xy 00 Xy(ra(u)ty)
wy(u)(2loglogu=1)1/2

itg € Td}
is relatively compact, as u — 0+, in [ (Ty) and its limit set, as u — 0+, is

{(fl o...Ofd(td))tder (fry s fa) eK}.

Of course, we could have taken absolute values, before taking a composition, i.e. get
a L.IL for Xi(| - (| Xa(ma(w)ta)])---|). Another variation is when a Gaussian process is
composed with itself:

Corollary 4.2. Let {X(t) : t > 0} be a mean—zero Gaussian process, let b > 0 and let
v >0, v # 1. Assume that the conditions are satisfied:

(i) B[X (ut)X (us)] = u* E[X ()X (s)] for each u,s,t > 0.

(i) supg<i<y [X(1)] < 00 as.

(iii) lim, ;- E[X (ut) X (t)] = E[X?(t)] for each ¢ > 0.

(iv) For each s,t > 0

uli)r& u TE[X(s)X (ut)] = 0.
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Then, with probability one,

{ X (X (ut)])
u"*(2loglog u=1)(r+1)/2

L 0<t<b} (4.7)

is relatively compact, as u — 0+, in ([0, b]) and its limit set is

{(a(B8)))o<t<t : (o, B) € K}

where K is the unit ball of the r.k.h.s. of the process {(X(s),Y(¢)): 0<s< M,0<t <1},
{Y(t) : t € R} is an independent copy of the process {X(¢) : t € IR} and M? > E[X?(b)].
Moreover, with probability one,

{qu( X(|X (ub)]) :} (4.8)

2loglog u=1)(v+1)/2

is relatively compact, as u — 0+ and its limit set is [—o, o], where

o= 0<§1<1£)L(b)m(r)(l —r2(m(b)) )% as. (4.9)

and m(t) = (E[X2%(t)])Y/2.

Proof. Assume that 0 < v < 1 (the case v > 1 is similar). Let 7(u) = u”(2loglogu™"')"/2.
By Theorem 4.2 and the conditions checked in Corollary 3.1, in order to prove the first part
of the claim, it suffices to show that

] — 0, as u— 0+, (4.10)

for each s,t > 0, and that

X(7(u)s)X (vt) 0 asu—
uriggw E [ ) 0 0+, (4.11)
nd X(7(0)8) X (u)t) ]
u’“SﬁuvI;cu b [ (T(U))'YU’Y =0 asu—0+, (412)

for each s,t > 0, where 1 <7 <71 and 0 < ¢ < 1. By hypotheses (i) and (iv)

X(r(w)s) X (ut) | _ | X(s)X((u/7(u))t)
e[S = [ty
(4.11) and (4.12) follow by the same argument.
To show (4.8), it suffices to show that

—0 asu—0+.

{a([B®)]) : (o, 8) € K} = [-0,0]. (4.13)
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Let £ be the linear subspace of Ly generated by {X(s): 0 < s < M}. Let Ly be the linear
subspace of Ly generated by {X(t) : 0 < ¢ < b}. Then, it is easy to see that

K = {(E[X(s)&], E[Y (t)&)])o<s<nm, 0<t<p - &1 € L1,& € Lo, B[ + ] < 1}

It follows from this that {a(|3(b)|) : (o, 8) € K} is a symmetric closed interval. Hence, it
suffices to show that

sup{a(|5(b)|) : (o, 5) € K} = 0. (4.14)

Given &, € L1 and & € Ly such that F[2+£3] < 1, let a(s) = E[X(s)&], let B(t) = E[X (t)&)]
and let r = |(b)]. By the Cauchy—Schwarz inequality

r < m(b)[[&l2 < m(b), (4.15)

l&ll3 < 1 [|&)3 <1 — (m(b) %

and
la(r)] < m(r)||&lls < m(r) (1 —m 2 (b)r?)? < 0.

So, in (4.14), the left hand side is smaller o equal than the right hand side. Given 0 < r <
m(b), if
&= (m(r) ™ (1 = (m(b))"*r*)2X (r) and & = rm (b)Y (b),

then a(B(b)) = m(r)(1 — (m=2(b))~2r%)1/2. So, (4.14) follows. O

Example 4.1. A mean—zero Gaussian process {X(t) : ¢ > 0} is called a fractional
Brownian motion of order v, 1/2< ~ < 1, if its covariance is given by

E[X(H)X(s)] =271 + s — |t — s*), s,t > 0. (4.16)

This process was introduced in Mandelbrot and van Ness [13]. It is very easy to see that
previous corollary applies to this process, if 1/2 <~ < 1: given b > 0, with probability one,

X (X (ub)])
u*(2loglog u=1)(+1)/2

is relatively compact, as u — 0+ and its limit set is [—0, 0] where o = b7°~7/2(y 4+ 1)~ (+D/2,

Acknowledgement. I would like to thank Professor D. M. Mason for a very interesting
conversation in relation with the law of the iterated logarithm for compositions of processes.

References

[1] Arcones, M. A. (1996). Necessary and sufficient conditions for the law of the iterated logarithm
of triangular arrays of empirical processes. Preprint.

[2] Arcones, M. A. and Giné, E. (1996). On the law of the iterated logarithm for canonical U-
statistics and processes. Stoch. Proc. Appl.

[3] Aronszajn, N. (1950). Theory of reproducing kernels. Trans. Amer. Math. Soc. 68 337-404.

22



Bingham, N. H.; Goldie, C.M. and Teugels, J. L. (1987). Regular Variation. Cambridge Uni-
versity Press, Cambridge, United Kingdom.

Borell, C. (1975). The Brunn—Minkowski inequality in Gauss space. Invent. Math. 30 207-216.

Carmona, R. and Koéno, N. (1976). Convergence en loi et lois du logarithme itéré pour les
vecteurs gaussiens. Z. Wahrsch. verw. Geb. 36 241-267.

Deo, C. M. (1974). A note on stationary Gaussian sequences. Ann. Probab. 2 954-957.

Finkelstein, H. (1971). The law of the iterated logarithm for empirical distributions. Ann. Math.
Statist. 42 607-615.

Lai, T. L. (1973). Gaussian processes, moving averages and quick detection problems. Ann.
Probab. 1 825-837.

Lai, T. L. (1974). Reproducing kernel Hilbert spaces and the law of the iterated logarithm for
Gaussian processes. Z. Wahrsch. verw. Gebiete 29 7-19.

Lamperti, J. (1962). Semi-stable stochastic processes. Trans. Amer. Math. Soc. 104 62-78.

Ledoux, M. and Talagrand, M. (1991). Probability in Banach Spaces. Springer—Verlag, New
York.

Mandelbrot, B. B. and van Ness, J. W. (1968). Fractional Brownian motions, fractional noises
and applications. STAM, Review 10 422-437.

Mangano, G. C. J. (1976). Sequential compactness of certain sequences of Gaussian random
variables with values in C[0,1]. Ann. Probab. 4 902-913.

Nisio, M. (1967). On the extreme values of Gaussian processes. Osaka J. Math. 4 313-326.

Oodaira, H. (1972). On Strassen’s version of the law of the iterated logarithm for Gaussian
processes. Z. Wahrsch. verw. Gebiete 21 289-299.

Talagrand, M. (1987). Regularity of Gaussian processes. Acta Mathem. 159 99-149.

23



