
Large deviations of empirical processes

Miguel A. Arcones

Abstract. We give necessary and sufficient conditions for the large deviations
of empirical processes and of Banach space valued random vectors. We also
consider the large deviations of partial sums processes. The main tool used is
an isoperimetric inequality for empirical processes due to Talagrand.
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1. Introduction

We study the (LDP) large deviation principle for different types of sequences of
empirical processes {Un(t) : t ∈ T}, where T is an index set. General references on
large deviations are Bahadur (1971), Varadhan (1984) and Deuschel and Stroock
(1989). We consider stochastic processes as elements of l∞(T ), where T is an index
set. l∞(T ) is the Banach space consisting of the bounded functions defined in T
with the norm ‖x‖∞ = supt∈T |x(t)|. We will use the following definition.

Definition 1.1. Given a sequence of stochastic processes {Un(t) : t ∈ T}, a sequence
of positive numbers {εn}∞n=1 such that εn → 0, and a function I : l∞(T ) → [0,∞],
we say that {Un(t) : t ∈ T} satisfies the LDP with speed ε−1

n and with good rate
function I if:

(i) For each 0 ≤ c < ∞, {z ∈ l∞(T ) : I(z) ≤ c} is a compact set of l∞(T ).
(ii) For each set A ∈ l∞(T ),

−I(Ao) ≤ lim inf
n→∞

εn log(Pr ∗{{Un(t) : t ∈ T} ∈ A})

and
lim sup

n→∞
εn log(Pr ∗{{Un(t) : t ∈ T} ∈ A}) ≤ −I(Ā),

where for B ⊂ l∞(T ), I(B) = inf{I(x) : x ∈ B}.

It was shown in Arcones (2002a), that this definition is equivalent to the large
deviations of the finite dimension distributions plus an asymptotic equicontinuity
condition. Thus, large deviations can be studied similarly to the weak convergence
of empirical processes.
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In Section 2, we present necessary and sufficient conditions for the large
deviations of empirical processes and of sums of Banach space valued i.i.d.r.v.’s.
If {Xj}∞j=1 is a sequence of real i.i.d.r.v.’s, it follows from the results in Cramér
(1937) and Chernoff (1952) that n−1

∑n
j=1 Xj satisfies the LDP with speed n if

and only if for some λ > 0 E[eλ|X1|] < ∞. This is also true for r.v.’s with values in
a finite dimensional vector space. Given a sequence {Xi} of B–valued i.i.d.r.v.’s,
where B is a separable Banach space, Sethuraman (1964, Theorem 7) and Donsker
and Varadhan (1976, Theorem 5.3) showed that if for each λ > 0 E[eλ|X1|] < ∞,
then the LDP holds for n−1

∑n
j=1 Xj with speed n and with rate function

I(x) = sup{f(x)− log(E[ef(X)]) : f ∈ B∗},

where X is a copy of X1 and B∗ is the dual of B. We obtain that in the previous
situation the LDP holds for n−1

∑n
j=1 Xj with speed n and a good rate function

if and only if there exists a λ > 0 such that E[eλ|X1|] < ∞; and for each λ > 0
there exists a η > 0 such that E[eλW (η)

] < ∞, where

W (η) = sup{|f1(X)− f2(X)| : f1, f2 ∈ B∗
1 , E[|f1(X)− f2(X)|] ≤ η},

where B∗
1 is the unit ball of B∗. As a corollary, we obtain that when B is a Hilbert

space (H,< · >), the LDP holds for n−1
∑n

j=1 Xj with speed n and a good rate
function if and only if there exists a λ > 0 such that E[exp(λ|X|)] < ∞; and
for each λ > 0, there exists an integer m such that E[exp(λ|X(m)|)] < ∞, where
X(m) =

∑∞
k=m+1 < X,hk > hk and {hk} is an orthogonal basis of H. We also

prove that the stochastic process {n−1
∑[nt]

j=1 Xj : 0 ≤ t ≤ 1} satisfies the LDP
in l∞([0, 1], B) with speed n and a good rate function if and only if for each
λ > 0 E[eλ|X|] < ∞. Here, l∞([0, 1], B) denotes the Banach space consisting of the
bounded functions from [0, 1] into B with the norm ‖x‖∞,[0,1],B = sup0≤t≤1 |x(t)|.

We will obtain the previous results from results on empirical processes. The
study of the large deviations of empirical processes started with Sethuraman (1964,
1965, 1970), where sufficient conditions were presented such that for each ε > 0,
the following limit exists,

lim
n→∞

n−1 log(Pr{sup
f∈F

n−1|
n∑

j=1

(f(Xj)− E[f(Xj)]) ≥ ε}),

where {Xj}∞j=1 is sequence of i.i.d.r.v.’s with values in separable compact metric
space S and F is a collection of functions on S

c will denote an universal constant that may vary from line to line. We will
use the usual multivariate notation. For example, given u = (u1, . . . , ud)′ ∈ Rd

and v = (v1, . . . , vd)′ ∈ Rd, u′v =
∑d

j=1 ujvj and |u| = (
∑n

j=1 u2
j )

1/2. Given a
sequence of real numbers a = {ak}, we denote |a|∞ = supk≥1 |ak| and |a|p =
(
∑∞

k=1 |ak|p)1/p.
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2. Large deviations of empirical processes

We consider the LDP for general triangular arrays of empirical processes. Let
(Ωn,An, Qn) be a sequence of probability spaces. Let (Sn,j ,Sn,j) be measurable
spaces for 1 ≤ j ≤ kn, where {kn}∞n=1 is a sequence of positive integers con-
verging to infinity. Let {Xn,j : 1 ≤ j ≤ kn} be Sn,j–valued independent r.v.’s
defined on Ωn. To avoid measurability problems, we assume that Ωn =

∏kn

j=1 Sn,j ,

An =
∏kn

j=1 Sn,j and Qn =
∏kn

j=1 L(Xn,j). Let fn,j(·, t) : Sn,j → R be a mea-
surable function for each 1 ≤ j ≤ kn, each n ≥ 1 and each t ∈ T . Let Un(t) :=∑kn

j=1 fn,j(Xn,j , t). To avoid measurability problems, we will assume that the prob-
abilities of {Un(t) : t ∈ T} are determined by a countable set T0. Alternatively, we
could assume that for each 1 ≤ j ≤ kn, {fn,j(x, t) : t ∈ T} is an image admissible
Suslin class of functions (see page 80 in Dudley, 1999).

First, we present a couple of lemmas that we will need later on.

Lemma 2.1. Under the previous notation, let {εn} be sequence of positive numbers
converging to zero. Let 0 < c1, c2,M1,M2 < ∞. Suppose that

lim sup
n→∞

εn log

Pr{sup
t∈T

|
kn∑

j=1

fn,j(Xn,j , t)| ≥ M1}

 ≤ −c1

and

lim inf
n→∞

min
1≤j≤kn

εn log
(

Pr{sup
t∈T

|fn,j(Xn,j , t)| ≤ M2}
)
≥ −c2.

Then,

lim sup
n→∞

εn log

 kn∑
j=1

Pr{sup
t∈T

|fn,j(Xn,j , t)| ≥ 2M1 + M2}

 ≤ −(c1 − c2).

Proof. Let 0 < c′1 < c1 and let c′2 > c2. For n large enough,

Pr{sup
t∈T

|
kn∑

j=1

fn,j(Xn,j , t)| ≥ M1} ≤ e−c′1ε−1
n .

Let {X ′
n,j : 1 ≤ j ≤ kn, 1 ≤ n} be an independent copy of {Xn,j : 1 ≤ j ≤ kn, 1 ≤

n}. Then, for n large enough,

Pr{sup
t∈T

|
kn∑

j=1

(fn,j(Xn,j , t)− fn,j(X ′
n,j , t))| ≥ 2M1} ≤ 2e−c′1ε−1

n .

By the Lévy inequality (see for example Proposition 2.3 in Ledoux and Talagrand,
1991),

Pr{ max
1≤j≤kn

sup
t∈T

|fn,j(Xn,j , t)− fn,j(X ′
n,j , t)| ≥ 2M1} ≤ 4e−c′1ε−1

n .
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This inequality and Lemma 2.6 in Ledoux and Talagrand (1991) imply that for n
large enough,

kn∑
j=1

Pr{sup
t∈T

|fn,j(Xn,j , t)− fn,j(X ′
n,j , t)| ≥ 2M1} ≤ 8e−c′1ε−1

n .

We also have that for n large enough and each 1 ≤ j ≤ kn,

e−ε−1
n c′2 Pr{supt∈T |fn,j(Xn,j , t)| ≥ 2M1 + M2}

≤ Pr{supt∈T |fn,j(Xn,j , t)| ≥ 2M1 + M2}Pr{supt∈T |fn,j(X ′
n,j , t)| ≤ M2}

≤ Pr{supt∈T |fn,j(Xn,j , t)− fn,j(X ′
n,j , t)| ≥ 2M1}.

Thus, for n large enough,
kn∑

j=1

Pr{sup
t∈T

|f(Xn,j , t)| ≥ 2M1 + M2} ≤ 8e−(c′1−c′2)ε
−1
n .

This implies the claim.

Lemma 2.2. Under the notation in Lemma 2.1, let d be a pseudometric in T and
let v be a function on T . Suppose that:

(i) (T, d) is totally bounded.
(ii) For each τ > 0,

lim
δ→0

lim sup
n→∞

Pr{ sup
d(s,t)≤δ

|Un(s)− Un(t)| ≥ τ} = 0.

(iii) For each t ∈ T , Un(t) Pr→ v(t).
(iv) v(t) is uniformly continuous in (T, d).
Then,

sup
t∈T

|Un(t)− v(t)| Pr→ 0.

Proof. We have to prove that for each τ > 0,

lim sup
n→∞

Pr{sup
t∈T

|Un(t)− v(t)| ≥ τ} ≤ τ.

Take δ > 0 such that supd(s,t)≤δ |v(s)− v(t)| ≤ τ/3 and

lim sup
n→∞

Pr{ sup
d(s,t)≤δ

|Un(s)− Un(t)| ≥ τ/3} ≤ τ.

Hence,

(2.1) lim sup
n→∞

Pr{ sup
d(s,t)≤δ

|Un(s)− v(s)− (Un(t)− v(t))| ≥ 2τ/3} ≤ τ.

Take a function π : T → T with finite range such that supt∈T d(t, π(t)) ≤ δ. By
condition (iii),

lim
n→∞

Pr{sup
t∈T

|Un(π(t))− v(π(t))| ≥ τ/3} = 0.
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By (2.1),

lim sup
n→∞

Pr{sup
t∈T

|Un(t)− v(t)− (Un(π(t))− v(π(t)))| ≥ 2τ/3} ≤ τ.

The two last estimations imply the claim.

We also will need the following exponential inequality for empirical processes

Theorem 2.3. (Talagrand, 1996, Theorem 1.4). With the above notation, suppose
that E[f(Xi, t)] = 0, for each T ∈ T and each 1 ≤ i ≤ n. Then, there exists a
universal constant K such that for any τ > 0,

Pr {|Z − E[Z]| ≥ τ} ≤ K exp
(
− τ

KC
log

(
1 +

τC

σ2 + CE[Z]

))
,

where Z = supt∈T |
∑n

i=1 f(Xi, t)|, C = supt∈T sup1≤i≤n ‖f(Xi, t)‖∞, and
σ2 = supt∈T

∑n
i=1 Var(f(Xi, t)).

To get the large deviations for the considered empirical processes, we use the
following theorem:

Theorem 2.4. (Arcones, Theorem 3.1, 2002a,). Under the notation above, let {εn}
be a sequence of positive numbers that converges to zero. Let I : l∞(T ) → [0,∞]
and let It1,...,tm

: Rm → [0,∞] be a function, where t1, . . . , tm ∈ T . Let d be a
pseudometric in T .

Consider the conditions:
(a.1) (T, d) is totally bounded.
(a.2) For each t1, . . . , tm ∈ T , (Un(t1), . . . , Un(tm)) satisfies the LDP with

speed εn and good rate function It1,...,tm .
(a.3) For each τ > 0,

lim
η→0

lim sup
n→∞

εn log Pr ∗{ sup
d(s,t)≤η

|Un(t)− Un(s)| ≥ τ} = −∞.

(b.1) For each 0 ≤ c < ∞, {z ∈ l∞(T ) : I(z) ≤ c} is a compact set in l∞(T ).
(b.2) For each A ⊂ l∞(T ),

−I(Ao) ≤ lim infn→∞ εn log Pr ∗{Un ∈ A}
≤ lim supn→∞ εn log Pr ∗{Un ∈ A} ≤ −I(Ā).

If the set of conditions (a) is satisfied, then the set of conditions (b) holds
with

I(z) = sup{It1,...,tm
(z(t1), . . . , z(tm)) : t1, . . . , tm ∈ T,m ≥ 1}.

If the set of conditions (b) is satisfied, then the set of conditions (a) holds
with

It1,...,tm(u1, . . . , um)
= inf{I(z) : z ∈ l∞(T ), (z(t1), . . . , z(tm)) = (u1, . . . , um)}

and the pseudometric ρ(s, t) =
∑∞

k=1 k−2 min(ρk(s, t), 1), where ρk(s, t) = sup{|u2−
u1| : Is,t(u1, u2) ≤ k}.
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To check condition (a.3) in the previous theorem, we will use the following
lemma:

Lemma 2.5. Under the previous notation, let d be a pseudometric in T such that
(T, d) is totally bounded. Suppose that:

(i)

lim
M→∞
η→0

lim sup
n→∞

εn log(
kn∑

j=1

Pr{F (η)
n,j (Xn,j) ≥ M}) = −∞,

where F
(η)
n,j (x) = supd(s,t)≤η |fn,j(x, s)− fn,j(x, t)|.

(ii) For each 0 < M, λ < ∞,

lim
η→0

a→∞
lim sup

n→∞
εn log E[exp(ε−1

n λ

kn∑
j=1

F
(η)
n,j (Xn,j)IM≥F

(η)
n,j (Xn,j)≥aεn

)] = 0.

(iii) For each a, η0 > 0,

lim
η→0

lim sup
n→∞

sup
d(s,t)≤η

|
kn∑

j=1

E[(fn,j(Xn,j , s)− fn,j(Xn,j , t))IF
(η0)
n,j (Xn,j)≤aεn

]| = 0.

(iv) For each a, η0 > 0,

E[sup
t∈T

|
kn∑

j=1

(fn,j(Xn,j , t)IF
(η0)
n,j (Xn,j)≤aεn

− E[fn,j(Xn,j , t)IF
(η0)
n,j (Xn,j)≤aεn

])|] → 0.

(v) For each a, η0 > 0,

lim
η→0

lim sup
n→∞

sup
d(s,t)≤η

ε−1
n

kn∑
j=1

Var((fn,j(Xn,j , s)− fn,j(Xn,j , t))IF
(η0)
n,j (Xn,j)≤aεn

) = 0.

Then, for each τ,M > 0,

lim
η→0

lim sup
n→∞

εn log Pr{ sup
d(s,t)≤η

|
kn∑

j=1

(fn,j(Xn,j , s)− fn,j(Xn,j , t))| ≥ τ} = −∞,

and

limη→0 lim supn→∞ εn log Pr{supd(s,t)≤η |
∑kn

j=1(fn,j(Xn,j , s)− fn,j(Xn,j , t)
−E[(fn,j(Xn,j , s)− fn,j(Xn,j , t))IF

(η)
n,j (Xn,j)≤M

])| ≥ τ} = −∞.

Proof. Note that by conditions (ii) and (iii), the two limits above are equivalent.
By (i) and (ii), given c > 0, we may take η0, λ,M, a > 0 such that λτ ≥ 6c,

lim sup
n→∞

εn log(
kn∑

j=1

Pr{F (η0)
n,j (Xn,j) ≥ M}) ≤ −c
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and

lim sup
n→∞

εn log E[exp(ε−1
n λ

kn∑
j=1

F
(η0)
n,j (Xn,j)IM>F

(η0)
n,j (Xn,j)≥aεn

)] ≤ 6−1λτ.

Then,

εn log(Pr{supd(s,t)≤η0
|
∑kn

j=1(fn,j(Xn,j , s)− fn,j(Xn,j , t))IF
(η0)
n,j (Xn,j)≥M

| ≥ 3−1τ})

≤ εn log(
∑kn

j=1 Pr{F (η0)
n,j (Xn,j) ≥ M}) ≤ −c.

We also have that

Pr{supd(s,t)≤η0
|
∑kn

j=1(fn,j(Xn,j , s)− fn,j(Xn,j , t))IM>F
(η0)
n,j (Xn,j)≥aεn

| ≥ 3−1τ}

≤ Pr{
∑kn

j=1 F
(η0)
n,j I

M>F
(η0)
n,j (Xn,j)≥aεn

≥ 3−1τ}

≤ e−3−1ε−1
n λτE[exp(ε−1

n λ
∑kn

j=1 F
(η0)
n,j (Xn,j)IM>F

(η0)
n,j (Xn,j)≥aεn

)] ≤ e−cε−1
n .

Hence,

lim supn→∞ εn log(Pr{supd(s,t)≤η0
|
∑kn

j=1(fn,j(Xn,j , s)− fn,j(Xn,j , t))
×I

F
(η0)
n,j (Xn,j)≥aεn

| ≥ (2/3)τ}) ≤ −c.

By previous estimations and condition (iii), it suffices to consider
supd(s,t)≤η |Zn(s)− Zn(t)|, where

Zn(t) =
kn∑

j=1

(fn,j(Xn,j , t)IF
(η0)
n,j (Xn,j)<aεn

− E[fn,j(Xn,j , t)IF
(η0)
n,j (Xn,j)<aεn

]).

It is easy to see that by Theorem 2.3, conditions (iv) and (v) imply that

limη→0 lim supn→∞ εn log(Pr{| supd(s,t)≤η |Zn(s)− Zn(t)|
−E[supd(s,t)≤η |Zn(s)− Zn(t)|]| ≥ 3−1τ}) = −∞.

Hence, the claim follows.

We also will need the following lemma:

Lemma 2.6. Let X be a r.v. with values in a measurable space (S,S). Let f1, . . . , fm

be measurable functions in S. Let

I(1)(u1, . . . , um) = sup
{∑m

j=1 λjuj − log
(
E

[
exp

(∑m
j=1 λjfj(X)

)])
:

λ1, . . . , λm ∈ R} ,

and let
I(2)(u1, . . . , um) = inf {E[h(γ(X))] : E[γ(X)] = 1 and

E[fj(X)γ(X)] = uj for each 1 ≤ j ≤ m} ,

where

(2.2) h(x) = x log
(x

e

)
+ 1, if x ≥ 0; and h(x) = ∞, if x < 0.
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(i) If there exists a λ > 0 such that for each 1 ≤ j ≤ m, E[eλ|fj(X)|] < ∞,
then for each u1, . . . , um ∈ R,

I(1)(u1, . . . , um) ≤ I(2)(u1, . . . , um).

(ii) If for each λ > 0 and each 1 ≤ j ≤ m, E[eλ|fj(X)|] < ∞, then for each
u1, . . . , um ∈ R,

I(1)(u1, . . . , um) = I(2)(u1, . . . , um).

Proof. Fix u1, . . . , um ∈ R. Let I(1) = I(1)(u1, . . . , um) and let I(2) = I(2)(u1, . . . , um).
Assume the hypothesis in part (i). Suppose that E[γ(X)] = 1 and E[fj(X)γ(X)] =
uj for each 1 ≤ j ≤ m. Then, by the Jensen’s inequality,∑m

j=1 λjuj − E[h(γ(X))] = E[
∑m

j=1 λjfj(X)γ(X)− γ(X) log(γ(X))]

= E
[(∑m

j=1 λjfj(X)− log(γ(X))
)

γ(X)
]

≤ log
(
E

[
exp

(∑m
j=1 λjfj(X)− log(γ(X))

)
γ(X)

])
= log

(
E

[
exp

(∑m
j=1 λjfj(X)

)])
.

So, I(1) ≤ I(2) and (i) follows.
Part (ii) follows from Theorem 5.2 in Donsker and Varadhan (1976).

Next, we present necessary and sufficient conditions for the large deviations
of empirical processes. The set–up for sums of i.i.d. r.v.’s is as follows. Let (S,S, ν)
be a probability space. Let Ω = SN, A = SN, and Q = νN. Let Xn be the n–th
projection from Ω into S. Then, {Xn}∞n=1 is a sequence of i.i.d.r.v.’s with values in
S. Let {f(·, t) : t ∈ T} be an image admissible Suslin class of measurable functions
from S into R. We consider the LDP for {n−1

∑n
j=1 f(Xj , t) : t ∈ T}. Sethura-

man (1964) got the large deviations for the empirical distribution function, that is
T = R and f(x, t) = I(x ≤ t). The large deviations for general empirical processes
was considered by Wu (1994). He obtained necessary and sufficient conditions for
a bounded set of functions (Wu, 1994, Theorem 1). But, for unbounded classes,
the sufficient conditions in Theorem 4 in Wu (1994) are not necessary. Next theo-
rem gives necessary and sufficient conditions for the large deviations of empirical
processes.

Theorem 2.7. Suppose that supt∈T |f(X, t)| < ∞ a.s. Then, the following sets of
conditions ((a) and (b)) are equivalent:

(a.1) (T, d) is totally bounded, where d(s, t) = E[|f(X, s)− f(X, t)|].
(a.2) There exists a λ > 0 such that

E[exp(λF (X))] < ∞,

where F (x) = supt∈T |f(x, t)|.
(a.3) For each λ > 0, there exists a η > 0 such that E[exp(λF (η)(X))] < ∞,

where F (η)(x) = supd(s,t)≤η |f(x, s)− f(x, t)|.
(a.4) supt∈T |n−1

∑n
j=1(f(Xj , t)− E[f(Xj , t)])|

Pr→ 0.
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(b) {n−1
∑n

j=1 f(Xj , t) : t ∈ T} satisfies the large deviation principle in
l∞(T ) with speed n and a good rate.

Moreover, the rate function is given by

I(z) = sup{It1,...,tm(z(t1), . . . , z(tm)) : t1, . . . , tm ∈ T,m ≥ 1},
where

It1,...,tm(u1, . . . , um)(2.3)

= sup


m∑

j=1

λjuj − log(E[exp(
m∑

j=1

λjf(X, tj))]) : λ1, . . . , λm ∈ R

 .

Proof. Assume the set of conditions (a). We apply Theorem 2.4. Condition (a.1)
in Theorem 2.4 is obviously satisfied. Condition (a.2) in Theorem 2.4 follows from
the Cramér–Chernoff theorem.

Assume (b). Since we have a good rate, for each 0 < c < ∞, there exists
M < ∞ such that

lim sup
n→∞

n−1 log(Pr{sup
t∈T

|n−1
n∑

j=1

f(Xj , t)| ≥ M}) ≤ −c.

By Lemma 2.1, for each δ > 0,

lim sup
n→∞

n−1 log(n Pr{n−1F (X) ≥ 2M + δ}) ≤ −c.

is easy to see that this implies that E[eλF (X)] < ∞, for each 0 < λ < c(2M +
δ)−1. So, condition (a.2) holds. Besides the rate function for the finite dimensional
distributions is given by (2.3). Hence, by Theorem 2.4, for each k ≥ 1, (T, ρ

(1)
k ) is

totally bounded, where

ρ
(1)
k (s, t) = sup{|u2 − u1| : I

(1)
s,t (u1, u2) ≤ k},(2.4)

and

I
(1)
s,t (u, v)

= sup {λ1u1 + λ2u2 − log(E[exp(λ1f(X, s) + λ2f(X, t))]) : λ1, λ2 ∈ R} .

By Lemma 2.6, for each s, t ∈ T , and each k > 0, ρ
(2)
k (s, t) ≤ ρ

(1)
k (s, t), where

ρ
(2)
k (s, t)(2.5)

= sup{|E[γ(X)(f(X, t)− f(X, s))]| : E[γ(X)] = 1, E[h(γ(X))] ≤ k}.

Hence, for each k > 0, (T, ρ
(2)
k ) is totally bounded. Given 1 > δ > 0, there exists

a b > δ such that E[F (X)IF (X)≥2−1b] < 2−2δ. Hence, for each s, t ∈ T ,

(2.6) E[|f(X, t)− f(X, s)|I|f(X,t)−f(X,s)|≥b] ≤ 2−1δ.

Take k0 > h(4bδ−1). Given s, t,∈ T with ρ
(2)
k0

(s, t) < 2−2δ. We define

γ(x) = a−1(f(x, t)− f(x, s))Ib>f(x,t)−f(x,s)>0,
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where
a = E[(f(X, t)− f(X, s))Ib>f(X,t)−f(X,s)>0].

If a−1 ≤ 4δ−1, then E[h(γ(X))] ≤ h(δ−14b). So,

E[(f(X, t)− f(X, s))Ib>f(X,t)−f(X,s)>0](2.7)

≤ a−1E[(f(X, t)− f(X, s))2Ib>f(X,t)−f(X,s)>0]

= E[(f(X, t)− f(X, s))γ(X)] ≤ 2−2δ.

If a−1 > 4δ−1, then (2.7) holds obviously. Combining (2.6) and (2.7), we get that
if ρ

(2)
k0

(s, t) < 2−2δ then d(s, t) ≤ δ. Therefore, (T, d) is totally bounded, that is
(a.1) holds.

Since (T, d) is totally bounded, by Theorem 2.4, for each τ, c < ∞, there
exists 0 < η < ∞ such that

lim sup
n→∞

n−1 log Pr{ sup
d(s,t)≤η

|n−1
n∑

j=1

f(Xj , t)| ≥ τ}) ≤ −c.

Using a previous argument, this limit and Lemma 2.1 implies that E[eλF (η)(X)] <
∞, for each 0 < λ < c2−1τ−1. So, condition (a.3) holds.

Condition (a.4) follows from Lemma 2.2.

In condition (a.1) in the theorem above, we may use d(s, t) = (E[|f(X, s)−
f(X, t)|p])1/p, for any p ≥ 1, or d(s, t) = E[|f(X, s)− f(X, t)| ∧ 1].

It is not sufficient to have that for some λ > 0, E[exp(λF (X))] < ∞ to have
the large deviations for empirical processes. Let T = {0, 1, 2, . . . } and let {ξn}∞n=1

be a sequence of symmetric independent r.v.’s, with Pr{|ξ0| = 0} = 1, and for
n ≥ 1, Pr{|ξn| ≥ t} = e−t for each t ≥ n and Pr{ξn = 0} = 1−e−n. Then, for each
0 < λ < 1, E[exp(λ supn≥0 |ξn|)] < ∞. However, condition (a.3) in Theorem 2.7
does not hold. We have that then E[(ξn−ξ0)2] = 4(n0+1)e−n0 . For each η > 0, if n0

is an integer with 4(n0+1)e−n0 ≤ η2, then supm,n,d(m,n)≤η |ξm−ξn| ≥ supn≥n0
|ξn|.

However, for λ > 1 and any n0, E[exp(λ supn≥n0
|ξn|)] = ∞.

Conditions (a.2) and (a.3) hold if for each λ > 0 E[exp(λF (X))] < ∞.
However, however there are empirical processes for which the large deviations
hold, but it is not true that for each λ > 0 E[exp(λF (X))] < ∞. Let {ξk}∞k=1 be
a sequence of symmetric i.i.d.r.v.’s with Pr{|ξk| ≥ t} = e−t/ak for each t > 0 and
each k ≥ 1, where {ak} is a sequence of positive numbers such that

∑∞
k=1 a2

k <
∞. Then, there exists a r.v. X and functions f(x, k) such that for each k ≥ 1
f(X, k) = ξk. Then, (a.1)–(a.4) in Theorem 2.7 hold, but for λ > supk≥1 ak,
E[exp(λ supk≥1 |ξk|)] = ∞.

By Theorem 4.2 in Arcones (2002b), if for each λ ∈ R and each t ∈ T ,
E[exp(λf(X, t))] < ∞, then the rate function in the previous theorem is given by

I(z) = inf{ E[h(γ(X))] : E[γ(X)] = 1 and
z(t) = E[γ(X)f(X, t)] for each t ∈ T},
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where h is as in (2.2). Observe that h(y) = supx(xy − (ex − 1)).
By Corollary 3.4 in Arcones (2002a), the previous theorem gives necessary

and sufficient conditions for the LDP for Banach space values r.v.’s:

Corollary 2.8. Let {Xj}∞j=1 be a sequence of i.i.d.r.v.’s with values in a separable
Banach space B. Then, the following conditions are equivalent:

(a.1) There exists a λ > 0 such that

E[exp(λ|X|)] < ∞.

(a.2) For each λ > 0, there exists a η > 0 such that

E[exp(λW (η))] < ∞,

where

W (η) = sup{|f1(X)− f2(X)| : f1, f2 ∈ B∗
1 , E[|f1(X)− f2(X)|] ≤ η}.

(b) {n−1
∑n

j=1 Xj} satisfies the LDP in B with speed n.

Proof. By Theorem 2.5, it suffices to show that (a.1) and (a.2) imply that {f(X) :
f ∈ B∗

1} is totally bounded in L1. Conditions (a.1) and (a.2) imply that E[|X|] <
∞. Hence, given ε > 0, there exists a r.v. Y =

∑m
j=1 xjI(Ej) such that E[|X−Y |] <

ε, where xj ∈ B and E1, . . . , Em are disjoint Borel sets. It is easy to see that
{f(Y ) : f ∈ B∗

1} is totally bounded in L1.

If B is a finite dimensional space, then (a.1) in the previous corollary implies
(a.2). So, for a finite dimensional Banach space, (a.1) and (b) are equivalent.

The previous theorem relaxes the conditions in Donsker and Varadhan (1976).
Let {Xj}∞j=1 be a sequence of i.i.d.r.v.’s with Pr{|Xj | ≥ t} = e−t, for each t > 0 and
each 1 ≤ j. Then, f(Xj , t) = |Xj−t|, 0 ≤ t ≤ 1, defines a r.v. with values in C[0, 1]
with the uniform norm. It is easy to see that Corollary 2.8 applies to this example.
However, it is not true that for each λ > 0, E[exp(λ sup0≤t≤1 |X − t|)] < ∞. So,
the theorem by Donsker and Varadhan (1976) does not apply to this case. Jiang,
Bhaskara Rao and Wang (1995) obtained another type of conditions for the large
deviations for Banach space random variables. Their conditions are more difficult
to check.

The previous corollary gives the following for Hilbert space valued r.v.’s

Corollary 2.9. Let {Xj}∞j=1 be a sequence of i.i.d.r.v.’s with values in a separable
Hilbert space (H,< · >). Then, the following conditions are equivalent:

(a.1) There exists a λ > 0 such that

E[exp(λ|X|)] < ∞.

(a.2) For each λ > 0, there exists an integer m such that

E[exp(λ|X(m)|))] < ∞,

where X(m) =
∑∞

k=m+1 < X,hk > hk and {hk} is an orthogonal basis of H.
(b) {n−1

∑n
j=1 Xj} satisfies the LDP in B with speed n.
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Proof. We show that under (a.1), (a.2) above is equivalent to (a.2) in Corollary
2.8.

Suppose that (a.2) in Corollary 2.9 holds. Then, given λ > 0, there exists
an integer m such that E[e4λ|X(m)|] < ∞. Let Y (m) = X − X(m) =

∑m
k=1 <

X, hk > hk. Y (m) is a finite dimensional r.v. So, there exists a η > 0 such that
E[e2λV (m,η)

] < ∞, where

V (m,η) = sup{|f1(x)− f2(x)| : f1, f2 ∈ B∗
1 , E[|f1(X)− f2(X)|] ≤ η}.

Since W η ≤ V (m,η) + 2|X(m)|, (a.2) in Corollary 2.8 follows.
Suppose that (a.2) in Corollary 2.8 holds. For each λ > 0, there exists a

η > 0 such that E[exp(λW (η))] < ∞. Take an integer m such that E[|X(m)|] ≤ η,
Then, for any f1 ∈ B∗

1 with f1(hj) = 0, for each 1 ≤ j ≤ m, and f2 = 0, we have
E[|f1(X)− f2(X)| ≤ E[|X(m)|] ≤ η. So, |X(m)| ≥ W (η) and (a.2) in Corollary 2.9
follows.

A similar result holds for r.v.’s with values in lp, p ≥ 1. In this case, (a.2) in
Corollary 2.8 can be substituted by

(a.2)’ For each λ > 0, there exists an integer m such that

E[exp(λ|X(m)|)] < ∞,

where X = (Y (1), Y (2), . . . , ) and X(m) = (0, . . . , 0, Y (m+1), Y (m+2), . . . , ).
We must notice the conditions above are sort of compactness conditions. A

set K of a separable Hilbert space is compact if and only if it is closed, bounded
and

lim
m→∞

sup
x∈K

∞∑
k=m+1

| < x, hk > |2 = 0,

where {hk} is an orthogonal basis of H. For p ≥ 1, a set K of lp is compact if
and only if it is closed, bounded and limm→∞ supx∈K

∑∞
k=m+1 |x(k)|p = 0, where

x = (x(1), x(2), . . . ) (see for example page 6 in Diestel, 1984).
Let {ξn}∞n=1 be a sequence of symmetric independent r.v.’s, with Pr{|ξn| ≥

t} = e−t for each t ≥ n and Pr{ξn = 0} = 1 − e−n. Then, for each p ≥ 1, X =
(ξ1, ξ2, . . . , ) is a r.v. with values in lp such that for each 0 < λ < 1, E[exp(λ|X|p)] <
∞, where | · |p is the lp norm. However, X does not satisfy (a.2)’.

Our methods also apply to partial sums processes. First, we consider the case
of a unique function.

Theorem 2.10. Let {Xj}∞j=1 be a sequence of i.i.d.r.v.’s. Then, the following con-
ditions are equivalent:

(a) For each λ ∈ R, E[exp(λX)] < ∞.
(b) {n−1

∑[nt]
j=1 Xj : 0 ≤ t ≤ 1} satisfies the large deviation principle in

l∞([0, 1]) with speed n and a good rate.
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Moreover, the rate function is given by

(2.8) I(z) =


∫ 1

0
Ψ(z′(t)) dt, if z(0) = 0

and z(t) is absolutely continuous,
∞ else,

where Ψ(x) = supy(xy − Φ(y)) and Φ(y) = log(E[eyX ]).

Proof. Let Un(t) = n−1
∑[nt]

j=1 Xj . Assume condition (a). We apply Theorem 2.4
with d(s, t) = |s− t|. Obviously ([0, 1], d) is totally bounded. Given 0 ≤ t1 ≤ · · · ≤
tm ≤ 1, we have that∑m

j=1

∑[ntj ]
i=1 λjXi =

∑m
j=1

∑j
p=1

∑[ntp]

i=[ntp−1]+1 λjXi(2.9)

=
∑m

p=1

∑m
j=p

∑[ntp]

i=[ntp−1]+1 λjXi =
∑m

p=1

∑[ntp]

i=[ntp−1]+1

∑m
j=p λjXi,

where t0 = 0. Hence,

n−1 log E[exp(
∑m

j=1

∑[ntj ]
i=1 λjXi)](2.10)

= n−1
∑m

p=1

∑[ntp]

i=[ntp−1]+1 log E[exp(
∑m

j=p λjX)]

→
∑m

p=1(tp − tp−1) log E[exp(
∑m

j=p λjX)] =
∫ 1

0
Φ(

∑m
j=1 λjI0≤s≤tj

) ds.

This limit and Theorem II.2 in Ellis (1981) imply condition (a.2) in Theorem 2.4.
To check condition (a.3) in Theorem 2.4, given c, τ > 0, take λ > 0 such that
λ > 23cτ−1 and take an integer

m > max
(
c−1 log(E[exp(λ|X|)]), 23τ−1E[|X|]

)
.

Let {X ′
i} be a independent copy of {Xi}. Let sj = m−1j, for 0 ≤ j ≤ m. Let

π(s) = sj if sj−1 ≤ s < sj for some j = 1, . . . ,m− 1. Let π(s) = sm if sm−1 ≤ s ≤
sm. By symmetrization (see Lemma 1.2.1 in Giné and Zinn, 1986) and the Lévy
inequality

Pr{sup0≤s≤1 |Un(π(s))− Un(s)| ≥ τ}
≤ m max1≤j≤m Pr{supsj−1≤s≤sj−1

|
∑[ns]

i=[nsj−1]+1 Xi| ≥ nτ}
≤ 2m max1≤j≤m Pr{supsj−1≤s≤sj−1

|
∑[ns]

i=[nsj−1]+1(Xi −X ′
i)| ≥ 2−1nτ}

≤ 4m Pr{|
∑[m−1n]+2

i=1 (Xi −X ′
i)| ≥ 2−1τn}

≤ 8m Pr{|
∑[m−1n]+2

i=1 Xi| ≥ 2−2τn}
≤ 8me−λ2−2τn(E[exp(λ|X|)])[m−1n]+2,

for n large enough. Observe that we may symmetrize because

E[n−1|
[ns]∑

i=[nsj−1]+1

Xi|] ≤ n−1([m−1n] + 2)E[|X|] ≤ 2−3τ,
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for n large enough. Hence,

lim supn→∞ n−1 log(Pr{sup0≤s≤1 |Un(π(s))− Un(s)| ≥ τ})
≤ −λ2−2τ + m−1 log(E[exp(λ|X|)]) ≤ −c.

Therefore, (b) follows.
Assume (b). By Theorem 2.4, there exists a pseudometric ρ in [0, 1] such that

([0, 1]), ρ) is totally bounded and for each τ > 0, there exists a δ > 0 such that

lim sup
n→∞

n−1 log Pr{ sup
0≤s,t≤1
ρ(s,t)≤δ

|Un(s)− Un(t)| ≥ τ} ≤ −1.

Take 0 ≤ s < t ≤ 1 such that ρ(s, t) ≤ δ. Then,

lim sup
n→∞

n−1 log Pr{|
[nt]∑

i=[ns]+1

Xi| ≥ τn} ≤ −1.

By Lemma 2.1, this implies that E[eλX ] < ∞, for each |λ| < τ−1. So, condition
(a) holds.

The results in Section 4 in Arcones (2002b) give that the rate function is the
one claimed.

Large deviations for partial sums processes in a similar set–up to the previous
one have been considered by Borovkov (1967) and Mogulskii (1976).

For partial sums of empirical processes, we present the following theorem:

Theorem 2.11. Let {Xj} be a sequence of i.i.d.r.v.’s with values in a measurable
space (S,S). Let {f(x, t) : t ∈ T} be a class of measurable functions defined on S

such that supt∈T |f(X, t)| < ∞ a.s. Let Un(s, t) = n−1
∑[ns]

j=1 f(Xj , t). Then, the
following sets of conditions (a) and (b) are equivalent:

(a.1) (T, d) is totally bounded, where d(s, t) = E[|f(X, s)− f(X, t)|].
(a.2) For each λ > 0,

E[exp(λF (X))] < ∞,

where F (x) = supt∈T |f(x, t)|.
(a.3) supt∈T |n−1

∑n
j=1(f(Xj , t)− E[f(Xj , t)])|

Pr→ 0.
(b) {Un(s, t) : t ∈ T} satisfies the large deviation principle in l∞([0, 1] × T )

with speed n and a good rate.
Moreover, the rate function is given by

I(z) = inf{
∫ 1

0
E[h(γ(X, u))] du : E[γ(X, u)] = 1 for each 0 ≤ u ≤ 1,(2.11)

and z(s, t) =
∫ s

0
E[f(X, t)γ(X, u)] du for each (s, t) ∈ [0, 1]× T}.
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Proof. The proof of (a) is equivalent to (b) is similar to that of Theorem 2.7 and
it is omitted. The new part is the form of the rate function. By the argument in
(2.9) for 0 ≤ s1 ≤ · · · ≤ sm ≤ 1 and t1, . . . , tm ∈ T ,

m∑
j=1

m∑
k=1

λj,k

[nsj ]∑
i=1

f(Xi, tk) =
m∑

p=1

[nsp]∑
i=[sp−1]+1

m∑
j=p

m∑
k=1

λj,kf(Xi, tk),

where s0 = 0. Hence,

n−1 log(E[exp(
∑m

j=1

∑m
k=1 λj,k

∑[nsj ]
i=1 f(Xi, tk))])

= n−1
∑m

p=1

∑[nsp]

i=[sp−1]+1 log(E[exp(
∑m

j=p

∑m
k=1 λj,kf(Xi, tk))])

→
∑m

p=1(sp − sp−1) log
(
E

[
exp

(∑m
j=p

∑m
k=1 λj,kf(X, tk)

)])
du

=
∫ 1

0
log

(
E

[
exp

(∑m
j=1

∑m
k=1 λj,kI(0 ≤ u ≤ sj)f(X, tk)

)])
du.

Hence, by Theorem II.2 in Ellis (1981), the rate function for the LDP of

{(Un(s1, t1), . . . , Un(s1, tm), . . . , Un(sm, t1), . . . , Un(sm, tm))}

is given by

sup
{∑m

j=1

∑m
k=1 λj,kuj,k

−
∫ 1

0
log

(
E

[
exp

(∑m
j=1

∑m
k=1 λj,kI(0 ≤ u ≤ sj)f(X, tk)

)])
du : λj,k ∈ R

}
.

The arguments in Lemma 2.6 give that

I(s1,t1),...,(sm,tm)(u1,1, . . . , um,m)
:= inf{

∑m
p=1(sp − sp−1)E[h(γp(X))] : E[γj(X)] = 1 for each 1 ≤ j ≤ m}

and
∑j

p=1(sp − sp−1)E[f(X, tk)γp(X)] du = uj,k for each 1 ≤ j, k ≤ m}
= inf{

∫ 1

0
E[h(γ(u, X))] du : E[γ(X, u)] = 1 for each 0 ≤ u ≤ 1,

and
∫ sj

0
E[f(X, tk)γ(X, u)] du = uj,k for each 1 ≤ j, k ≤ m}.

It is easy to that the methods in Section 4 in Arcones (2002b), give that

sup{I(s1,t1),...,(sm,tm)(z(s1, t1), . . . , z(sm, tm)) : si ∈ [0, 1], ti ∈ T, for 1 ≤ i ≤ m},

is the rate in (2.11).

For Banach space r.v.’s, we have that:

Corollary 2.12. Let {Xj}∞j=1 be a sequence of i.i.d.r.v.’s with values in a separa-
ble Banach space B. l∞([0, 1], B) is the Banach space consisting by the bounded
functions from [0, 1] into B with the norm ‖x‖∞,T,B = supt∈T |x(t)|. Then, the
following conditions are equivalent:

(a) For each λ > 0 E[exp(λ|X|)] < ∞.

(b) {n−1
∑[nt]

j=1 Xj : 0 ≤ t ≤ 1} satisfies the LDP in l∞([0, 1], B) with speed n
and a good rate function.
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Moreover, the rate function is

I(z) = inf{
∫ 1

0
E[h(γ(X, u))] du : E[γ(X, u)] = 1 for each 0 ≤ u ≤ 1,

and z(t) =
∫ t

0
E[γ(X, u)X] du for each t ∈ [0, 1]}.
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