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Abstract

We discuss the large deviation principle of stochastic processes as
random elements of I, (7). We show that the large deviation princi-
ple in I (T") is equivalent to the large deviation principle of the finite
dimensional distributions plus an exponential asymptotic equicontinu-
ity condition with respect to a pseudometric which makes T" a totally
bounded pseudometric space. This result allows to obtain necessary
and sufficient conditions for the large deviation principle of different
types of stochastic processes. We discuss the large deviation principle
of Gaussian and Poisson processes. As application, we determine the
integrability of the iterated fractional Brownian motion.

April 13, 2004

LAMS 2000 subject classifications. Primary 60F10.
Key words and phrases. Large deviations, stochastic processes, Gaussian processes, iter-
ated Brownian motion, Poisson process.



1 The large deviation principle for stochastic pro-
cesses

In many different situations, it is of interest to estimate the rate of conver-
gence of certain probabilities. Often, these probabilities converge exponen-
tially fast. Several authors have considered large deviations and obtained
different types of applications mainly to mathematical physics. General ref-
erences on large deviations are: Bahadur (1971), Varadhan (1984), Deuschel
and Stroock (1989), and Dembo and Zeitouni (1998).

We study functional large deviations of stochastic processes following the
approach to deal with measurability problems for the weak convergence of
stochastic processes in Hoffmann—Jgrgensen (1991). We assume very little
measurability restrictions and we use outer and inner probabilities. We refer
to van der Vaart and Wellner (1996) and Dudley (1999) for measurability
considerations. We consider stochastic processes as random elements. By
a random element, we mean a (non necessarily measurable) function from
a probability space to an arbitrary set. We use the following definition of
(LDP) large deviation principle for random elements:

Definition 1.1 Given a sequence of random elements {X,,}7° | with values
in a topological space (S,7T), a sequence of positive numbers {e,}°; such
that €, — 0, and a function I : S — [0, 00], it is said that {X,} satisfies the
(LDP) large deviation principle with speed €' and with rate function I if:
(i) For each 0 < ¢ < oo, {z € S :1(z) < c} is a compact set.
(ii) For each set A C S,

—I(A°) <liminf,,_ €, log(Pr.{X, € A})

< limsup,,_,, €, log(Pr*{X, € A}) < —I(A),
where for a set B, I(B) = inf{I(x) : x € B}.

In the previous definition and in the future, we denote inf()) = co. Con-
dition (i) in Definition 1.1 implies that I is a lower semicontinuous function.
The assumptions in Definition 1.1 imply that there exists a z € S such that
I(z) = 0. Typically, z is unique and X, P 2. A function I : § — [0, 00] is
called a good rate function if condition (i) in Definition 1.1 holds.

We study the LDP for a sequence of stochastic processes {U,(t) : t € T'}
with values in a Banach space B, which are bounded with probability one,
where T is an index set. We consider {U,(t) : t € T'} as a random element
with values in the Banach space I (T, B), the set of bounded functions in T’
with values in B with the norm |z|o := sup,cq |2(t)|5, where | - | g denotes
the norm in B. We do not assume that {U,(t) : t € T'} is a random variable
with values in (7, B) endowed with the Borel o—field. We only assume
that for each t € T', Uy (t) is a r.v.



Definition 1.2 Given a sequence of stochastic processes {Uy(t) : t € T}
with values in a Banach space B, such that for n large enough
Pr . {sup,cr |Un(t)|B < 00} =1, a sequence of positive numbers {€,}72 | such
that €, — 0, and a function I : loo(T, B) — [0,00], we say that {Uy(t) : t €
T} satisfies the LDP in loo(T, B) with speed €, and with rate function I if:
(i) For each 0 < ¢ < 00, {2z € lo(T,B) : I(2) < ¢} is a compact set of
loo(T, B).
(ii) For each set A C lo(T, B),

—I(A°) <liminf, . ey log(Pr . {{Un(t) : t € T} € A})
< limsup,,_, €, log(Pr*{{U,(t) : t € T} € A}) < —I(A).

We denote I (1) = loo (T, IR). It is easy to see that a sequence of stochas-
tic processes {U,(t) : t € T'} with values in a Banach space B satisfies the
LDP in [ (T, B) with speed €, if and only if the sequence of stochastic
processes {V,,(¢, f) : t € T, f € B} satisfies the LDP in [ (7") with speed
€, 1, where B} is the unit ball of the dual of B and V, (¢, f) = f(Uy,(t)), for
t € T and f € B]. So, the study of the LDP for stochastic processes with
values in a Banach space reduces to the study of the LDP for real valued
stochastic processes. We will usually consider stochastic processes with val-
ues in IR. But, sometimes, we will need to consider multidimensional valued
stochastic processes. We also have that a sequence r.v.’s {X,,}22; with val-
ues in a Banach space B satisfies the LDP with speed ¢, ! if and only if the
stochastic process {f(X,) : f € B}} satisfies the LDP with speed ¢,!. So,
our results give necessary and sufficient conditions for the LDP of Banach
space valued r.v.’s (see Corollary 3.6).

It is well known that functional formulations of limit theorems have many
different applications (see for example van der Vaart and Wellner, 1996; and
Dudley, 1999). We will use the functional LDP to obtain the tail behavior
of the iterated fractional Brownian motion. For stochastic processes whose
paths are not bounded in 7', but they are bounded in subsets of T, it is
possible to obtain a LDP in another spaces (see Theorem 3.9).

In Section 2, we present an extension of the contraction principle. The
contraction principle says that we may apply a continuous function to a
sequence of random elements satisfying the LDP and still have the LDP
for the transformed sequence. We extend this technique to not necessarily
continuous functions. We will need this extended contraction principle be-
cause the composition of stochastic processes is not a continuous functional
in loo(IR) X loo([0, M]), where M > 0.

In Section 3, we show that a sequence of bounded stochastic processes
satisfies the LDP if and only if the finite dimensional distributions satisfy
the LDP and an exponential asymptotic equicontinuity condition holds with
respect to certain pseudometric which makes 7" totally bounded. Some appli-
cations of this characterization are given. We see that the LDP in Definition



1.2 with B = IR implies that (T, p) is a totally bounded pseudometric space
and an exponential asymptotic equicontinuity condition holds with respect
to this pseudometric, where

(1.1) p(s,t) = Z k=% min(pg(s,t),1)
k=1
and
(1.2) pi(s,t) = sup{|ug — 1| : Is¢(u1,u2) < k}

and I, is the rate function for the LDP of (Uy,(s),Uy,(t)). An easy method
(see Theorem 6.3) to prove that a sequence of stochastic processes {U,(t) :
t € T} in loo(T') does not satisfy the LDP is to check that (T, pg) is not
totally bounded. Several applications of this characterization of the LDP
are given. We obtain necessary and sufficient conditions for the LDP of
a sequence of r.v.’s with values in a separable Banach space. We obtain
minimal sufficient conditions for the LDP of stochastic processes with either
increasing or convex paths. We present minimal conditions for obtaining
that the composition of two stochastic processes satisfies the LDP.

Several authors have studied the tightness in the large deviation principle
in a similar way weak convergence is studied. Puhalskii (1991) showed that is
a sequence of r.v.’s with values in a metric space are exponential tight, then
there exists a subsequence satisfying the large deviation principle. He also
showed that for stochastic processes with values in D[0, M] an exponential
asymptotic equicontinuity condition implies tightness.

In Section 4, we give the form of the rate function for the LDP in I (7")
for many of the considered cases. We will that under certain conditions the
rate function is given by

I(z):inf{ / U (y(z)) du(z) / F(a,t)7(x) du(z) = 2(¢) for each teT},

where U is a convex function, p is a (positive) measure in a measurable
space (5,S) and {f(x,t) : t € T} is a class of measurable functions. In
the cases considered in this paper either ®(x) = p~!|z|?, for some p > 0
or &(z) = e® — 1. We also see that under certain conditions, the rate of
function in the LDP of some certain stochastic processes has the form

I(2) = fOM W(Z/'(t)) dt, if z(0) =0 and z is absolutely continuous
00, else.
(1.3)
We obtain the rate function of the the composition of two stochastic proceses,
when the rate of each of the considered stochastic processes has the form in
(1.3) with different functions W.



In Section 5, we give necessary and sufficient conditions for the LDP
of a sequence of Gaussian processes. Several applications to the iterated
Brownian motion are presented. A Brownian motion {B(t) : t € IR} is a
centered Gaussian process with covariance

E[B(s)B(t)] = min(]s|, [t|)I(st > 0),s,t € R.

If {B1(t) : t > 0} and {Ba(t) : t > 0} are two independent Brownian motion,
then {B(t) : t € IR} is a Brownian motion, where B(t) = By (t) for t > 0, and
B(t) = Ba(—t) for t < 0. The process {B(B(t)) : t € IR} is called an iterated
Brownian motion. Some authors call an iterated Brownian process to the
process {B1(Ba(t)) : t € IR}, where {Bi(t) : t € IR} and {Bs(t) : t € R}
are two independent Brownian motions. Funaki (1979) used a modification
of the iterated Brownian motion to give a probability solution to the partial
differential equation:

4
({;L = ;g;j with u(0, z) = ug(z).
Deheuvels and Mason (1992), Burdzy (1993, 1994), Arcones (1995); Hu
and Shi (1995); Shi (1995; Hu, Pierre-Loti-Viaud, and Shi, (1995); Cséki;
Csorgd, Foldes, and Révész (1995); Khoshnevisan and Lewis (1996a, 1996b)
and Cséki, Foldes and Révész (1997) have studied different properties of the
iterated Brownian motion. We will prove that for each 0 < M < oo,

k+1
Jim A2/ D 10 (Pr{|BR) (M)| > A}) = 2k2’f/(2(k21)M1 /2()%1)
and
. —2F /(2F 1) (k) _ —(2k+1 —2)
)\1520 >\ log(Pr{0<811<pM |B (t)| 2 A}) - 2k2k/(2k71)M1/(2k71) )

where B o ® o B(t). Our results also apply to compositions of indepen-
dent Brownian motions. We also consider the iterated fractional Brownian
motion. Compact laws of the iterated logarithm for the iterated fractional
Brownian motion are obtained.

In Section 6, we give necessary and sufficient conditions for the LDP’s of
a (nonhomogeneous) Poisson process, under different normalizations. Under
some normalization, the LDP does not hold in I [0, M| and we have to
consider the LDP in a space of measures.

Given a metric space (5,d), B(z,0) denotes the open ball with center z
and radius 6. Given a subset A of S and § > 0, A(0) = {x € S :d(z,A) <
§}. In IR, we denote |z| = (Z?Zl 22?2 and |2|s = max;<i<q|zi|, where
z=(21,..,24)



2 An Extension of the contraction principle

An useful technique to study large deviations is the contraction principle
(Donsker and Varadhan, 1976, Theorem 2.1). We will need the following
extension of this theorem:

Theorem 2.1 Let {X,,}2°, be a sequence of random elements with values
in a metric space (S1,d1). Let {e,} be a sequence of positive numbers which
converges to zero. Let {f,} be a sequence of Borel functions from (Si,d;)
into (S2,dz2), where (S2,d2) is a metric space. Let f be a Borel function from
S1 into So. Suppose that:

(i) {X, )% satisfies the LDP with rate €' and rate function I;.

(ii) If {xn} is a sequence in Sy such that x, — =z, for some x with
I (z) < oo, then fn(zn) — f(z).

Then,

(a) For each open set U in Ss,

liminf e, log(Pr.{fn(X,) € U}) > —12(U),

where I5(y) = inf{l;(z) : f(x) =y}.
(b) For each closed set F' of Sa,

lim sup €, log(Pr*{fn(Xn) € F}) < _IQ(F)'

n—oo

(¢) Iz is a good rate function.

PrOOF. To prove part (a), it suffices to show that given € > 0, and
xo € S1 with I;(xg) < oo, then

lim inf e, log(Pr «{ fn(Xn) € B(yo,€)}) > —I1(x0),

where yg = f(xp). By condition (ii), there are 6 > 0 and an integer ng such
that for n > ng, then f,(B(zo,0)) C B(yo,€). Hence,

liminf, . €, log(Pr . {fn(X,) € B(yo,€)})
> liminf, . €, log(Pr. {X, € B(xo,d)}) > —I1(zo).

To prove part (b), it suffices to show that given a closed set F' € So,

lim sup €, log(Pr*{f,(X,) € F}) < —Li(f1(F)).

n—oo

For each § > 0 and each positive integer k, we have that

i sup, o € log(Pr*{ fu(X,) € F})
< limsup,,_o €0 log(Pr*{X,, € G4(9)}) < —11(G4(9)),

6



where G (6) = U2 {x € 51 : d(f;(x), F') < 6}. We need to prove that

(2.1) L(fYF)) = lim lim (G (5)).
Given z with I;(x) < oo and f(z) € F, fir(x) — f(x). So, for k large
enough, x € Gy(0). Hence,

L(f7H(F) > lim lim 11(Gy(9)).
We may assume that lims_g limy_.o 11(Gx(9)) < co. Take §; — 0, k; /" o0
and z; € Gy, (d;) such that

lim [i(z;) = lim lim I (Gg(9)).

Jj—00 6—0 k—o0
Take I; > k; and z; with d(f;,(z;), F) < 6; and d(z;,2;) < j~'. Since I is a
good rate, there exists a subsequence {z;, } and z € S; such that z;, — x.
So, zj, — = and fi, (zj,) — f(z) € F. But, by the lower semicontinuity of
the function I, I;(z) < liminf; .o I1(x;). Therefore, (2.1) follows.

To prove part (c), it suffices to show that the restriction of f to {z :
I1(z) < oo} is continuous. Note that for each ¢ > 0, {y : I2(y) < ¢} = f({z:
Ii(z) < c¢}). Given € > 0 and zg € {z : I1(z) < oo}, there are § > 0 and
a positive integer ng such that for each n > ng, fn(B(xo,d)) C B(f(x0),€).
Given z € B(xg,0) N{x : I1(z) < oo}, for n > ng,
da(fn(x), f(zo)) < €. From this and hypothesis (ii), for each x € B(xg,d) N
{z: Ii(z) < o0}, do(f(z), f(x0)) <e. O

The following corollary follows immediately from the previous theorem.

Corollary 2.2 Let {X,,}°2 be a sequence of random elements with values
in a metric space (S1,d1) such that {X,}°2 satisfies the LDP with rate
e,1 and rate function I. Let f : (Si,d1) — (S2,d2) be a function which
is continuous at each x with I (x) < oo, where (S2,ds2) is a metric space.

Then, {f(Xn)}22, satisfies the LDP with rate €, and rate function I>(y) =
inf{f;(z) : f(z) =y}

3 Asymptotic equicontinuity for the large devia-
tion principle

In this section, we prove that the LDP in [ (T") is equivalent to the LDP for
the finite dimensional distributions plus an exponential asymptotic equicon-
tinuity condition with respect with certain pseudometric, which makes T
totally bounded. This condition can be interpreted as a tightness condition.



Assuming the LDP for the finite dimensional distributions, we claim that
for each k > 1,

(3.1) pr(s,t) = sup{lug — uy| : Is¢(ur, uz) < k}

defines a pseudometric on T'. The LDP for the finite dimensional distribu-
tions implies that for each s,t € T and each k > 1,

{(u1,u2) : Isy(ur,u2) < k}

is a compact set. So, for each s,t € T, pr(s,t) < oco. By the contraction
principle, given r,s,t € T,

pr(r,t) = sup{|ug — u1| : I 1(u1,u2) < k}
sup{|uz — u1| : Irs ¢ (ur, ug, ug) < k}
sup{|us — w1 : Ir 54 (u1,u2, uz) < k}
+sup{|uz — u2| : I s ¢(u1, uz,u3) < k}
pk(T, 3) + Pk(& t)'

IA I

Therefore, pi is a pseudometric. The pseudometrics pi play a role in the
exponential asymptotic tightness of a sequence of stochastic processes.
First, we prove the following lemma;:

Lemma 3.1 Let {U,(t) : t € T'} be a sequence of stochastic processes, where
T is an index set. Let {e,} be a sequence of positive numbers that converges
to zero. Suppose that:

(i) For each ty,... tym € T, (Uyn(t1),...,Un(tm)) satisfies the LDP with
speed 6;1 and good rate function Iy, . 4, .

(ii) For each k > 1, (T, py) is a totally bounded pseudometric space.

Then, for each 0 < ¢ < 00, {z € lo(T) : I(2) < ¢} is a set of uniformly
bounded and uniformly equicontinuous functions in (T, p) and it is closed in
loo(T'), where

(3.2) I(z) =sup{ly,. t.(2(t1),. .., 2(tm)) 1, ...t € T,m > 1}.

and

(3.3) p(s,t) =Y k™ min(pg(s, 1), 1).
k=1

Consequently, for each 0 < ¢ < 00, {z € loo(T) : I(2) < ¢} is a compact set

of loo(T).

PRrROOF. Since each I, . 4, is lower semicontinuous, so is I(-). This
implies that for each 0 < ¢ < oo the set {z € I(T) : I(z) < ¢} is
closed. Let pj(s,t) = sup{|z(t) — 2(s)| : I(2) < k} and let p*(s,t) =

o k™2 min(pi(s,t),1). It is easy to see that the set of functions {z €



loo(T) : I(z) < k} is a set of uniformly equicontinuous functions in (7, p*).
Since I5:(2(s),2(t)) < I(z), pi(s,t) < pi(s,t). Hence, the set of functions
{z € l(T) : I(z) < k} is a set of uniformly equicontinuous functions in
(T, p). Since for each t € T, I is a good rate, for each 0 < ¢ < oo,

supq{|z(t)| : I(z) < ¢} < sup{|u| : L;(u) < ¢} < 0.

So, {z € lo(T) : I(2) < ¢} is a set of uniformly bounded functions. The
Arzela—Ascoli theorem (see for example Theorem IV.6.7 in Dunford and
Schwartz, 1988) implies that {z € I(T) : I(2) < ¢} is a compact set of
loo(T). We may apply this theorem even when (7, p) is a totally bounded
pseudometric space and not a compact space because identifying the points
which are a zero distance (see Problem 2C in Willard, 1970), we may assume
that (T, p) is a metric space and imbedding 7" in its completion, we may as-
sume that (T, p) is complete. A metric space can be isometrically embedded
as a dense subset of the complete metric space consisting by the Cauchy
sequences in this space (see for example Theorem 24.4 in Willard, 1970).
The considered functions can be extended as functions in the completion by
the principle of extension by continuity (see Theorem 1.6.17 in Dunford and
Schwartz, 1988). O

We denote a finite partition function 7© of T to a function w : T — T
such for each t € T, m(w(t)) = w(t), and the cardinality of {m(¢) : t € T'} is
finite. Let n(T) = {t1,....tm}and Aj ={t € T : n(t) =t¢;} for 1 < j <m,
then {A41,..., Ay} is a partition of T. Finite partition functions can be used
to characterize compactness of I (7). A set K of l(T') is compact if and
only if it is closed, bounded and for each 7 > 0, there exists a finite partition
function 7 : T — T such that sup,¢ - |z(t)—z(7(t))| < 7 (see Theorem IV.5.6
in Dunford and Schwartz, 1988). We also have that if K is a compact set of
loo(T), then K is a set of uniformly bounded and equicontinuous functions
in the pseudometric space (T, d), where d(s,t) = sup,c |z(s) — z(t)|.

Theorem 3.2 Let {U,(t) : t € T} be a sequence of stochastic processes,
where T is an index set. Let {e,} be a sequence of positive numbers that
converges to zero. Let I : loo(T) — [0,00] and let I, . 4, : IR™ — [0, 00] be
a function for each ti,...,ty, € T. Let d be a pseudometric in T'.
Consider the conditions:
(a.1) (T,d) is totally bounded.
(a.2) For each ti,...,tm € T, (Un(t1),...,Un(tm)) satisfies the LDP
with speed €, and good rate function Iy, 4, .
(a.3) For each T > 0,
lim limsup €, log Pr*{ sup |Uy(t) —Upn(s)| > 7} = —c0.
170 n—oo d(s,t)<n
(b.1) For each 0 < ¢ < 00, {z € Io(T) : I(z) < ¢} is a compact set of
loo(T).



(b.2) For each A C lo(T),

— inf I(z) <liminfe,logPr.{U, € A}
z€A° n—00

< limsupe, log Pr*{U, € A} < —inf I(z).
n—oo z€A
If the set of conditions (a) is satisfied, then the set of conditions (b) holds
with I(-) given by (3.2).
If the set of conditions (b) is satisfied, then the set of conditions (a) holds
with

(3.4) Iyt (U5 U
=inf{I(2) : z € lo(T), (2(t1), .- -, 2(tm)) = (U1, .., Um)}

and the pseudometric p in (3.3).

PROOF. Assume that the set of conditions (a) holds. First, we show that
for each k£ > 1,
(3.5) lim sup pg(s,t) =0.
=0 q(s,t)<n

Given 7 > 0, take n > 0, such that

limsup e, logPr*{ sup |U,(t) —U,(s)|>7} < —k—1.
n—oo d(s,t)<n

This implies that

sup limsup ey, log Pr{|U,(t) — U,(s)| > 7} < —k — 1,
d(s,t)<np n—o0

which gives that supg(s 1)<, pk(s,t) < 7. Therefore, (3.5) holds. This implies
that for each k > 1, (T, px) is totally bounded. Hence, (b.1) follows from
Lemma 3.1.

Define

7

t1,eeestm (ula cee uum)

= inf{l(z): 2z € lc(T), (2(t1),-.-,2(tm)) = (u1,...,um)},

where I(-) is defined in (3.2). We claim that for each ¢; ..., t,, € T and each
UL, ..., Unm € IR,

1
(3.6) Iy oot (U, o Uy) = It(l,)...,tm (Uly .oy Upm).
It is easy to see that Iy, 4. (u1,...,upm) < It(ll’)m,tm(ul, ..., Upy). To prove
the inverse inequality, we may assume that Iy, ;. (u1,...,um) < co. Let

7> 0andlet kg > 2741y, 4, (u1,...,uy). We can find ty41, tm2 ... such

10



that {¢,}°° is a dense set in (7 pg,). By the contraction principle, for each

Tly-+-3Tm,S1,...,8p € T and each uy,...,up, € IR,
(3.7) L (U1, U)
=1nf{Lry . s1ssy (UL ooy U, UL, - Up) 0L, ., 0y € IRY.
So, we can find U1, U2, ... such that for each n > m,
Iy oo (un,ocyun) <7+ Ly g (U, u).

Define z(t;) = u;. By the definition of the pseudometric py,, we have that
z is an equicontinuous function in ({¢,}72, pg,). So, there exists a unique
extension of z to an equicontinuous function in (7', py,) (see Theorem 1.6.17
in Dunford and Schwartz, 1988). By an abuse of notation, we call this
extension z. To finish the proof of (3.6), it suffices to show that

(3.8) I(z) <21+ Ly 4 (U1, .o ).
Hence, we need to prove that for each s1,...,5 €T,
(3.9) Ig s (2(51), . 2(80) ST 4Ty g, (Ut .o um).

For each 1 < i <[, take ¢ ) such that pko(tn(i),si) — 0, as j — oo. By
j j

(3.7), there are UZ-(j ) such that

(3.10) L — (z(tng_m), . z(tn;m)), vga), .. ,Ul(J))

n
J

o (B )52 m)) + T < Tyt (- ) + 27
1 J J

S It (1) N 7

Hence,
Iy el o) < o
J

So, Z(tngi)) — vgj) — 0, as j — oo. Hence, vz(j)

(3.7) and (3.10),

— 2(s;), as j — oo. From
Isl,...,sl(v?), .. ,UI(J)) <24+ Iy (UL U

This inequality and the lower semicontinuity of I, . implies (3.9).
In order to prove that for each set A C Io(7),

(3.11) lim sup €, log(Pr*{U,, € A}) < — inf I(2),

n—00 z€A

we may suppose that inf,c 57 I(2) > 0. Let 0 < a < inf,c5I(2) and let
K ={2€lx(T) : I(2) < a}. Then, KN A = { and K is a compact set.

11



Thus, there exists a § > 0 such that K(46) N A = (). By Lemma 3.1, (3.5)
and (a.3), there exists a > 0 such that

(3.12) sup sup |z(s) —z(t)| <6
z€K d(s,t)<n

and

(3.13)  limsupey,log <Pr*{ sup |Up(t) — Un(s)| > 5}) < —2a.
n—00 d(s,t)<n

By condition (a.l) there exists a finite partition function = : 7' — T such

that sup;cp d(t, 7(t)) <n. Let 7(T) = {t1,...,tm} and let

Cs ={(2(t1),...,2(tm)) : z € K(0)}. It is easy to see that if

(2(t1),...,2(tm)) € Cs and supser |2(t) — 2(n(t))] < 6, then z € K(46).

Hence,

Pr*{U, € A} < Pr*{U, € K(46)}
< Pr{(Un(ta), -+, Un(tm)) & Cs}t + Pre{supier |Un(t) — Un(n(t))| = 6}.

Since Cjs is an open set, by the LDP for the finite dimensional distributions,

limsup,, o €n log (Pr*{(U,(t1),...,Un(tm)) € Cs})

< —inf{ly, g (U1, um) (1, ) € Csh
By (3.6)
inf{Iy, . o (U1, .. um) t (Ui, ... um) € Cs}
> inf{I(z):z ¢ K(6)} > a.
So,

limsup €, log (Pr*{U,, € A}) < —a.

n—oo

Letting a — inf,¢ 5 I(2), (3.11) follows.
Next, we prove that for each set A C I (T),

- inj I(z) < liminfe, log(Pr.{U, € A}).
zEA° n—00

It suffices to prove that if zp € A° and I(zp) < oo, then
(3.14) —1(z0) < liminf e, log(Pr.{U, € A})
n—oo

Take a > I(z9) > b. Let K = {z € I(T) : I(2) < a}. There exists a
d > 0 such that B(z0,30) C A° and inf{I(z) : z € B(z0,30)} > b. By
Lemma 3.1, (3.5) and (a.3) there exists a n > 0 such that (3.12) and (3.13)
hold. Take a finite partition function 7 such that sup,cp d(t, m(t)) < 7. Let
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{tl, - ,tm} = 7T(T). Then, if maxi<;<m |Z(tj) — Zg(tj)‘ < 0 and
SUPg(s,1)<p 12(8) — 2(t)] < 0, then sup;er[2(t) — 20(t)| < 34. So,

Pr{maxi<j<pm [Un(t;) — 20(t;)| < d}
< Prof{super [Un(t) — 20(t)| < 30} + Pr*{supy(s )<y |Un(s) — Un(t)| > 6}

We claim that

(3.15){z € lo(T) : sup |z(tj) — 20(t;)| <} C{z € lso(T) : I(2) > b}.
1<j<m

If supy << [2(t5) — 20(t;)| < 6 and 2 € K, then I(z) > a >b. If

SUP;<j<m |2(t5) — 20(tj)| < 6 and 2z € K, then z € B(20,30) and I(z) > b.

Therefore, (3.15) holds. So, by condition (a.2),

b < linnliogf €n log Pr*{Pr{l%z?;:n |Un(t;) — 20(tj)| < 0})}.

Therefore, (3.14) follows.

Assume that the set of conditions (b) holds. It is easy to see that if
K is a compact set of [(T') and e(s,t) = sup,ex |2(s) — 2(t)], then (T, e)
is a totally bounded pseudometric space and K is a collection of uniformly
bounded and uniformly e—equicontinuous functions. Hence, for each & > 1,
(T, p;) is a totally bounded pseudometric space, where pj is as in the proof
of Lemma 3.1. (3.6) implies that p; = py ((3.6) follows from the contraction
principle). Therefore, (T, p) is also totally bounded, that is (a.1) holds.

Given t1,...,ty, € T, the function g : [o(T) — IR™ defined by g(z) =
(2(t1),...,2(tm)) is a continuous function. So, the contraction principle
implies (a.2).

To prove (a.3), it suffices to show that given 0 < 7,¢ < oo, there exists
n > 0 such that

(3.16) limsup e, log Pr*{ sup |U,(t) —Uy(s)] > 7} < —c.
n—o0 d(st)<n

{z € Ioo(T) : I(z) < ¢} is a set of uniformly bounded and uniformly p-
continuous functions. So, there exists a n > 0 such that

{2€1o(T): 1(2) <c} C{z€lso(T): sup |z(s) —2(t)] <277}
p(s;t)<n
So, F':={z € loo(T) : sup,s.1)<y 12(8) — 2(t)| = 7} is a closed in l(T") and
inf.er I(2) > c. Hence, (3.16) holds. [J
Of course, if conditions (a) in Theorem 3.1 hold for some pseudometric
d and e is a uniformly equivalent to d, then conditions (a) hold for e. d and
e are uniformly equivalent if

lim sup e(s,t)=1lim sup d(s,t)=0.
6—0 g(s,6)<s 0—=0¢(s,t)<6
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Theorem 3.2 is true with p* instead of p.

Alternatively, conditions (a.1) and (a.3) in Theorem 3.1 can be put using
finite partition functions. Conditions (a.1) and (a.3) are equivalent to: for
each ¢,n > 0, there exists a finite partition function 7 of 7" such that

(3.17) lim sup €, log Pr *{sup |U,(t) — Un(7(t))| > n} < —c.
T

n—00 te

Under the conditions in Theorem 3.2, if z € Io(T") and I(z) < oo, then
z is a uniformly continuous in (7', d).

The next corollary characterizes when the asymptotic equicontinuity con-

dition is satisfied with respect to the Euclidean distance when 7' is a bounded
set of IR?.

Corollary 3.3 Let T is a compact set of IRY, let {U,(t) : t € T} be a
sequence of stochastic processes and let {e, } be a sequence of positive numbers
that converges to zero. Then, the following sets of conditions ((a) and (b))
are equivalent:

(a.1) {U,(t) : t € T} satisfies the LDP in loo(T) with speed €, .

(a.2) For each tog € T, limy_, p(t,t9) = 0.

(b.1) For eachty, ...ty €T, (Un(t1),...,Un(tm)) satisfies the LDP with
speed €, and good rate function I, ;...

(b.2) For each T > 0,

lim lim sup €, log Pr*{ sup |U,(t) — Un(s)| > 7} = —c0.
N—0 n—co s,telT
[s—t|<n

PROOF. Assume the conditions (a). (b.1) follows from (a.1) and the
contraction principle. We have that the identity function (7,|-|) — (7} p)
is continuous, where p is as in (3.3). Since (7| - |) is a compact set, this
function is also uniformly continuous. So, (b.2) holds.

Assume the set of conditions (b). By Theorem 3.2 (a.l) holds. Given
7> 0 and k > 0, there exists a 7 > 0 such that

limsup e, log Pr*{ sup |U,(t) — U,(s)| > 7} < —k—1.
n—oo s,teT
ls—t|<n

Hence, if s — t| <,

limsup e, log Pr{|U,(t) — U,(s)| > 7} < —k — 1.

n—~oo

By the LDP for (Uy(s), Uy(t)),

liminf €, log Pr{|U,(t) — U, (s)| > 7} > —inf{ls(u1,u2) : |ug — ug| > 7}.
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Therefore, for |s —t| <,
k < inf{I;(u1,u2): Ju; —ug| > 7}.
This implies that

sup sup{|ug —wi| : Is(ui,u2)| <k} <7. 0O
s,teT
|sfft€|§n
Observe that in the previous corollary, the condition (a.2) can be substi-
tuted by the condition:
(a.2)’ For each 0 < k < oo,

lim sup sup{|ug — ui| : Is(u1,u2)| < k} =0.
n—0 g ier
ls—t|<n
It may happen that a sequence of stochastic processes {U,(t) : 0 <t <
M} satisfies the LDP, but condition (b.2) in the previous theorem is not satis-
fied. For the stochastic processes in Theorem 6.2, if (u[0, Mn])~!u[0, Mn) —
0, the LDP holds, but neither (b.2) nor (a.2) in the previous theorem hold.
The next corollary allows to combine the LDP for several index sets.

Corollary 3.4 Let {U,(t) : t € T} be a sequence of stochastic processes
with values in R?. Let TW and let T® be two subsets of T such that
T=TOUT®. Suppose that:

(i) For each ti,... .ty € T, (Un(t1),...,Un(tm)) satisfies the LDP with
speed egl and rate function Iy, . 4. .

(it) For each j = 1,2, {Up(t) : t € T}} satisfies the LDP loo(T;) with
speed €, 1.

Then, {Uy,(t) : t € T} satisfies the LDP in lo(T) with speed €' and rate
function

I(z) =sup{ly, 1, (2(t1),...,2(tp)) 1 t1,... .t € T,m > 1}.

PROOF. Given ¢,7 > 0, there exist a partition functions 79, i = 1,2,
such that

lim sup €, log(Pr*{ sup |U,(t) — Un(w(i) )| >n}) < —c
n—oo teT (i)

Let 7(t) = 7(0(t), if t € T, and 7 (t) = 7@ (¢t), if t € T®) — T, Then,

lim sup €, log(Pr *{sup |U,(t) — Up(7(t))| > 2n}) < —c,
teT

n—oo

which implies the claim. [
The next corollary allows to obtain the LDP for stochastic processes in
IR?.
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Corollary 3.5 Let {US) (t) :t €T}, 1 <i<d, be sequences of stochastic
processes defined in the same probability space. Suppose that:
(i) For each ty,...,ty €T,

(Uﬁbl) (tl)a ey U7(11) (t’er)7 AR Vn(d) (tl)’ Tt Vrgd) (tm))

satisfies the LDP in IRY™ with speed €;,*.

(ii) For each 1 < i <d, {US) (t) : t € T} satisfies the LDP in loo(T') with
speed €, 1.
Then, {(Uél)(t),...,Ur(Ld)(t)) . t € T} satisfies the LDP in 1o (T, IRY)

with speed €, '.

PROOF. Let T* = {1,...,m} x T. Let Wy(i,t) = US(t) for t € T.
Corollary implies that for each 1 < i < d, {W,,(i,t) : t € T} satisfies the
LDP with speed ¢, . By Corollary 3.4, {W,,(t*) : t* € T*} satisfies the LDP
in I (T*) with speed €, 1. loo(T*) is isometric to loo (T, R?). O

The previous theorem implies Slutsky theorem for the LPD in [ (7).
Under the conditions in the previous theorem, by the contraction principle
for any continuous function g in IR%, {g(U,(Ll)(t), e @ (t)) : t € T} satisfies
the LDP in I (T) with speed €.

The next corollary gives necessary and sufficient conditions for the LDP
for Banach space valued r.v.’s.

Corollary 3.6 Let {X,}°°, be a sequence of r.v.’s with values in Banach
space B. Then, { X}, satisfies the LDP in B with speed €, ' if and only if
foreach f1,..., fm € B*, (f1(Xn),..., fm(Xy)) satisfies the LDP with speed

€, and rate function Iy, s, , and for each T > 0,
lim lim sup €, log Pr*{ sup |f1(X,) — fo(Xp)| > 7} = —o0,
=0 n—oo f1,.f2€B5, p(f1,f2)<n

where p is as in (3.3).

PRrOOF. Consider ¢ : B — lo(B7), defined by ¢(z) = {f(z) : f € Bj}.
It is easy to see that ¢ : B — ¢(B) is a continuous one—to—one function with
continuous inverse. Thus, by the contraction principle X,, satisfies the LDP
in B if and only {f(X,) : f € Bf} satisfy the LDP in [ (7). Theorem 3.2
implies the claim. [J

Next, we consider the LDP for stochastic processes whose sample paths
are a convex function on the parameter. It is well known that if a sequence of
convex functions converges, then the convergence is uniformly on a compact
set (see Theorem 10.8, in Rockafellar, 1970). A similar result holds for the
weak convergence of stochastic processes (see Arcones, 1998). We will use
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some of the techniques in this paper. In particular Lemma 13 in Arcones
(1998) says that for each convex function f: [-1,1]¢ — IR,

(3.18) sup | f(z)] <37 sup  |f(x)].
zr€[—1,1]4 re{-1,0,1}4

We also will need that if Let Ty be a set of R, let € > 0, let Is={z+y:
x € To, ly] < €} and let f: T§ — IR be a convex function, then for each
z,y €1
(3.19) [f(z) = fly)l < !$—y|6_12felljpelf(t)|,

0

(see Lemma 14 in Arcones, 1998).

Corollary 3.7 Let Ty be an open convex set of IRY. Let T be a compact set
of Ty. Let {e,} be a sequence of positive numbers converging to zero. Let
{Un(t) : t € To} be a sequence of stochastic processes. Suppose that:

(i) Upn(t) is a conver function in t.

(ii) For each ty, ...ty € To, (Un(t1),...,Un(tm)) satisfies the LDP with
speed €1

Then, {U,(t) : t € T} satisfies the LDP in loo(T) with speed €, "

PrOOF. We have to prove that given ¢, > 0, there exists a finite
partition function 7 of Ty such that

lim sup €, log(Pr* {sup |Un (t) — Un(m(£))] = 1}) < —c.

n—oo teTy

Take € > 0 such that Ty C T'. Since 7§ is a compact set, it can be covered
by a finite number of hypercubes. So, by (3.18) , there are t1,...,t,, € T
such that for each convex function h defined on T,

h(t)| < 3% h(t;)].
feujpgl()l_ lrgnlgl(z)l

Hence, there exists a finite constant M such that
lim ey, log(Pr{ max |U,(t;)| > M}) < —
n—00 1<I<m

Take a finite partition function 7w of Ty such that

supery [t — w(t)] < 27'M 137, By (3.19),

sup |Up(t) — Up(7(t))] < M*13*dn sup |Up(t)].
teTo teT§

Hence,

lim sup,, ., €n log(Pr*{sup;cp, |Un(t) —
< limsup,, o, € log(Pr*{sup;cre [Un(t)| = M
< limsup,,_, €n Iog(Pr{maX1<l<m |Un(t)| > M} < —c.

Hence, the claim follows. [J
Next, we consider the case of nondecreasing processes.
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Corollary 3.8 Let {Uy(t) : 0 <t < M} be a sequence of stochastic pro-
cesses. Let {e,} be a sequence of positive numbers converging to zero. Sup-
pose that:

(i) With probability one, U, (t) is a nondecreasing function in t.

(ii) For each 0 < t1 < -+ <ty < M, (Up(t1),...,Un(tm)) satisfies the
LDP with speed €, *.

(iii) For each 0 < k < oo and each 0 <ty < M,

th—{% sup{|uz — w1 : Ly ty(ur,u2)| <k} =0,

where Iy, is the rate function of the LDP of (U,(t), Upn(to)).
Then, {U,(t) : 0 <t < M} satisfies the LDP in 1o ([0, M]) with speed
—1

€n -

PROOF. By an argument in the proof of Corollary 3.3, condition (ii)
implies that for each 0 < k < oo,

lim sup sup{|ug —ui|: Is¢(ur,u2)| < k} =0.
n—0 0<s,t<M
|ls—t|<n

First, we prove that for each 7 > 0,

(3.20him mf{ L p(ur, ua) : Jup —w| 2 7,0 < s, < M, [s —t] <} = o0
n‘)

Given 0 < k < oo and 7 > 0, there exists a n > 0 such that

sup sup{|ug —u1| : Ise(u1,u2)| < k} <.
0<s,t<M
ls—t|<n

Hence,
inf{l¢(ur,uz) : lug —ur| > 7,0 <s,t <M,|s—t| <n}>k.

and (3.20) holds.
Given a positive integer m, we have that

Pr{maxi<i<msupy,_, <<t |Un(t) — Un(ti-1)| > 7}
< maxi<icm Pr{Un(t;) — Un(ti-1) > 7}

where t; = m~'Mi. So,

lim sup,, ., , €n log(Pr{maxi<j<m sup;, | <;<, |Un(t) — Un(ti—1)| > 7})
< —inf{l;;, ,+(u,v):|lv—ul>71,1<i<m}.

which tends to oo, as m — oo. O
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In the previous theorem, conditions (i) and (ii), without condition (iii),
are not sufficient to obtain the thesis of theorem. In the example considered
in Theorem 6.2 when p[0, x] is slowly varying at infinity, conditions (i) and
(ii) in the previous theorem hold, but the stochastic process does not satisfy
the LDP. In other words, the LDP of the finite dimensional distributions of
a nondecreasing stochastic process does not imply the uniform LDP.

We will need the following proposition, whose proof is omitted because
it is trivial.

Theorem 3.9 Let {U,(t) : t € IR} and be a sequence of stochastic processes.
Suppose that for each 0 < M < oo, {Uy(t) : [t| < M} satisfies the LDP in
loo[—M, M| with speed €' and rate function Ip;.

Then, {Uy(t) : t € IR} satisfies the LDP in (F(IR), dcomp) with speed €,

and rate function I, where

F(R)={a:R— IR: sup |a(t)| < oo, for each M < oo},
t<M

2= Bl ki AL
dcomp(a7ﬁ) = Z 2][€ ] s

k=1

I(z) = Jim Ing (2] = ar,0m)

and z||_pp,pp) 08 2 is restricted to [ M, M].
Next, we consider the compositions of stochastic processes.

Theorem 3.10 Let {U,(t) : t € R} and let {V,(t) : 0 < t < Ma} be two
sequences of stochastic processes. Suppose that:
(i) For each My < oo,

(Un(t) : [t] < My} x {Via(£) : 0 < ¢ < My}

satisfies the LDP in loo([— My, M1]) X loo([0, Ma]) with speed €' and rate

. (UV)
function I, .

1
(i) For each t € IR and each positive integer k

tILn% supq|ug — uq| : It(’(t{))(U1,u2) <k} =0,

where It(,(t]o) is the rate function of the LDP of (Uy(t), Uy, (to)).

Then, {U,(V,(t)) : 0 < t < M} satisfies the LDP in 1 ([0, Ma]) with
speed €, 1. Moreover, the rate function is

I(z) = inf{IY) (e, 8) : a0 f = 2},

where I(va)(a,ﬁ) = limp;, oo I](\Z’V) (O‘|[—M1,M1]75)'
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PROOF. By the Theorem 3.9, we have that (U,, V,,) satisfies the LDP in
(F(IR), deomp) X loo|—Ma, My] with speed ¢, and rate function I(:V). TLet
¢ (F(R),dcomp) X loo[—Ma, Ma] — loo|—Ma, Ms] be defined by ¢(«, 3) =
ao 3. By condition (ii), if I(U’V)(a, B) < oo, then « is continuous. We claim
that ¢ is continuous at each («a,8) with I(¥V)(a, ) < co. Observe that if
(o, Bn) — (o, B) in F(IR) X log[—Ma, Ms], then
My := sup,,>1 Supj <, |Bn(t)] < 0. Since ay, — avin log[—Ma, Mo, B — 8
in loo[—Mi, M;] and « is uniformly continuous in [—My, Mi],

SUp g <, | (Bn(t)) — a(B(1))]
< supjy<ar, | (Bn(t)) — a(Ba(t))] + supj<ar, [(Fa(t)) — a(5(?))]
< supjy<a, |an(t) — a(t)] 4+ suppy <, [a(Ba(t)) — a(B())] — 0.

Hence, by Corollary 2.2, {U, o V,,} satisfies the LDP in [ [—Ma, Ms] with
speed ¢, 1. [

There are variations of the previous theorem which hold in an obvious
way. For example, we may consider the processes {U,(t) : ¢ > 0} and
{Va(t) : 0 <t < Msy}. Under the conditions in the previous theorem, we
obtain the LDP for {U,(|V,,(¢)|) : 0 <t < M>}.

4 The rate function of the LDP of stochastic pro-
cesses

In many situations, the large deviations for the finite dimensional distribu-
tions can be obtained from the following theorem:

Theorem 4.1 (Ellis, 1984, Theorem II.2). Let (Uy(1),...,U,(m)) be a
sequence of r.v.’s with values in IR™. Let €, be a sequence of positive numbers
converging to zero. Suppose that:
(i) For each Ai,...,Am, the following limit exists (the limit could be
infinity)
m

lim €, log | Elexp(e Z =:1(A)

where A = (A1,..., Am).

(ii) Zero is in the interior of D (1) :=={\ € R™ : l(\) < co}.

(iii) 1 is a lower semicontinuous convex function on IR™.

(iv) l(N) is differentiable in the interior of D(I).

(v) If Ay, is a sequence in the interior of D(l) converging to a boundary
point of D(1), then ||grad I(A\,)| — oo.
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Then, (Un(1),...,U,(m)) satisfies the LDP in IR™ with speed €, and
rate function

I(uy, ..., upy) = Sup{Z)\juj — I A1y Am) P AL, - A € R
j=1
In many cases, the function [ in Theorem 4.1 can be written as
(4.1) e d) = [ (30N (a) dite),
j=1

where (S5,8) is a measurable space, fi,..., f,, are measurable functions, p
is a measure on S and @ : IR — (—o0, 00] is a convex function. We will take
either ®(z) = ¢® — 1 or ®(x) = p~!|z|P for some p > 1. In this section, we
study the rate function in I (7), when (4.1) holds for the finite dimensional
distributions.

Lemma 4.2 Let ® be a convex function. Let (S,S) be a measurable space.
Let p be a measure on S. Let fi,..., fm be measurable functions in S such
that for each A1, ..., Am € R, [ ®(3 7L Ajfi(2)) du(x) < oo. Let

ID (ug, .. uy)
= sup {Z;”Zl Ajuj — [T A fi(@) dp(x) = Ay A € ZR}
and let

I (uy, ... uy) = inf {[O(y(z))du(z) :
[ fi(@)v(z) dp(x) = u; for each 1<j<m},

where U is the conjugate convex function of ® defined by
(4.2) Y (y) = sup(zy — ().

Then, for each ui, ... um € R, IM(uy, ... um) = I (ug,. .. up).

PRrOOF. If [ f;j(z)y(z)du(x) = uj, for each 1 < j < m, by (4.2),

Z)\jUj _/CD(Z A fi(x)) dp(x)
p j=1

m

= [ [ ns@nt@) - o A | duto) < [ W6(@) dut).
i=1 j=1

Thus, I(l)(ul, ceyUy) < I (u1,...,upm). Now, we may assume that
I(l)(ul, ey Upy) < 00. Since @ is convex, it has a left and a right derivative
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(see for example Chapter I in Rao and Ren, 1991). Let ¢ be the right
derivative of ®. For the A1, ..., A\, attaining the sup in I(l)(ul, ooy Up), for
each 1 <753 <m,

w=[v 2}& (2) dp(z).

Let v(z) = ¢ (Z;n:l )\jfj(a:)). Since

rp(z) = (z) + ¥(p(z))

(see for example Theorem 1.3.3 in Rao and Ren, 1991),

o Ajug — [T A f(x)) dp()
- f@: Ah( PST Af0)) — (S, Ay (a) o)
= J¥(y ().
Thus, 1@ (u1, ... um) < IO (uy, ... uy). O
Assuming that {U,(t) : t € T} satisfies the LDP and the conditions in
the previous theorem hold, by Theorem 3.2 we have that for each k > 1,

(T, pr.) is totally bounded, where py is as in (3.1). It is easy to see that this
condition is equivalent to for each k > 1, (T, dy) is totally bounded, where

(4.3) di(s,1)
—sup{] [ (£(2) = f(a.0)1() da) s [ W(r()) dia) < ).

In some cases, previous pseudometric is an Orlicz norm. We recall some
notation in Orlicz spaces from Rao and Ren (1991). A function ®; : R —
[0, 0] is said to be a Young function if it is convex, ®1(0) = 0, ®1(z) =
¢ (—x), and lim, o ®1(x) = co. Given a measurable space (5,S) and a
measure g on S, the Orlicz space £ (1) associated with the Young function
®; is the class of measurable functions f on (S,S) such that for some A > 0
[ @1 (A\f)du < co. Define the Orlicz norm by

(4.4) I£1a, =supd] [ Fgdal: [ wi(lgl)d < 1)
and the gauge norm of the Orlicz space £L*1(u) by
Noy(f) = int{t >0 [ @(f/t)d < 2(1)),

where Wy be the conjugate function of ®; in the sense of (4.2). Assuming
that ®(1) < 1, we have that

No, (f) <[ flle; < 2Na, (f)
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(see Proposition II1.3.4 in Rao and Ren, 1991). It is well known that the
linear space £®* () with the norm Ng, is a Banach space. If the convex func-
tion W is a Young function, we have that the distance dj, in (4.3) is an Orlicz
norm. Given a Young function ®;, M®! denotes the Banach space consist-
ing by the class of functions f such that for each A > 0, [ @1 (| f]) dp < oo,
with the norm Ng,. We will use that (M®1)* = £¥1 (see Theorem IV.1.7
in Rao and Ren, 1991). We will say that a sequence of functions 7, in £¥
converges weakly to o in o(£¥1, M®1) if

/'andﬂ_)/’YOde

for each f € M®1. A function ® is called an N-function (a nice Young
function) if ® is a continuous Young function such that ®(z) > 0 for = # 0,
lim, o2 1®(z) = 0 and lim, oo 27 1@ (x) = co. We will use that if ®
is an N—function, then a bounded set in £¥! is G(E‘I’l,M‘bl)fsequentially
relatively compact (see Corollary IV.5.5 in Rao and Ren, 1991).

We will need the following lemma:

Lemma 4.3 Let ¥ : IR — [0,00] be a convexr function. Let (S,S) be a
measurable space. Let pn be a measure on S. Let v be a function on S.
Then,

J (@) dulw) = sup{S7y 1B (7 S, (@) du()
: By,..., By, are disjoint sets and 0 < p(Bj) < co}.
The proof of the previous lemma is omitted since it is trivial.

Theorem 4.4 Let @ : IR — [0,00) be a convex function such that ®(0) = 0,

®'(0) = a ewists, max(®(z) — ax,®(—x) + ax) > 0 for each x # 0, and

lim, oo 2~ max(®(x), ®(—2x)) = co. Let ¥ be the conjugate function of ®

in the sense of (4.2). Let (S,S) be a measurable space. Let p be a measure

on S. Let {f(x,t):t € T} be a class of measurable functions. Suppose that:
(i) For each t € T and each A > 0,

[ #1000 dua) <
where ®1(z) = max(P®(z) — ax, P(—z) + ax).

)
(ii) (T,d) is totally bounded, where d(s,t) = Y oo, k™2 min(dx(s,t),1)
and

du(s,t) = sup(] [ (F(2.5) = e t)r(@)dute) [ W) dute) < )
(i3) If a # 0, suppose also that ((S) < oco.
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I(z) = sup{ly,,. . 1, (2(t1), ..., 2(tm)) 1 t1,..., tm € T,m > 1},

(4.5) Iyt (U, o) = inf{/ U(y(z))du(zx) :

/f(x,tj)fy(:n) du(z) = uj, for each 1<j<m}
and

(4.6) I(z) = inf { [ U(y(z)) du(z)
: [ flz,t)y(z) du(x) = z(t) for each teT}.
PrOOF. We have that ®;(x) is an N—function with conjugate ¥;(z) =
min(¥(a + z),¥(a — x)). Let

I(l)(z) = SUP{Itl,...,tm(Z(tl)a <o 7Z(tm)) ity tm €T,m > 1}'

Obviously, ™M (z) < I(z). We need to prove that if I(V)(z) < oo, then
IM(z) > I(z). Take {s,} such that {s,} is dense in (T,d) and IV (z) =
limy, oo Isy,. 050 (2(51), - - ., 2(8n)). Take 7y, such that [ ~v,(z)f(x,s;)du(z) =
2(s;) for each 1 < j < n and

/ U () i) < Ty, _on (2(51)s - 2(5m)) + 0.

Let ko > I (2). We have that for n large enough [ W1 (7, (2)+a) du(x) < ko.
So, by Corollary IV.5.5 in Rao and Ren (1991), {7, + a} is weakly compact
in (M®1)* = L%, Hence, there exists a subsequence ny and vy + a € L¥!
such that such v,, + a converges weakly to vo + a in o(L¥*, M®1). This
implies that [~o(z)f(z,s;)du(z) = z(s;) for each j > 1. By Lemma 4.3,
[ ¥ (yo(x)) du(z) < IW(2). Since z and [ f(z,t)y(x) du(x) are d-uniformly
continuous functions, [~o(z)f(z,t) du(x) = z(t) for each t € T. O

Unless limg o0 || 7! max(®(z), ®(—x)) = oo, the rate function does not
have the form in the previous lemma (see Lynch and Sethuraman, 1987).

The results in this section translate to a Banach space in an usual way.
Let B be a separable Banach space. Let {U,} be a sequence of r.v.’s with
values in B. Suppose that for each f € B*,
lim e, log(Elexp(e, " f(Un))]) = /‘?(f(l‘))du(iv)a

n—oo

where p is a measure on B and @ is a convex function. Under the conditions
in Theorem 4.4, the rate function for the LDP of {U,} with speed ¢! is

1(2) = inf{ [ U((2)) dp(x)
[ xvy(z)dp(z) = z, v : B — IR is a measurable function}.

Next, we consider the simplest case to which the previous lemmas apply.
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Theorem 4.5 Let {Uy(t) : 0 < t < M} be a sequence of stochastic pro-
cesses. Let {€,} be a sequence of positive numbers that converges to zero.
Let ® be a nonnegative conver function. Suppose that:

(i) For each 0 <t; <--- <t,, <M and each A\i,..., A\, € IR,

Tim e log | Elexp(e,' Y AUn(t)] | =D 2D X)(t; —tj-1).
J=1 7=1 =7

(ii) For each n > 0,

lim limsup €, log Pr{ sup |U,(s) — Uyn(t)| > n} = —oc.
—0 n—oo ls—t|<s
0<s,t<M

(i1i) ®(0) = 0, ®'(0) = a exists, max(®(z) — ax, ®(—z) + ax) > 0 for
each © # 0, and lim, ., 27! max(®(z), ®(—z)) = oo.

Then, {Uy,(t) : 0 <t < M} satisfies the LDP in l5,[0, M| with speed €,
and rate function

I(z) = { fOM W(2/'(t)) dt, if z(0) =0 and z is absolutely continuous
0, else.

Proor. It follows from theorems 4.1 and 4.4, and Lemma 4.2 with
f(z,t) = I(0 < x < t) and p equal to the Lebesgue measure. Observe that
have condition (iii) in Theorem 4.4, we need that for each k£ > 1, ([0, M], di)
is totally bounded, where

t
/ ~(x) da
S

It suffices to show that lim, .osupo<,<a di(s,t) = 0. But, given A > 0,
ls—t|<n

0<s,t<M and v with fOM\IJ(’y(x)) dr < k,

M
di(s,t) = sup{ : /0 U(y(z))de < k}.

/t"y(az) dr < /t AN (y(2) + (V) doz < ATk + AT s — ¢ @ (M),
and

— /t'y(a:) dr < /t ATHT(y(2) + @(—N) dz < Ak + A7 s — H@(-N).

Hence,
sup di(s,t) < inf A"k + A pmax(®(N), @(N))),
(|)§s,t|§<M A>0
s—t|<n

which implies condition (iii) in Theorem 4.4. OJ

An analogous of the previous theorem hold for processes defined in
[— M, My] where My, My > 0.

The previous theorem can be used to give compositions of processes.
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Theorem 4.6 Let {Uy(t) : t € R} and let {V,(t) : 0 < t < My} be two
sequences of stochastic processes, where My > 0. Let {€,} be a sequence of
positive numbers that converges to zero. Suppose that:

(i) For each 0 < t; < -+ < tp, each 0 < 51 < -+ < 8y, each 0 <
r < - <1y < My, each A\,...,\p, € IR, each 1,...,Tm € IR and each
Vi, Um € IR,

lim;, .o €, log (E [exp <e;1 (ZT:I AiUn(t5)
Y T Un(=85) + S viVa(ry)) ) |)
= 2 0 N — 1) + 200 21 (0 ) (s — sj-1)
+300 ‘1’2(2Z Ly —rjz1)

where ®1 and ®o are two nonnegative convex functions.
(i) For each n >0 and each 0 < M < oo,

liII(l) limsup e, log Pr{ sup |Up(s) — Un(t)| > n} = —oc.
—Y n—oo [s—t|<5

||, [t|<M
(ii) For each n >0,
lim limsupe, logPr{ sup |V,(s)—V,p(t)|>n}=—

0—0 p—oo ls—t|<6
0<s,t<Mpo

(i) Fori=1,2, ®;(0) =0, ®;(0) = a; exists, max(P®;(x) —a;z, P;(—x)+
a;z) >0 for x >0 and lim,_ o v~ max(®;(z), ®;(—z)) = co.

(v) max(Po(P1(x)) — arazx, Po(P1(—2)) + aragz) > 0 for x > 0 and
lim, oo 27 max(®o(®y(z)), Po(P1(—12))) = 0.

Then, {Un(Vi(t)) : 0 < t < My} satisfies the LDP in 1[0, My] with
speed €, 1 and rate function

{fo Uy 1(2/(t)) dt, if 2(0) =0 and z is absolutely continuous
else,
where Wa 1 is the conjugate of ®o o0 Py.

ProoOF. By Corollary 3.10 and Theorem 4.5, {U,,(V,(t)) : 0 <t < My}
satisfies the LDP in [0, My] with speed ¢, and rate function

I(2) = imf{ [;° U1 (o (1)) dt + [3" Ua(B'()) dt
:z=aof,a(0) =0 and 5(0) = 0}.
So, the rate function for the LDP of the finite dimensional distributions is

Itl,...,tm(ula .- Um)

= inf{[* ¥ (a ( ) dt+ [37° Wo((t)) dt

cz=aof, y(t )_u],1<j<m}
= Wmf{X, f)7 wie/(t) de + 7 jfjf_l Uy (B(t)) dt -

B(tj) = vj, a(vy) = uj, 1 < j <mj.
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By the Jensen’s inequality
Lol e/ (1) dt = (vj — vjm) U (v —v-1) "1 [37
= (v —vj—1)Wi((uy — wj-1)/(v; — vj-1)),
where we have inequality if o/ is a constant. A similar inequality holds for
Usy. So,
(4.7) Iy (U, o Uy)
= inf {372 (v; — vj-1)W1((v; — vj—1) " (wj—1 — uy))
+ 300t = t-1)Ta((t — 1) (v —vj—1)) T U1, U}
= inf {372 (v; — vj—1)W1((v; —vj—1) " (wj—1 — uy))
+ 200t = t-)Wa((ty — tj—1) " (v = vjm1) vty U}
= Yy inf{ol (o7 (wjm1 — uy)) + (5 — ti—) Ua((t; — tj-1) " 'v) 1 v}
= 2Pty — tj—) nf{olr (vt — 1) (w1 — ) + Pa(v) v}
= St — i) Waa((t — 1) (i1 — ).

Observe that the minimax theorem (see for example Theorem 37.1.3 in Rock-
afellar, 1970)

inf, {v¥;(v™tz) + Uy (v)} = inf, supy{v(v~tab — ®1(b)) + ¥a(v)}
= supyinf,{zb — vP1(b) + ¥a(v)} = supy{xb — sup, {vdP(b) — U2(v)}}
= supy{azb — ©2(P1(0))} = W21 ()

Since the rate function for the finite dimensional distributions is given by
(4.7), Theorem 4.4 implies that the rate function is as claimed. O

The previous result is related with Lemma 2.1 on the Strassen class
appearing in the law of the iterated logarithm of the iterated logarithm in
Csaki, Foldes, and Révész (1997).

o/(t) dt)

5 The LDP Gaussian processes

In this section, we consider the large deviation principle of Gaussian pro-
cesses. In the case of a sequence of Gaussian r.v.’s, we have the following
theorem:

Theorem 5.1 Let {X,,}7°; be a sequence of Gaussian r.v.’s with mean fi,
and variance 0'7%. Let {e,} be a sequence of positive numbers converging to
zero. Then, the following conditions are equivalent:

(a) There are p € IR and 0 < a < 0o such that limy, oo pty, = p and
lim, o €, 02 = a.

(b) {X,}°°, satisfies the LDP with speed €,,*.

Moreover, if either (a) or (b) holds, the rate function is I(t) = (tg;‘)Q, if
a>0;I(t)=0ift=panda=0; and I(t) = o0 if t # p and a = 0.
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The proof of the previous theorem is omitted, since it follows from well
known estimations on the tail of a standard normal r.v.

To obtain the rate function in the LDP of Gaussian processes, we use
the results in Section 4 with ®(z) = ¥(z) = 27122, Suppose that there
exists a measurable space (S,S), a positive measure p on S and a class of
measurable functions {f(z,t) : ¢ € T} such that the rate function for the
finite dimensional distributions is

Lyt (U1, - o yu) = inf{ [ 27392(2) dp(z) -
[ f(z,t;)v(x) du(z) = uj, for each 1< j<m}.

The rate function for the stochastic process is
(5.1) I(z) = inf {/2172(96) du(z)
: /f(x,t)*y(x) du(x) = z(t), for each t € T} ,

where z € l(T). Sometimes, it is preferable to write this rate function
using reproducing kernel Hilbert spaces. In the previous situation,

R(s,1) = / F, 1) f (2, 5) dp(x)

is a covariance function, i.e. for each Aq,..., A\, € IRand each ty,...,t,, € T,

> NiNR(ti, ) > 0.
ij=1

Hence, there exists a mean-—zero Gaussian process {Z(t) : t € T'} such that
E[Z(s)Z(t)] = R(s,t) for each s,t € T. Let L be the closed linear subspace
of Ly, generated by {Z(t) : t € T'}. Let ¢ : L — loo(T') defined by ¢(§)(t) =
E[Z(t)£]. The reproducing kernel Hilbert space of the covariance function
R(s,t) is the Hilbert space {¢(€) : £ € L} with respect to the inner product
<P(&1), p(&2)>= E[£1&2]. The rate function in (5.1) can be written also as

(5.2) I(z) =inf{27 E[€?] : € € L, p(€) = 2}.

The next theorem gives necessary and sufficient conditions for the LDP
for Gaussian processes.

Theorem 5.2 Let {Uy,(t) : t € T}, n > 1, be a sequence of centered Gaus-
sian processes. Let {e,} be a sequence of positive numbers such that €, — 0.
Then, the following sets of conditions ((a) and (b)) are equivalent:

(a.1) For each s,t € T, €, E[U,(s)U,(t)] converges as n — oo.
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(a.2) (T,d) is totally bounded, where

d?(s,t) = lim €, E[(Un(s) — Un(t))?].

n—:o0

(a.3) supier [Un(£)] 2 0.

(a.4) limy—o lim sup,, ., SUP(s,¢)<n e, L E[(Un(s) — Un(t))?] = 0.

(b) {Un(t) : t € T} satisfies the LDP in loo(T) with speed €;,!.

Moreover, if either (a) or (b) holds, the rate function is defined by (5.2)
where

R(s,t) = lim €, 'E[U,(s)Uy(t)].
n—oo
PROOF. Assume conditions (a). We apply Theorem 3.2. By condition
(a.2), condition (a.1) in Theorem 3.2 is satisfied.
Given t1,...,t;, € T and M\, ..., N\, € IR, we have that

en log(Elexp(e,, Z AiUn(t))]) — TlE[(Z N Z(t5))7,

where {Z(t) : t € T} is a centered Gaussian process with covariance
E[Z(s)Z(t)] = R(s,t), s,t € T. The previous limit and the Ellis Theorem
(Theorem 4.1) imply condition (a.2) in Theorem 3.2 with the rate function

Lyt (U, i) = sup > Ny — 270 Y MME[Z(t) Z (1)
1

Moeshm | 52 i

By Lemma 4.2, this rate function can be expressed as
inf {27 B[€%] : € € L, E[EZ(t;)] = u; for each 1<j <m}.

By the isoperimetric inequality for Gaussian processes (Sudakov and
Cirel’son, 1974; and Borell, 1975),

Pr{|supg(s )<y |Un(s) — Un(t)| = My| > u}

u2

 25upg(s 1)< EllU()=Un(®]7] ) 2

< exp(

where M,, is the median of supys <y [Un(s) — Un(t)|. This inequality and
(a.4) imply (a.3) in Theorem 3.2. Therefore, (b) in Theorem 3.2 holds with
the rate function

I(z) =sup{ly,, 1, (2(t1), ..., 2(tm)) 1 t1,. .., tm € T,m > 1},

where I, 4, was defined above. By Theorem 4.4 this rate function can be
expressed as in (5.2).
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Assume condition (b). The contraction principle implies that for each
ti,to € T and each A\, Ao € IR, the LDP for \U,(t1) + AU, (t2) with
speed €, ! holds. By Theorem 5.1, for each t1,to € T and each A1, Ay € IR,
en LE[(MUpn(t1) + XUy (t2))?] converges. Therefore, condition (a.1) holds.
Besides this implies that the rate function for the finite dimensional distri-
butions is

Itl,...,tm (Ul, cee 7um)
= inf {27'E[¢?}]: £ € L, E[EZ(t;)] = u; for each 1 < j <m}.

So, pr(s,t) = sup{lug — 1| : Isi(u1,us) < k} = d(s,t)(2k)/2. So, by
condition (a.1) in Theorem 3.2, (a.2) holds.
By condition (a.3) in Theorem 3.2, for each 7 > 0,

hm limsup Pr*{ sup |Uy(t) —Uyp(s)|> 7} =0.
—0 n—oo d(s,t)<n

This and the fact that U, (¢) P 0, for each ¢ € T, implies (a.3).
Condition (a.3) in Theorem 3.2 also implies that for each 7 > 0,

lim sup limsupe,logPr{|U,(t) — U,(s)| > 7} = —o0,
W"Od(s t)<n n—oo

which implies (a.4). O
Large deviations for Gaussian processes have been considered by several
authors. Schilder (1966) considered large deviations for the Brownian mo-

tion. In our notation, Chevet (1983) proved that if {eEI/QUn(t) cteT}
converges weakly to a Radon Gaussian process {Z(t) : t € T'}, then {U,(¢) :
t € T} satisfies the LDP with speed ¢,!. The previous theorem general-
izes Theorem 2 in this reference. It is easy to find examples which do not
satisfy the conditions in the Chevet theorem. Let {g}32, be a sequence of
iid.r.v.’s with standard normal distribution. Let {a,}5°; be a sequence of
real numbers converging to infinity. Let U, (k) = a;, *(log k)2 g. Tt follows
from Theorem 5.2 that {U,(k) : k > 1}, n > 1, satisfies the LDP in I (IV)
with speed a2. However, it is not true that {a,U,(k) : kK > 1} converges
weakly to a Gaussian process in [ (IV).

The previous theorem implies that if { B(¢) : ¢ > 0} is a Brownian motion
and {a,} is a sequence of real numbers such that n=/2a, — 0, then, for
each 0 < M < oo,

{a,B(n7't):0 <t < M}

satisfies the LDP in [ [0, M] with speed na,? and rate function

fo () dt, if 2(0)=0
(5.3) I(z) = and z is absolutely continuous
0, else
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(this result is due to Schilder, 1966). The next theorem considers centered
Gaussian processes with stationary increments:

Theorem 5.3 Let {X(t) : t > 0} be a centered Gaussian process with sta-
tionary increments and X (0) = 0. Let 0 < M < oo. Let {a,} be a sequence
of real numbers such that a2 E[X?(n='M)] — 0. Then, the following sets of
conditions are equivalent:

(a.1) For some 0 < o < 1, for each 0 < t,

b BT,
w0 BIX2(n~1M)] "

—_ Pr
(a.2) supg<i<ps an|X(n )| = 0.
(b) {a, X (n~1t): 0 <t < M} satisfies the LDP with speed
a, > (E[X*(n~'M)])~ 1.
Moreover, for a = 1/2, the rate function is given by (5.3); if 0 < a < 1
and o # 1/2, the rate function is given by

(5.4) I(2) = inf {2*17(1 [ 62 () da -

To [ $(@) (|7 — #/2a=1/2 — |3|2a=D/2) 4 = 2(#), for cach 0 <t < M} ,

where z € 1([0,1]) and

[e'e) —1
. (/ (jo — 1]a=D/2 _ |p[(2a=1)/2)2 dw) ;

—00

and if « = 1, the rate function is

(5.5) I(z) = {21a2 if for some a, z(t) = at for each 0 <t < M,
o0 else.

Proof. Without loss of generality, we may assume that M = 1. As-
sume (a), we apply Theorem 5.2. Conditions (a.1)—(a.3) in Theorem 5.2 are
assumed. By regular variation,

E X2 —1
lim limsup sup X (n” 1))

———= = 0.
N—=0+ n—oo 0<t<n E[XQ(n_l)]

This implies condition (a.4) in Theorem 5.2.
Assume (b). Theorem 5.2 implies (a.2). By Theorem 5.1, for each 0 <
s, t <1,
-1 -1
lim E[X(n 's)X(n™'t)]
2 B (n )]
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exists. By Theorem 1.9 in Bingham, Goldie and Teguels, 1975), E[X?(n~!t)]
is regularly varying as t — 0. Hence, there exists an a € IR such that for
each t > 0,
E X2 -1
LX)
w0 B[X?(n )]

Since condition (a.4) in Theorem 5.2 holds, &« > 0. For 0 < s < t, we
have that || X (¢)||2 < || X (s)||2 + || X (¢) — X (s)||2. Hence, we have that t* <
s* 4 |t — s|*. Taking t = 2s, we get that o < 1.

If o # 1/2, by the change of variable x = ty, we get that

=t

/OO (‘x _ t|(2a—1)/2 _ |x|(2o¢—1)/2)2 dr = |t|2a7_071'

—0oQ
Hence,

R(s,t) = 271 (82 + 2% — |s — t]?)
= 7, ffoooﬂx _ 8‘(20471)/2 _ |x‘(2a71)/2)(’x _ t|(2a71)/2 _ ’$|(2a71)/2) dr.

We take the measure p defined in IR by du(z) = 7, dz and

Fla,t) = o — t|2a=D/2 _|g|a=1/2,

From Theorem 4.4, we get that the rate function for the LDP when 0 < o < 1
and a # 1/2, is given by (5.4).

If o = 1/2, we have that the rate function is given by (5.3).

If a =1, R(s,t) = st. We apply Theorem 4.4 with S = [0, 1], f(z,t) =t
and p equal to the Lebesgue measure, we get that the rate in (5.5). O

A centered Gaussian process {B,(t) : t > 0}, it is a fractional Brownian
motion of order o, 0 < o < 1, if its covariance given by

E[Bo(s)Ba(t)] = 27H(s** + 2% — |5 — t|*¥),s,t > 0.

It is easy to see that Theorem 5.3 applies to the fractional Brownian motion
of order «, if a,n™¢

Theorems 3.10 and 4.6 allows to obtain LDP for compositions of Gaussian
processes.

— 0.

Theorem 5.4 Let {B(t) : t € IR} be a Brownian motion. Let {an} be a
sequence of real numbers such that a, — oo and n"'a? — 0. Let 0 < M <
oo. Then,

q2—27
{"B(k)(n_lt) 0<t< M} ,

“k
pl—2-F+1
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k
where B¥) = B o g B, satisfies the LDP in loo[0, M| with speed na,,* and
rate function

S Wy (2 (1) dt, if 2(0) =

(5.6) I(z) = and z is absolutely continuous
0, else,
k+1__ k k_
where W (7) = WM‘P /@51,

PROOF. We only consider the composition of two Brownian motions in
detail. The general case is similar. We apply Theorem 4.6 with ®(z) =
®y(x) = 27122, By Theorem 5.3, for each 0 < M < oo,

{n=Y2a32Bla; ) : =My <t < My}
satisfies the LDP with speed na,, 2. We also have that
{a,B(n7't):0<t < M}

satisfies the LDP with rate na, 2. This implies conditions (ii) and (iii) in
Theorem 4.6. We need to obtain the LDP for the finite dimensional distri-
butions (condition (i) in this theorem), given 0 < t; < -+ < t,,, < M; and
0<s1< - <sp<Miand 0<r; < - <rpym <M, consider

(n*1/2a3/ B(~ fltm> *1/2a§/2( azlt))

Y

n—1/2a3/ B(a;'s1),. n—l/zaz/2 Bla; -1 Sm)
,anB(n~ 17‘1),...,(1713(71 L))
Given A1,..., A, T -+, Ty V1 -5 U € IR,

ta? log(Plexp(na, (T A~ V2a)? B(—a;'t;)
+ 3 T V262 Blay i) + T vian B(nbr))))])
= n~'a2log(Elexp(3", Ain'/%a ”B(— ay ;)
+ 07 it 20y P Blagtsi) + YT vinay ' B(n~ )
= s | (S e B )

2

+ (2111 Tinl/%ﬁlﬂB(aZlSi))

2

+(Z§”1ujna—13( —lrj))

+23°  An'2a, 2B(—a an ) S Tn 112q712 B (a1,

+22m )\-n1/2 -1/2 B( _175)2- 1ana—1B(n—1rj)

+222 1 il n'/2a, 12 B(a,, ols )Z] 1 Vjna, B( TJ)
— 27130 ST (NAy min(ti, ) + 77y min(sg, ) + vivg min(ri, 7))
- Z}L (@1 Mt — 1) + B ) (s — 55-1)

+ o (o i) (rs — 7"171)) :
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We have that

Wy (z) = sup(zy — @o(P1(y))) = 273 - 3|3,
Yy

The rest of the conditions in Theorem 4.6 are trivially satisfied.
In the general case, we prove that

a2—2*j+1 n1_27j+2
{n?2—j+1B <a22—j+2t> 0<t< M}J <Jj <k,

n

satisfy the LDP jointly with speed na,; 2 and the rate in Theorem 4.6 corre-
sponding to ®(x) = 27122, By composition, we get that

2—2~k+l

{%B(k)(n_lt) 0<t< M}

pl—2-F+
satisfies the LDP in [,[0, M] with speed na,? and rate as in Theorem 4.6
with

(k) ok .
\I}(]Z)(lx) = SUpky(xg/ —®o--"0 ®(y)) = sup,(zy — 2 24120
— 2k+1_9 2k /(2k—1
= geraglel?/. 0

Next, we present a law of the iterated logarithm for the iterated Brownian
motion.

Theorem 5.5 Let {B(t) : t € IR} be a Brownian motion. Let 0 < M < oo.
Then, with probability one,

27}@
ninn)—

is relatively compact in loo[0, M] and it limit set is
(5.8) {z:[0,M] — IR:2(0) =0,z is absolutely continuous

M- gk+l _ 9 k/(ok_
and/o W‘Z/(tw /(2 1)dt§1}.

In particular,

—k

2=k ka2
: n ) (=107 — 2k M
lim sup,, (lnlnn)l_Q_kB (n='M) g DF &S

2=k kyr2—F
SN n (k) (,,—1 _ —2"M
liminf, (lnlnn)1*2_kB (n="M) = D) a.s.

2~k kg2 k

; _nt pk)(,-ly — __2"M=
lim sup,, , » SUPp<t<ps (1n1nn)1*2*kB (n™'t) = BT ) D a.s.
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PROOF. By Theorem 4.2 in Arcones (1995), for each 0 < M < oo,
(Y1 (£), -, You(t)) « [t] < M}

is relatively compact in lo[—M, M| and it limit set is

k o rm
{(aq,...,0) : ;(0) =0, for 1 < j <k, and Z/ 2*1(a;(t))2 dt <1},

where
Y. () = 273(]) w 0<t< M
n,]( ) B (Inlnn)t-277 n2 It =" = :

By composing the stochastic processes, we have that, with probability one,
the stochastic process in (5.7) is relatively compact in lo[—M, M] and it
limit set is
{1 ooy :j(0) =0, for 1<j <k,
M
and [7,, 27! ())2dt~|—Z] e L()?de <1}

The proof of Theorem 4.6 implies that this set is the same one as in (5.8).
The second part of the theorem follows by noticing that

sup{z(M) : 2(0) = 0 and [, 222 |2/(1)]*/ "V dr < 1}

A/?kzk//?kfl

. +1_ k k__

= —inf{z(M):2(0) =0and [, W’ Z()2C D gt < 1)

= sup{z(t) 10 <t < M,2(0) =0 and [g" 2222/ ()2 D ar < 1

k2"
(2k+1_2)(2k—1)/2k :

Observe that

M (28-1) kar2—*
1o 28 /(25 1) 1/2* M
z(M) < (/0 |2 ()] dt) MY < (2k+1 — 2)(2F-1)/2¢

and we have equality if 2’ is a constant. [

The law of the iterated logarithm for the composition of two independent
Brownian motion was obtained by Deheuvels and Mason (1992) and Burdzy
(1993). More general versions of the compact law of the iterated logarithm
for the composition of two Brownian motions are in Cséaki, Csorgo, Foldes
and Révész (1995) and Arcones (1995).

The next theorem gives the integrability of the iterated Brownian motion.

Theorem 5.6 Let {B(t) : t € IR} be a Brownian motion. Then,
(i) {n_HTkB(k) (t):0<t< M} satifies the LDP in 1[0, M| with speed

n and rate function in (5.6).

35



(ii) For each 0 < M < oo,

k+1
=2k /(2 1) (k) N i)
/\h_)ngo)\ log(Pr{|B*(M)| > A\}) = k2 /(2k—1) py1/(2F-1)
and
k+1
Jim A tog(Pr{ sup 15T = M) = e i
(iii) In particular,
2k+172

k k_ .
E[exp()\ SupOStSM |B(k) (t)|2 /(2 1))] < o0 lf )\ < 2k2k/(2k71)M1/(2k71)

k k_ . k+1_
Elexp(Asupo<i<ar \B(k)(t)|2 /2 1))] =ooif A> 2k2k/(2k2_1)M?/(2k_1)-

PRrOOF. By the proof of argument in Theorem 5.4, we get that
2 Bm Ty o<t < M), 1< <k,
satisfy the LDP jointly with speed n and rate function ®(t) = 27 ¢2. Hence,
n 2 2 B 2B(MM2 . (B(nY2B(n ) ) 10 < t < M}

satisfies the LDP with speed n and rate function in (5.6). Using that
{n'2B(n='t) : 0 <t < M} has the same distribution of {B(t) : 0 <t < M},
we get that {n*HTkB(k) (t) : 0 <t < M} satisfies the LDP with speed n
and rate function in (5.6).
(ii) follows from the fact that
. M gk+1_ k/(ok_
inf { o S22 ]2 (0P V dt: 2(0) = 0, supg<penr |2(1)] = 1}
2k+1_2
ok2k /(2K —1) pr1/(2k—1)

. M k+1_ k k_
Observe that if supg<;</ [2(t)] > 1 and [, W’ZJU)P /"1 gt < o0,
then there exists a 0 < tg < M such that

k_ k k k —k
M ok /(9k_1 (27-1)/2 128 ok(1(2))@"-1/2% pp2
1< [z(to)] < (Jo 12O/ D at) " < O e
with equality for tg = M and 2’ constant.
(iii) follows immediately from (ii). O
Finally, we consider the iterated fractional Brownian motion.

Theorem 5.7 Let {B,(t) € IR} be a fractional Brownian motion of order
a with0 < a <1 and a# 1/2. Let {a,} be a sequence of real numbers such
that

a, — oo and n~%a, — 0.
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Then,
k

{n(a '—a)/(l—a)agll—ak)/(l—a)B((Xk) (’I’L_lt) 0<t< M}

satisfies the LDP in 1[0, M] with speed n**a;? and rate function

n

(5.9)  I(y) = inf {2*% Sk I (@) da (1) = Bro--- o Bi(t)
for each 0 <t < M,
o S5, B5a) (Jo — 122012 — |5[Ca=1/2) gy = (1)
for each ¢t € IR and each 1< j <k}.

PROOF. We only consider the composition of two processes. The general
case is similar. We apply Theorem 3.10. By Theorem 5.3, for 0 < M; < oo,

{n= a2 By(a;1t) : =My <t < My}

satisfies the LDP with speed n?¥a,;? and the rate function in (5.4). We also
have that

{anBa(n™1t): 0 <t < M}
satisfies the LDP with rate n?>®a,,2 and the rate function in (5.4). To prove
the joint LPD of the two stochastic processes, we need to prove the LDP for
the joint finite dimensional distributions. Given —M; <t < -+ < t,, < M
and 0 < 51 < - < 8, < M, we need prove the LDP for

(n=%a2 ™ By(aytth), ..., n a2 By(ay, 'ty)
,anBa(n_lsl), .. ,anBa(n_lsq)).

Given A1,...,Ap, 71 ..., 7q € IR, we have that

n~2%a2 log( Elexp(n®®a;?( b A\in~%a% T By (a; 't;)
+ 3201 TjanBa(n's))))))

= 27In%2F [( T Ain~%al T Ba(ay0))? 4+ (3292, TjanBa(n"'s5))?

+2370 120 AiTin~%a% M By, (ay, ') an By (nilsj)]
- 27 Zf:l Z?:l )‘i)‘jE[Ba (ti)Ba(tj)]
+271 g:l Z?:l 77 E[Ba(s:) Ba(s5)],

which implies that the LDP for the joint finite dimensional distributions. [J
The methods used before for the Brownian motion give the following
result for the fractional Brownian motion.

Theorem 5.8 Let {B,(t) € IR} be a fractional Brownian motion of order
a,0<a<l,a#1/2. Let 0 < M < oo. Then, with probability one,

k

{ " B® (1 0<t < M}

(ln In n)(l—a’“)/(?(l—a))
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is relatively compact in 1[0, M| and it limit set is

{51 oo f: R 27 [, ¢2(z) de < 1
To [Tog 05(@) (| — t| D)2 — || e=D/2) da = B;(t)
for each t € IR and each 1< j <k}.

In particular,

no‘k

(Inlnn)(1—F)/(2(1—a))
- B® (n=1M) = Cr(@)M*" a.s.

B®) (n=1M) = C’k(a)MO‘k a.s.

limsup,,

n
(]n In n)(lfak)/(Q(lfa))

lim inf,, o

k
: o k)(,,—1 k
lim sup,,_, o SUPg<i< s (lnlnn)(lfak)/@(l—a)) BR) (n~1t) = Cr(a) M as.

where (ab)/(1-a)
2(1 _ Oé) l-a l-a (kfl)ak"rlfkak#»a
Cr(a) = <1_ak> a O

PrOOF. The first part follows similarly to that of the Brownian motion.
We just need to show that

sup {81 0+ 0 B(M) : Yy 2770 [, 63(x) do <1
Ta [ 700 ¢3(@) (|2 — t|P07 /2 — [2|Ga=D/2) da = (1)
for each t € IR and each 1 <j <k} = Ci(a).

We have that

Oe(M) < Ta!\¢kllz(/ (Jo—1|EaD/2—|2|Ga=/2)2 dg) 2N = 70/ gyl M,

—00

Br1 (Br(M)) < 722611 [l (r2/? || 2)* M,

and by induction

k Y
Bro--ofu(M) < M Tl
j=1

2a—1)/2 and

Moreover, we have inequality if ¢y (z) = |z — M|Z*=D/2 — |z|(
05(2) = (|2 — B2 (M)|2D/2 — [g(a-D/2) for 1< j < f—1.

Therefore,

k k
o
Cr(a) = sup{H |z 27! g x? <1}
j=1 j=1
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To find the supremum in the previous expression, we use the theorem of the
multipliers of Lagrange. We have that

k
j-1,.-1 qadTl oy
ol H]arj\ = Azj,
Jj=1

for each 1 < j < k, where A € IR. So, x? = o/~ ¢, where ¢ is a constant.
Since

k k
1=271 Z:EJQ =271 Zaj_lc =271 -a®(1-a) e,
j=1 j=1

c=2(1-a)(l—a*)~! and 23 =al 21— a)(1 - a®)~L. Thus,

Ci(a) = sup{[[j_; (/121 — @)(1 — k) )™
— (2(1—a)>(1_ak)/(1—a) (=Da*H kbt

—a)2
ok o (- . O

Theorem 5.9 Let {B,(t) € IR} be a fractional Brownian motion of order
a, 0<a<l, a#1/2. Then,

(i) {n_o‘(l_o‘k)/(l_o‘)B(k)(t) 0<t< M} satifies the LDP in ls[0, M]

with speed n®* and rate function in (5.7).
(i) For each 0 < M < oo,

—20F(1-0)
lim A~201=)/ (=" 100Pr{ | BB (M) > A}) = Dy(a) M~ 1-aF
and
k —20F(1-a)
lim A~20=/0=a") j00(Pr{ sup [BHF(t)| > A}) = Dp(a) M~ 1-oF
A—00 0<t<M
where
1—aF

Dy(a) =

(k—1)ak+1 —kakta °
2(1 — a)a  (-o0-ak)

PRrROOF. (i) follows similarly to the Brownian motion. As to (ii), by the
arguments in the previous theorem, we have that

inf{7(2) : supg<s<ps [2(¢)] > 1}

= inf{XF 2t M T e 21
1—ak

(k—ak+tl_kakta  20k(1-a)’
2(1—a)a (1-e)-aF)  pr1-ak

2 =

where the infimum is attained when 7

ca? =1, for some constant ¢. OJ
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6 The LDP for Poisson processes

In this section, we present several results on the LDP for Poisson processes.

By the Cramer theorem (see for example Theorem 1.26 in Deuschel and
Stroock, 1989) if {X,,} is a sequence of i.i.d.r.v.’s with Poisson distribution
and mean n, then {n~!X,,} satisfies the LDP with speed n and rate function

h(x) = sup (zA — (e} —1)).

AeR

It is easy to see that

(6.1) h(z) = {xlog (%) +1 ifz>0;
00 if x <0.

We will use that if ¢ is a Poisson r.v. with mean A, then for a,t > 0,
Pr{¢ > a} < e E[e%] = exp(—ta + (el — 1)).
Taking the supremum over ¢t > 0, we get that for a > A,
(6.2) Pr{¢ > a} < exp(—Ah(A"1a)).

Instead of dividing over n in {n=!X,}, we can divide over a sequence of
real numbers of growing faster than n. The LDP in this case is given by the
following theorem:

Theorem 6.1 Let {X,,} be a sequence of Poisson r.v.’s with E[X,] = n
and let {a,} be a sequence of positive numbers such that n~'a, — oo. Then,
{a;'X,} satisfies the LDP in [0, 00) with speed a,log(n~ta,) and rate func-
tion I(t) =t fort > 0; I(t) = oo fort <O0.

PROOF. By (6.2), given t > 0, for n large enough,

t
Pr{a,'X, >t} <exp (—ant log <an> + ta, — n) .
n

Hence,

limsup,, . a, (log(n~ta,)) ' log(Pr{a,' X, > t})

n
tlog(n~tant)

. t 1 _
< —lim SUPy 00 < log(n—lay) + log(n=la,) n lan log(n—lan)) = —t.

This implies that for each closed set F' C [0, o),

limsup a,, ' (log(n ta,)) ‘log(Pr{a,' X, € F}) < —inf{t:t € F}.

n—oo
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Let U be an open set of [0,00) and let t € U. Let k,, = [ant]. For n large
enough, by the Stirling formula

Pr{a;' X, € U} > Pr{X, = k,} = e "5
~ e bk ke ehn (27Tkn)_1/2 ~ e "ot (ta,) "t et (21ta,, ) /2
= e "(n Ma,) el (2ntay,) /2,

So,
lim inf,, . a,, t(log(n~ta,)) tlog(Pr{a, !X, € U}) > —t.

Therefore, the claim follows. [J

Next, we consider the LDP for Poisson processes. The LDP for homo-
geneous Poisson processes has been considered by Lynch and Sethuraman
(1987). We consider non-homogeneous Poisson processes.

Theorem 6.2 Let {N(t) : t > 0} be a Poisson process with mean measure
w such that pl0,00) = co. Let 0 < M < oo. Then, the following conditions
are equivalent:

(a) Fither ul0,x] is regularly varying at infinity with index o > 0 or
limy, o0 ([0, Mn]) =1 u[0, Mn) = 0.

(b) {(pn[0, Mn])"IN(tn) : 0 <t < M} satisfies the LDP in loo[0, M] with
speed [0, Mn).

Moreover, if pl0, x] is reqularly varying at infinity with index o« > 0 the
rate function is

fOM h(a =M (t)at* ' M~ dt if z is absolutely

I(z) = continuous and z(0) = 0;
00 elsewhere,
(6.3)
where h(z) is as (6.1). If limy, o0 (u[0, M])~1u[0, M) = 0, the rate function
is
(6.4) I(z) = { h(z(M)) if z(t) =0 for0 <t < M
00 else

PROOF. Let ¢, = (u[0,nM])~!. First, we prove that (a) implies (b).
Suppose first that p[0,z] is regularly varying at infinity with index a > 0.
We apply Corollary 3.8. Given 0 <t < -+ < t,, and Aq,..., A\, € IR, we
have that

€n IOg(E[eXP(Z;n:1 AN (tjn))]) = en Z;rlzl
— i (exp(3ol; A) — D)(tF — 5 )M~

= Jo (exp(X M0 < @ < t5)) — Daz® ' M~ da.

(==Y — 1p(tj 1, tn]

The previous limit and Theorem I1.2 in Ellis (1984) imply that

(enN(tin),..., e, N(t;mn))
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satisfies the LDP with speed ¢, !, i.e. condition (ii) in Corollary 3.8 holds.
Given 0 < s <t < M,

€n log(Elexp(A1 N (sn) + X\aN(tn))])
—  SOM (M — 1) 4 (#* — sY)M (e — 1).

Hence, the rate function for large deviations of (e, N(sn),e,N(tn)) is

Lt (u1, uz)
= supy, y, (AMur 4 Adgug — s* M~ (eMTA2 — 1) — (1 — s*)M (e — 1))
= supy, ., (M + Xo)ug + Ao(ug —uq)

f.so‘M_o‘(e’\l‘H‘2 —1)— (t*— SO‘)M_O‘(e’\2 — 1))
= SCMh(sT*M%u1) + (t% — s*)M~h((t* — s*) " M (ug — uq)),

if 0 < wy < ug; and I (ug,ug) = 00, else. Let hy be h restricted to [1,00).
It is easy to see that hy is an increasing one-to—one transformation from
[1,00) into [0,00). So, it has an inverse. We claim that

(65) {ZLQ — Ui : Is7t(U1,UQ) S k}
C [0, max((t™ — s™) M~ (t% — s*) M B (£ — s*) " M°K))].

This holds because if ug —u; > (t* — s*)M~* and I ¢(u1,uz) < k, then

(% — s*)Mhy ((t* — s*) ' M*(ug — u1)) < Ls(ug,ug) < k.

We have that h+T(x) is increasing and limg,_, }”x(x) = oo. This implies that

hjﬁ(x) is increasing and lim,_, ﬁ = 0. Hence, lim, g whjrl(xfl) =0.

This limit and (6.5) implies condition (iii) in Corollary 3.8.
Now, suppose that lim,, (1[0, Mn])~1u[0, Mn) = 0. We apply The-
orem 3.2. Given 0 < t; < -+ < t;, = M and A,..., A\ € IR, we have

that .
enlog(Elexp(3_i2; AN (tjn))])
= € Z}n:l(ezﬁj Mo Dp(ntj—1,nt;] — exp(Ap) — 1).

So,
(enN(nty),..., e, N(nty))

satisfies the LDP with speed ¢, ! and rate function

e < i<
(66) Itl’m,tm (Ul, o ’um) _ { h(um) lf U; 0 fOI‘ 1 STsSsm ]-7
o0 elsewhere.
So, for 0 < s,t < M, pi(s,t) = 0 and for 0 < t < M, py(t, M) = sup{u :
h(u) < k}. Hence, for each k > 1, (T, pi) is totally bounded. For 0 < 7 <
p(0, M),
Pr{sup (s 1<y €n|N (tn) — N(sn)| > 7}
= Pr{supg<scps€n|N(tn) — N(sn)| = 7}
= Pr{e,(N(Mn—)— N(0)) > 7}.
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Since limy, o0 ([0, Mn]) =1 [0, Mn) = 0, by Theorem 6.1 for each A > 0,

lim,, o0 €, log ([0, Mn)(u(0, Mn))~1)~1
x log (Pr{e,(N(Mn—) — N(0)) > A\}) = =\

Hence, for each 7 > 0,

nhi& enlog (Pr{e,(N(Mn—) — N(0)) > 7}) = —oc.

Hence, conditions (a) in Theorem 3.2 hold.

Next, we prove (b) implies (a). First, we prove that for each 0 <t < M,
{(u[0,n]) 1[0, nt]} converges. We prove this by contradiction. Suppose
that there are 0 < ¢; < ¢3 < o0 and subsequences nﬁg and n% such that
([0, ngr]) "L [0, tnf) — ¢ and (u[0,nf])~tu[0,tn}] — co. This implies that
LDP of {¢,N(tn)} with speed ¢,! has two rates. Therefore, for each 0 <
t< M,

b(t) = lim (u[0, Mn])~tp0, tn]

n—oo
exists.
Now, we make two cases according to whether b(t) > 0 for each 0 < ¢t <
M or not. Suppose that there exists a 0 < to < M such that b(tg) = 0.
Since b is nondecreasing for each 0 <t < tg, b(tg) =0. For 0 < s,t < M

(1[0, M)~ [0, M~ stn] = ([0, sn]) ™ u[0, M~ stn) ([0, Mn]) ™ u[0, sn).
Hence, 0 < s5,t < M

(6.7) b(M~st) = b(t)b(s).
Hence, for ty < t < M, there exists a positive integer k such that M ~*—1¢k <
to. By (6.7), we have that (b(t))* = b(M~*=Dtk) = 0. So, b(t) = 0. This
implies that for 0 < s,t < M,

0 ifu=
(6.8) Is’t(u7v):{oo lelsz v

Hence, for each k > 1 and each 0 < s,t < M, pi(s,t) = 0. So, the asymptotic

equicontinuity condition implies that for each 7 > 0,

nlingo en log (Pr{e,(N(Mn—) — N(0)) > 7}) = 0.

This implies that (u[0,n])~u[0, Mn) — 0.

If for each 0 < ¢t < m, b(t) > 0, by Theorem 1.9.2 in Bingham, Goldie
and Teugels (1987), [0, x| is regularly varying. If it is regularly varying of
order @ > 0, we are done. If p[0,x] is slowly varying at infinity, then for
each 0 < s < t, and A\, A2 € IR,

en log(Elexp(M N (san) + Ao N(tay))]) — eMt?2 — 142 — 1.
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Hence, the rate function for large deviations of (N (say), N (tay)) is
I ¢ (w1, ug) = sup{Ajus + Aoug — (e)‘1+’\2 14t 1): A\, N € R}

= h(u1) + h(UQ — ul).

If {e,N(tn) : 0 <t < M} satisfied the LDP with speed ¢, !, then by Theorem
3.2 ([0,1], px) would be totally bounded, where

pr(s,t) = sup{|ug — u1| : Is¢(ui,uz) < k})
= sup{uz —w1| : ”(ur) + h(uz —u1) <k},

in contradiction.
By the Theorem 4.4, the rate functions are given by (6.3) and (6.4). O
Next, we consider the case when the normalizing constant is of bigger
order than the mean.

Theorem 6.3 Let {N(t) : t > 0} be a Poisson process with mean measure
w, let 0 < M < 0o and let {a,} be a sequence of positive numbers converging
to infinity. Suppose that:

(i) pl0, x| is reqularly varying at infinity of order o > 0.

(ii) “omM o,

Then, {a,'N(tn) : 0 < t < M} does not satisfy the LDP in l..[0, M]

with speed a, log (ﬁ) .

PROOF. We claim that given 0 < s < t < M, {(a,'N(sn),a, ' N(tn))}

satisfies the LDP with speed a,, log “ﬁ)"n} and rate function I, ¢(ui,us) =
ug for 0 < wy < wg; Isi(u1,u2) = oo else. This claim implies the theorem,
since by Theorem 3.2, if {a;!N(tn) : 0 < t < M} satisfied the LDP in
lso[0, M], then for each k > 0, ([0, M], p,) would be totally bounded, where
pr(s,t) = sup{|ug — u1| : I(u1,u2) < k} = k. But, this condition does not
hold.

By the contraction principle it suffices to show that

(Un, Vp) := (a;lN(sn), a, '(N(tn) — N(sn)))

satisfies the LDP with rate 1(2)(u1,u2) = uy + ug, if uy,ue > 0, and
712 (u1,uz) = 00, else. By regular variation,

an log | —ra
lim =0 and lim —(#[O’ }>

n—oo (079 n—oo an, log (M[%,?n] )

/,L[O,TLS] — 1

Hence, by Theorem 6.1, U, satisfies the LDP with rate I(l)(t) =t,ift >0,
and I™M(t) = oo, else. Similarly, we get that {V,,} satisfies the LDP with
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rate I, Since U,, and V,, are independent, we have that for each open O
set in IR?,

-1
Tim i o (an log< aa )) log (Pr{(Un, Vi) € O})
> —{IW(w) + 1M () : (u,v) € O}.

To check the condition for closed sets, it suffices to prove that for each ¢ > 0

-1
. Gnp
1 1 —_ log(Pr{U, +V, > t}) < —t.
e (on(5)) i
But, U, 4+ V,, = a;; ' N(tn) satisfies the LDP with rate I(). O

In the situation of the previous theorem, although, the LDP does not
hold in I [0, M], it does in a set of measures. Let M (][0, M],w) be the
set of positive measures on [0, M] with the weak topology. As it is well
known, this topology is defined as follows: p, — p if for each continuous
function f on [0, M], fOM f(x)dpn, — fOM f(x)du(z). Given a Poisson process
{N(t) : t > 0}, let {T};} be the jumps of this process. Given 0 < M < oo,
we have the random measure pi,, = a,,* ZTjgnM p-17, in [0, M].

Theorem 6.4 Let {N(t) : t > 0} be a Poisson process with mean measure
and let {ay} be a sequence of positive numbers converging to infinity. Suppose
that:

(i) pl0, x| is regularly varying at infinity of order o > 0.

(ii) oM g,

an

Then, {un} satisfies the LDP in M4 ([0, M], w) with speed ay log (M[‘E’”‘n]>

and rate function I(v) = v[0, M].

PROOF. Since a,; ! N(Mn) satisfies the LDP, given a closed set
FcC (MJr([Oa M])?w)a

-1
log Pr{u, € F}

)
< (anlog (7)) togPr{an((0, M) = inficr (0, M)}
))_ log Pr{a; ' N(Mn) > inf,cp ([0, M])}

—_

Given an open set G C M (][0, M])%, w) and vy € G, there are § > 0 and
0<t; <...<ty <1such that

{v [0, t1] — 1[0, t1]| < 6, sup |v(ti1,t:] —vo(ti—1,ti]| <6} C G.
2<i<m
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Hence,

Pr{u, € G} > Pr{ sup ]a;l(N(nti) — N(nti—1)) — pi]| <},
1<i<m

where tg = 0, p1 = w|0,¢1] and p; = vo(ti—1,t], for 2 < i < m. By an
argument in the previous theorem

{(a;l(N(ntl) — N(ntp)), ..., a;l(N(ntm) — N(ntm-1))}

satisfies the LDP with rate I(u ..., um) = > ieq uj, uj > 0, for each 1 <

j=1
Jj<m, I(ug ..., uy) = oo, else. Hence,
a -1 "
.. n ST

Therefore, the claim follows. [J
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