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1 Confidence regions with a constrained

Lebesgue measure for a location fam-

ily.

Let {Xj}∞j=1 be a sequence of Rd–valued i.i.d.r.v.’s with a

p.d.f. belonging to the family {f (· − θ) : θ ∈ Rd}.
Fix L > 0. We would like to find a translation equivariant

confidence region CHL,L(X1, . . . , Xn) such that:

1. For each ~x := (x1, . . . , xn),∫

Rm
I(y ∈ CHL,L(~x)) dy ≤ L. (1)

2. For any confidence region C(X1, . . . , Xn) satisfying (1),

inf
θ∈Rd

Pθ{θ ∈ CHL,L( ~X)} ≥ inf
θ∈Rd

Pθ{θ ∈ C( ~X)}
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If C( ~X) is a translation equivariant confidence region, then

C( ~X) = Xn + C(Z1, . . . , Zn−1, 0) = Xn + C∗(~Z).

We would like to find C∗(~Z) maximizing

infθ∈Rd Pθ{θ ∈ Xn + C∗(~Z)} = P0{−Xn ∈ C∗(~Z)} (2)

=
∫ ∫

I(−xn ∈ C∗(~z))
∏n−1

j=1 f (zj + xn)× f (xn) dxn d~z

=
∫ ∫

I(y ∈ C∗(~z))
∏n−1

j=1 f (zj − y)× f (−y) dy d~z,

subject that for each ~z,∫

Rm
I(y ∈ xn+C∗(~z)) dy =

∫

Rm
I(y ∈ C∗(~z)) dy ≤ L. (3)

Conditioning on ~z, we get that the optimal region is

C∗
HL(~z) = {y ∈ Rd : λHL(~z) ≤

n−1∏
j=1

f (zj − y)× f (−y))}.

where λHL(~z) is such that∫

λHL(~z)≤∏n−1
j=1 f(zj−y)×f(−y))

dy = L.

It is easy to see that

CHL,L(x1, . . . , xn) = xn + C∗
HL(~z)

= {θ ∈ Rd : λHL(~z) ≤ ∏n
j=1 f (xj − θ)}.
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Theorem 1. Suppose that:

(i) For each 0 < M < ∞, inf{f (x) : |x| ≤ M} > 0.

(ii) lim|x|→∞ f (x) = 0.

(iii) supx∈Rd f (x) < ∞.

Let C(X1, . . . , Xn) be a confidence region for θ such

that for each x1, . . . , xn,
∫
Rd I(y ∈ C(x1, . . . , xn)) dy ≤ L.

Then,

infθ∈Rd Pθ{θ ∈ CHL,L( ~X)} ≥ infθ∈Rd Pθ{θ ∈ C( ~X)}.
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2 Impermissible error

Let Tn := Tn( ~X) be an estimator of θ. The error of the

estimator Tn is |Tn − θ|. Suppose that we select a number

b, b > 0, such that any error of estimation bigger than b

is impermissible. The maximum coverage probability of the

impermissible error of the estimator Tn is

sup
θ∈Θ
Pθ{|Tn − θ| > b}. (4)

We would like to obtain an estimator THL,b minimizing (4)

for a location family. Finding THL,b is equivalent to find a

confidence interval of length 2b with coverage probability as

large as possible.

If d = 1, and CHL,2b( ~X) is an interval, we take Tn,HL,b( ~X)

as the middle point of CHL,2b( ~X). By Theorem 1, for each

estimator Tn,

sup
θ∈R
Pθ{|Tn − θ| > b} ≥ sup

θ∈R
Pθ{|Tn,HL,b − θ| > b}.
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3 Estimation via the m.l.e.

An mle θ̂n of θ, over a parametric family {f (x, θ) : θ ∈ Θ}
is a r.v. such that

n−1
n∑

j=1

log f (Xj, θ̂n) = sup
θ∈Θ

n−1
n∑

j=1

log f (Xj, θ). (5)

Suppose that there exists a r.v. θ̂n = θ̂n(X1, . . . , Xn) satis-

fying (5) when f (x, θ) = f (x− θ). We may assume that θ̂n

is equivariant. This implies that θ̂n− θ is a pivotal quantity.

Suppose that θ− θ̂n has a distribution absolutely continuous

with respect to the Lebesgue measure, when θ obtains. Let

hn(·) be the pdf of θ− θ̂n when θ obtains. Let L > 0. Given

C ∈ B(Rd), a confidence region for θ based on θ−θ̂n is deter-

mined by {θ ∈ Rd : θ − θ̂n ∈ C} = {θ ∈ Rd : θ ∈ θ̂n + C}.
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Between all sets C such that
∫

I(θ ∈ θ̂n + C) dθ =

∫

C

1 dθ ≤ L, (6)

a set C which maximizes

Pθ{θ − θ̂n ∈ C} =

∫

C

hn(θ) dθ (7)

is

Cmle,L = {x ∈ Rd : λmle,L ≤ hn(x)}
where λmle,L is such that

∫

{x∈Rd:λmle,L≤hn(x)}
1 dx = L.

Hence, using the mle, a confidence region satisfying (6) and

maximizing (7) is

θ̂n + Cmle,L = {θ ∈ Rd : λmle,L ≤ hn(θ − θ̂n)}.

Notice hn(θ − x), x ∈ R, is the p.d.f. of θ̂n when θ obtains.
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The obtained confidence regions maximize the coverage

probability over all the regions with expected Lebesgue mea-

sure less or equal than L:

Theorem 2. Let C(θ̂n) be a confidence region for θ such

that

sup
θ∈Rd

Eθ

[∫

Rd
I(y ∈ C(θ̂n)) dy

]
≤ L. (8)

Then,

inf
θ∈Rd

Pθ{θ ∈ C(θ̂n)} ≤ inf
θ∈Rd

Pθ{θ ∈ θ̂n + Cmle,L}. (9)

The previous theorem implies that if C(θ̂n) is a confidence

region for θ such that for each x ∈ Rd,
∫

Rd
I(y ∈ C(x)) dy ≤ L, (10)

then, (9) holds.
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Suppose that d = 1 and we would like to find the estimator

T (θ̂n) (based on the m.l.e.) minimizing:

sup
θ∈R
Pθ{|T (θ̂n)− θ| > b}. (11)

If Cmle,2b is an interval, then the middle point Tn,mle,b of

θ̂n + Cmle,2b minimizes (11) between all the estimators based

on the m.l.e.
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4 Asymptotic results.

Let {Xj}∞j=1 be a sequence of i.i.d.r.v.’s from the family

{f (· − θ) : θ ∈ R}.
Theorem 3. Suppose that:

(i) For each x ∈ R, f (x) > 0.

(ii) log f (·) is a strictly concave function

(iii) For each t ∈ R, there exists λt > 0 such that

E0[exp(λt| log f (X − t)|)] < ∞.

Then,

lim
n→∞

n−1 logPθ{θ 6∈ CHL,L(X1, . . . , Xn)} = −S(L),

where

S(L) = − infλ∈R log
∫
R(f (x− L))λ(f (x))1−λ dx.

Besides,

(a) S is increasing on [0,∞) and S is decreasing in

(−∞, 0].

(b) S is a continuous function.

(c) lim|t|→∞ S(t) = ∞.
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Theorem 4. Suppose that:

(i) For each x ∈ R, f (x) > 0.

(ii) log f is a strictly concave function.

(iii)
∫
R f ′(x) dx = 0.

(iv) E[(f (X))−2(f ′(X))2] < ∞.

Then, the m.l.e. θ̂n is well defined and θ − θ̂n, when θ

obtains, has pdf

hn(t) := E0

[
I

(∑n
j=1(f (Xj + t))−1f ′(Xj + t) > 0

)

×∑n
j=1(f (Xj))

−1f ′(Xj)
]
, t ∈ R.

Besides, hn is nonincreasing in [0,∞) and nondecreasing

in (−∞, 0].
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Theorem 5. Suppose that:

(i) For each x ∈ R, f (x) > 0.

(ii) log f is a concave function.

(iii) E0[(f (X))−1f ′(X)] = 0.

(iv) E0[(f (X))−2(f ′(X))2] < ∞.

(v) θ̂n−θ satisfies the LDP with speed n and continuous

rate function

R(t) := − inf
λ∈R

log E0[exp(λ(f (X − t))−1f ′(X − t))], t ∈ R.

Then,

lim
n→∞

n−1 logPθ{θ − θ̂n 6∈ Cmle,L(θ̂n)} = −Smle(L)

where Smle(L) := inf{u ≥ 0 :
∫

x:R(x)≤u 1 dx ≥ L}. Be-

sides,

(i) For each t ∈ R, R(t) < ∞.

(ii) R(0) = 0

(iii) R is increasing in [0,∞) and decreasing in (−∞, 0].

(iv) R is continuous in R.

(v) There exists a t0 ∈ (0, L) such that R(t) = R(t0 −
L) = Smle(L).
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Example 1. If

f (x) = (2π)−1/2σ−1 exp(−2−1σ−2x2), x ∈ R, (12)

where σ > 0, then, it is easy to see that:

(i) THL,b = Tmle,b = θ̂n = X̄ := n−1
∑n

j=1 Xj.

(ii) CHL,2b(X1, . . . , Xn) = Cmle,2b(θ̂n) = [X̄ − b, X̄ + b].

(iii) Smle(2b) = S(2b) = R(b) = 2−1σ−2b2.

(iv) For each θ ∈ R, THL,b
Pθ→ θ.
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Example 2. If

f (x) = (Γ(α))−1|γ|αα exp (αγx− αeγx) (13)

where α > 0 and γ 6= 0, then, it is possible to see that:

(i) θ̂n = γ−1 log
(
n−1

∑n
j=1 eγXj

)
.

(ii) CHL,2b(X1, . . . , Xn) = Cmle,2b(θ̂n)

= [θ̂n + γ−1 log
(
2−1γ−1b−1(e2γb − 1)

)− 2b

, θ̂n + γ−1 log
(
2−1γ−1b−1(e2γb − 1)

)
].

(iii) THL,b = Tmle,b = θ̂n+γ−1 log
(
2−1γ−1b−1(eγb − e−γb)

)
.

(iv) For each b > 0,

S(2b) = Smle(2b) = R(b)

= α log(2−1|γ|−1b−1(e2|γ|b − 1))

−α(e2|γ|b − 1)−1(e2|γ|b − 1− 2|γ|b).
(v) For each b > 0 and each θ ∈ R,

THL,b
Pθ→ θ + γ−1 log(2−1γ−1b−1(eγb − e−γb)) 6= θ.

By Theorem 2 in Ferguson [1] the location families in ex-

amples 1 and 2 are the only one dimensional location families,

which are exponential families.
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Example 3. If

f (x) = c exp(−a1 exp(τ1x)− a2 exp(−τ2x)), (14)

where a1, a2, τ1, τ2 > 0 and c makes f a p.d.f. Then,

(i) (
∑n

j=1 eτ1Xj,
∑n

j=1 e−τ2Xj) is a minimal sufficient stat.

(ii) The family {f (· − θ) : θ ∈ R} is a curved exponen-

tial family.

(iii) The m.l.e. θ̂n of θ is

(τ1 + τ2)
−1 log


a−1

2 τ−1
2 a1τ1




n∑
j=1

e−τ2Xj



−1

n∑
j=1

eτ1Xj


 .

(iv)

CHL,2b(X1, . . . , Xn) = Cmle,2b(θ̂n) = θ̂n + [t0 − 2b, t0],

where

t0 = (τ1 + τ2)
−1 log

(
τ−1
1 τ2(e

2bτ1 − 1)(1− e−2bτ2)−1
)
.

(v)

THL,b = Tmle,b = θ̂n

+(τ1 + τ2)
−1 log

(
τ−1
1 τ2(e

bτ1 − e−bτ1)(ebτ2 − e−bτ2)−1
)
.

15



Example 4. If

f (x) = 2−1 exp(−|x|), x ∈ R, (15)

then, θ̂n is not uniquely defined. The function log f (·)
is concave, but not strictly concave. Let X(1), . . . , X(n)

be the order statistics. X1, . . . , Xn are all different wit

probability one. Assume that X1, . . . , Xn are all different.

If n is odd, θ̂n = X(2−1(n+1)). If n is even, then θ̂n =

X(2−1n) and θ̂n = X(2−1n+1) are both m.l.e.’s. It is easy to

see that whatever choice for the m.l.e. is made theorems

1–5 apply giving that

(i) CHL,2b(X1, . . . , Xn) 6= Cmle,2b(θ̂n).

(ii) For each b > 0, S(2b) = b− log(1 + b).

(iii) For each b > 0, Smle(2b) = b− 2−1 log
(
2eb − 1

)
.

(iii) For each b > 0, Smle(2b) < S(2b).

(iv) For each θ ∈ R, THL,b
Pθ→ θ.
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Theorem 6. Suppose that:

(i) For each x ∈ R, f (x) > 0.

(ii) log f is a concave function.

(iii) f is even.

Then,

(i) For each b > 0, R(b) ≤ S(2b).

(ii) Assume that f has a third derivative and that f is

not a p.d.f. from the families of p.d.f.’s in examples 1

and 3, then for some b 6= 0, R(b) < S(2b).
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