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1 Confidence regions with a constrained
Lebesgue measure for a location fam-
ily.

Let {X;}32; be a sequence of R%valued i.id.rv.s with a

p.d.f. belonging to the family {f(- — ) : 6 € R4},

Fix L > 0. We would like to find a translation equivariant

confidence region Crp (X7, ..., X)) such that:

1. For each @ := (x1,...,xy),
/ l(y = CHL,L(f)) dy < L. (1)
2. For any confidence region C'( X1, ..., X,) satisfying (1),

inf Pp{0 € CHL,L(X')} > inf Py{ € C(X)}
fcRd feR?



If C(X) is a translation equivariant confidence region, then
CX)=Xo+C(Z1,....,2Z,1,0) = X, + C*(2Z).
We would like to find C*(Z) maximizing
infy_ga Po{0 € X, + C*(2)} = Py{—X, € C*(2)} (2)
= [ [I(—z, € C¥( ))H;:ll f(zj +x,) x f(x,)dx, dZ
= [ [y e I flz —y) x f(-y)dydZ,
subject that for each 2,
/m I(y € 2,4 C*(2)) dy = /m Iy e C(2)dy < L. (3)

Conditioning on Z, we get that the optimal region is

Chr(2) ={y e R": Ayr(Z <Hf (—y))}-

where Ay (2) is such that

/ dy = L.
M) f(z—9) % f(=))
[t is easy to see that

Curo(x1, ..., 2,) = x5 + Cpp(2)

= {0 e R": Ayr(2) < TI7-y fla; — )}
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Theorem 1. Suppose that:

(i) For each 0 < M < oo, inf{f(z): x| < M} > 0.

(1) limyy o0 f(x) =0

(i) S0y () < 0.

Let C(Xy,...,X,) be a confidence region for 6 such
that for each 1, ..., %y, [pal(y € Clay,...,z,))dy < L.
Then,

inf(geRd PQ{Q c OHL,L(X>} > inf@eRd Pg{@ < C(X)}



2 Impermissible error

—

Let T,, := T,(X) be an estimator of . The error of the
estimator T), is |T;, — 6|. Suppose that we select a number
b, b > 0, such that any error of estimation bigger than b
is impermissible. The maximum coverage probability of the

impermissible error of the estimator 7, is

sup Py{|T,, — 0| > b}. (4)
4SS)

We would like to obtain an estimator Ty, minimizing (4)
for a location family. Finding Tz is equivalent to find a
confidence interval of length 2b with coverage probability as
large as possible.

Ifd=1, and CHL,%(X') is an interval, we take TmHL,b(X')

as the middle point of Cyr 2(X). By Theorem 1, for each

estimator 1,

sup Pp{| T}, — 0| > b} > sup Pp{| T}, s — 0| > b}.
OeR OeR



3 Estimation via the m.l.e.

An mle 0, of 0, over a parametric family {f(z,0) : 0 € O}

1s a r.v. such that

n_lzlogf ) =supn_ Zlogf X,;,0). ()

HcO =1

Suppose that there exists a r.v. 6, = én(Xl, ..., X,) satis-
fying (5) when f(z,0) = f(z — 0). We may assume that 6,
is equivariant. This implies that 0, —0is a pivotal quantity:.
Suppose that 6 — 0,, has a distribution absolutely continuous
with respect to the Lebesgue measure, when 6 obtains. Let
ha(+) be the pdf of 6 — 6, when 0 obtains. Let L > 0. Given
C € B(RY), a confidence region for 6 based on 8 —6,, is deter-
mined by {§ e R : 0 —0, e CY={#eR*:0e,+C}



Between all sets C' such that

/](QeénJrC)dé’:/lngL, (6)
C
a set C' which maximizes
Py{f — 0, € C} = / h,(0) dO (7)
C

1S
lee,L — {ZC S Rd : )\mle,L S hn<x>}

where Aye 1 1s such that

/ ldx = L.
{zeREN e 1 <hn(z)}

Hence, using the mle, a confidence region satisfying (6) and
maximizing (7) is

A

én + lee,L — {9 S Rd : )\mle,L S hn(e — en)}

Notice h,(0 — z), z € R, is the p.d.f. of 8, when # obtains.



The obtained confidence regions maximize the coverage
probability over all the regions with expected Lebesgue mea-

sure less or equal than L:

Theorem 2. Let C(én) be a confidence region for 6 such
that

sup E [ /R Iy € C(6,) dy] <L (8)

hcRd
Then,

inf P@{(g c C(@An)} S inf ]P)g{e c én + lee,L}- (9)
hcRd HcRd

The previous theorem implies that if C'(6,) is a confidence

region for # such that for each z € R?,

[ 1wecwa=<t (10)

then, (9) holds.



Suppose that d = 1 and we would like to find the estimator

AN

T(0,) (based on the m.l.e.) minimizing:
sup Py{|T(0,) — 0] > b}. (11)
OeER

If Che2y 1s an interval, then the middle point 75, e p of

AN

0, + Cinle 2o minimizes (11) between all the estimators based

on the m.l.e.



4 Asymptotic results.

Let {X;}32; be a sequence of iidr.v’s from the family
{f(-—=0) 0 R}
Theorem 3. Suppose that:

(1) For each x € R, f(x) > 0.

(ii) log f(+) is a strictly concave function

(1ii) For each t € R, there exists \y > 0 such that
Eylexp(M\e|log f(X —1t)])] < o0.
Then,

lim n 'logPp{d & Crrr(X1,..., X))} = —S(L),

n—oo

where

S(L) = —infrerlog [p(f(x — L)) (f(z))' " da.
Besides,
(a) S is increasing on [0,00) and S is decreasing in
(—o0,0].
(b) S is a continuous function.
(¢) limy 0 S(t) = 00.
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Theorem 4. Suppose that:

(i) For each x € R, f(x) > 0.

(ii) log f is a strictly concave function.

(i41) [, f'(z)dz = 0.

(iv) BI(£(X))2(f/(X))"] < .

Then, the m.l.e. 0, is well defined and 0 — én, when 0
obtains, has pdf

ha(t) = By |1 (S5 (FOG + )7 (X + 1) > 0)
X YL (FOG) )| e R
Besides, h, is nonincreasing in |0, 00) and nondecreasing

in (—o0,0].
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Theorem 5. Suppose that:

(i) For each x € R, f(x) > 0.

(ii) log f is a concave function.

(iii) Eo[(f(X))~f'(X)] =0.

(i) Bol(£(X)2(f/(X))) < oo.

(v) 0,—0 satisfies the LDP with speed n and continuous
rate function
R(t) = — inf log Eplexp(A(f(X — )7 f'(X =)t € R.

Then,

lim 7" log Pp{0 — 0, & Crute.1.(04)} = —Spue(L)

n—aoo

where Spe(L) = inf{u > 0 : fx:R(I)Sulda: > L}. Be-

sides,
(1) For each t € R, R(t) < o0.
(11) R(0) =0

(71i) R is increasing in [0, 00) and decreasing in (—oo, 0].
(iv) R is continuous in R.
(v) There exists a ty € (0, L) such that R(t) = R(ty —

L) = Se(L).
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Example 1. If
flz) = 2m) Y20 texp(—27 o %?), z € R, (12)

where o > 0, then, it is easy to see that:
(Z) THL,b = Tmle,b — én = X :=n"! Z?:1 Xj.
(i1) Crran( X1, - -+, Xn) = Cutean(0) = [X — b, X +1].
(141) Spmie(2b) = S(2b) = R(b) = 2~ lo—2p2,

(1v) For each 0 € R, Ty Te
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Example 2. If

flz) = (T(a)) ' y]a® exp (ayz —ae’®)  (13)
where a > 0 and v # 0, then, it s possible to see that:
(i) 0, = v 'log (n‘l D i1 eVXJ').

(1)  Cuara(Xi, ..., X,) = lee,2b<én>
= [én +~7tlog (2_17_16_1(627b — 1)) — 2b
0, 4+~ log 27y o (e = 1))
(153) Trrp = Titep = én+’y_1 log (2_1*y_1b_1(67b — e‘”b)).
(iv) For each b > 0,
S(2b) = Spmie(20) = R(b)
= alog(27'|y|7'07 (e — 1))
—a(e? — )71 (2P — 1 — 2|~]b).
(v) For each b > 0 and each 0 € R,
THrp 047! log(27 'y~ (e —e7")) £ 6.

By Theorem 2 in Ferguson [1] the location families in ex-
amples 1 and 2 are the only one dimensional location families,

which are exponential families.
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Example 3. If

f(x) = cexp(—ay exp(T1z) — az exp(—Tox)), (14)

where ay,aq, 7,7 > 0 and ¢ makes f a p.d.f. Then,
(1) (D27 €™, 320 e ™) is a minimal sufficient stat.
(ii) The family {f(- —0): 0 € R} is a curved exponen-
tial famaily.
(iti) The m.Le. 0, of 0 is

S

n
(11 +72) tlog | ay'my tarm g e eI
—

j
()
Crran(X1, ..., X)) = Curean(0) = 0, + [to — 2b, 1),
where

to= (11 + 1) 'log (7'1_17'2(62le —1)(1 — 6_%72)_1) .

(v)

THL,b — Tmle,b — en

+(711 + 72) "t log (7'1_17'2<€le — e‘bﬁ)(ebT2 — e_bTQ)_l) .
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Example 4. If

f(z) = 2 exp(—|a), 2 € R, (15)

N

then, 0, is not uniquely defined. The function log f(-)
is concave, but not strictly concave. Let X(y,..., Xy
be the order statistics. Xy,...,X, are all different wit
probability one. Assume that X1, ..., X, are all different.
If n is odd, 6, = Xo-1(nt1))- Af n is even, then 0, =
X1y and 0, = Xo-1p41y are both m.l.e.’s. Il is easy to
see that whatever choice for the m.l.e. 1s made theorems
1-5 apply giving that

(1) Crpon(Xy,..., X,) # Omle,%(én)-

(1i) For each b > 0, S(2b) = b — log(1 + b).

(iii) For each b > 0, S,(2b) = b — 27 log (2¢” — 1).

(1ii) For each b > 0, Sye(2b) < S(2b).

(1v) For each 6 € R, Ty (')
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Theorem 6. Suppose that:
(i) For each x € R, f(x) > 0.
(ii) log f is a concave function.
(iii) f is even.
Then,
(i) For each b >0, R(b) < S(2b).
(1i) Assume that f has a third derivative and that f is

not a p.d.f. from the families of p.d.f.’s in examples 1
and 3, then for some b # 0, R(b) < S(2b).
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