Minimax estimators of the coverage probability of the impermissible error for a location family

by Miguel A. Arcones

Binghamton University

arcones@math.binghamton.edu

Talk based on:

Arcones, M. A. (2008). Minimax estimators of the coverage probability of the impermissible error for a location family. Statistics & Decisions. 28, 1001–1043

Available at

http://www.math.binghamton.edu/arcones/prep.html

1 Confidence regions with a constrained Lebesgue measure for a location family.

Let $\{X_j\}_{j=1}^{\infty}$ be a sequence of \mathbb{R}^d -valued i.i.d.r.v.'s with a p.d.f. belonging to the family $\{f(\cdot - \theta) : \theta \in \mathbb{R}^d\}$.

Fix L > 0. We would like to find a translation equivariant confidence region $C_{HL,L}(X_1, \ldots, X_n)$ such that:

1. For each $\vec{x} := (x_1, ..., x_n)$,

$$\int_{\mathbb{R}^m} I(y \in C_{HL,L}(\vec{x})) \, dy \le L. \tag{1}$$

2. For any confidence region $C(X_1, \ldots, X_n)$ satisfying (1),

$$\inf_{\theta \in \mathbb{R}^d} \mathbb{P}_{\theta} \{ \theta \in C_{HL,L}(\vec{X}) \} \ge \inf_{\theta \in \mathbb{R}^d} \mathbb{P}_{\theta} \{ \theta \in C(\vec{X}) \}$$

If $C(\vec{X})$ is a translation equivariant confidence region, then $C(\vec{X}) = X_n + C(Z_1, \dots, Z_{n-1}, 0) = X_n + C^*(\vec{Z}).$

We would like to find $C^*(\vec{Z})$ maximizing

$$\inf_{\theta \in \mathbb{R}^d} \mathbb{P}_{\theta} \{ \theta \in X_n + C^*(\vec{z}) \} = \mathbb{P}_0 \{ -X_n \in C^*(\vec{z}) \} (2)$$
$$= \int \int I(-x_n \in C^*(\vec{z})) \prod_{j=1}^{n-1} f(z_j + x_n) \times f(x_n) \, dx_n \, d\vec{z}$$
$$= \int \int I(y \in C^*(\vec{z})) \prod_{j=1}^{n-1} f(z_j - y) \times f(-y) \, dy \, d\vec{z},$$

subject that for each \vec{z} ,

$$\int_{\mathbb{R}^m} I(y \in x_n + C^*(\vec{z})) \, dy = \int_{\mathbb{R}^m} I(y \in C^*(\vec{z})) \, dy \le L. \tag{3}$$

Conditioning on \vec{z} , we get that the optimal region is

$$C_{HL}^*(\vec{z}) = \{ y \in \mathbb{R}^d : \lambda_{HL}(\vec{z}) \le \prod_{j=1}^{n-1} f(z_j - y) \times f(-y) \} \}.$$

where $\lambda_{HL}(\vec{z})$ is such that

$$\int_{\lambda_{HL}(\vec{z}) \leq \prod_{j=1}^{n-1} f(z_j - y) \times f(-y))} dy = L.$$

It is easy to see that

$$C_{HL,L}(x_1, \dots, x_n) = x_n + C^*_{HL}(\vec{z})$$
$$= \{ \theta \in \mathbb{R}^d : \lambda_{HL}(\vec{z}) \le \prod_{j=1}^n f(x_j - \theta) \}.$$

Theorem 1. Suppose that:

(i) For each $0 < M < \infty$, $\inf\{f(x) : |x| \le M\} > 0$. (ii) $\lim_{|x|\to\infty} f(x) = 0$. (iii) $\sup_{x\in\mathbb{R}^d} f(x) < \infty$. Let $C(X_1, \ldots, X_n)$ be a confidence region for θ such that for each x_1, \ldots, x_n , $\int_{\mathbb{R}^d} I(y \in C(x_1, \ldots, x_n)) dy \le L$. Then,

 $\inf_{\theta \in \mathbb{R}^d} \mathbb{P}_{\theta} \{ \theta \in C_{HL,L}(\vec{X}) \} \ge \inf_{\theta \in \mathbb{R}^d} \mathbb{P}_{\theta} \{ \theta \in C(\vec{X}) \}.$

2 Impermissible error

Let $T_n := T_n(\vec{X})$ be an estimator of θ . The error of the estimator T_n is $|T_n - \theta|$. Suppose that we select a number b, b > 0, such that any error of estimation bigger than bis impermissible. The maximum coverage probability of the impermissible error of the estimator T_n is

$$\sup_{\theta \in \Theta} \mathbb{P}_{\theta}\{|T_n - \theta| > b\}.$$
(4)

We would like to obtain an estimator $T_{HL,b}$ minimizing (4) for a location family. Finding $T_{HL,b}$ is equivalent to find a confidence interval of length 2b with coverage probability as large as possible.

If d = 1, and $C_{HL,2b}(\vec{X})$ is an interval, we take $T_{n,HL,b}(\vec{X})$ as the middle point of $C_{HL,2b}(\vec{X})$. By Theorem 1, for each estimator T_n ,

$$\sup_{\theta \in \mathbb{R}} \mathbb{P}_{\theta}\{|T_n - \theta| > b\} \ge \sup_{\theta \in \mathbb{R}} \mathbb{P}_{\theta}\{|T_{n, HL, b} - \theta| > b\}.$$

3 Estimation via the m.l.e.

An mle $\hat{\theta}_n$ of θ , over a parametric family $\{f(x,\theta) : \theta \in \Theta\}$ is a r.v. such that

$$n^{-1}\sum_{j=1}^{n}\log f(X_j,\hat{\theta}_n) = \sup_{\theta\in\Theta} n^{-1}\sum_{j=1}^{n}\log f(X_j,\theta).$$
(5)

Suppose that there exists a r.v. $\hat{\theta}_n = \hat{\theta}_n(X_1, \dots, X_n)$ satisfying (5) when $f(x, \theta) = f(x - \theta)$. We may assume that $\hat{\theta}_n$ is equivariant. This implies that $\hat{\theta}_n - \theta$ is a pivotal quantity. Suppose that $\theta - \hat{\theta}_n$ has a distribution absolutely continuous with respect to the Lebesgue measure, when θ obtains. Let $h_n(\cdot)$ be the pdf of $\theta - \hat{\theta}_n$ when θ obtains. Let L > 0. Given $C \in \mathcal{B}(\mathbb{R}^d)$, a confidence region for θ based on $\theta - \hat{\theta}_n$ is determined by $\{\theta \in \mathbb{R}^d : \theta - \hat{\theta}_n \in C\} = \{\theta \in \mathbb{R}^d : \theta \in \hat{\theta}_n + C\}.$ Between all sets C such that

$$\int I(\theta \in \hat{\theta}_n + C) \, d\theta = \int_C 1 \, d\theta \le L,\tag{6}$$

a set C which maximizes

$$\mathbb{P}_{\theta}\{\theta - \hat{\theta}_n \in C\} = \int_C h_n(\theta) \, d\theta \tag{7}$$

is

$$C_{\mathrm{mle},L} = \{x \in \mathbb{R}^d : \lambda_{\mathrm{mle},L} \le h_n(x)\}$$

where $\lambda_{\mathrm{mle},L}$ is such that

$$\int_{\{x \in \mathbb{R}^d : \lambda_{\mathrm{mle},L} \le h_n(x)\}} 1 \, dx = L.$$

Hence, using the mle, a confidence region satisfying (6) and maximizing (7) is

$$\hat{\theta}_n + C_{\mathrm{mle},L} = \{ \theta \in \mathbb{R}^d : \lambda_{\mathrm{mle},L} \le h_n(\theta - \hat{\theta}_n) \}.$$

Notice $h_n(\theta - x)$, $x \in \mathbb{R}$, is the p.d.f. of $\hat{\theta}_n$ when θ obtains.

The obtained confidence regions maximize the coverage probability over all the regions with expected Lebesgue measure less or equal than L:

Theorem 2. Let $C(\hat{\theta}_n)$ be a confidence region for θ such that

$$\sup_{\theta \in \mathbb{R}^d} E_{\theta} \left[\int_{\mathbb{R}^d} I(y \in C(\hat{\theta}_n)) \, dy \right] \le L.$$
(8)

Then,

$$\inf_{\theta \in \mathbb{R}^d} \mathbb{P}_{\theta} \{ \theta \in C(\hat{\theta}_n) \} \le \inf_{\theta \in \mathbb{R}^d} \mathbb{P}_{\theta} \{ \theta \in \hat{\theta}_n + C_{\mathrm{mle},L} \}.$$
(9)

The previous theorem implies that if $C(\hat{\theta}_n)$ is a confidence region for θ such that for each $x \in \mathbb{R}^d$,

$$\int_{\mathbb{R}^d} I(y \in C(x)) \, dy \le L,\tag{10}$$

then, (9) holds.

Suppose that d = 1 and we would like to find the estimator $T(\hat{\theta}_n)$ (based on the m.l.e.) minimizing:

$$\sup_{\theta \in \mathbb{R}} \mathbb{P}_{\theta}\{|T(\hat{\theta}_n) - \theta| > b\}.$$
(11)

If $C_{\text{mle},2b}$ is an interval, then the middle point $T_{n,\text{mle},b}$ of $\hat{\theta}_n + C_{\text{mle},2b}$ minimizes (11) between all the estimators based on the m.l.e.

4 Asymptotic results.

Let $\{X_j\}_{j=1}^{\infty}$ be a sequence of i.i.d.r.v.'s from the family $\{f(\cdot - \theta) : \theta \in \mathbb{R}\}.$

Theorem 3. Suppose that:

(i) For each
$$x \in \mathbb{R}$$
, $f(x) > 0$.
(ii) $\log f(\cdot)$ is a strictly concave function
(iii) For each $t \in \mathbb{R}$, there exists $\lambda_t > 0$ such that
 $E_0[\exp(\lambda_t |\log f(X - t)|)] < \infty$.

Then,

$$\lim_{n \to \infty} n^{-1} \log \mathbb{P}_{\theta} \{ \theta \notin C_{HL,L}(X_1, \dots, X_n) \} = -S(L),$$

where

$$S(L) = -\inf_{\lambda \in \mathbb{R}} \log \int_{\mathbb{R}} (f(x-L))^{\lambda} (f(x))^{1-\lambda} dx.$$

Besides,

(a) S is increasing on $[0, \infty)$ and S is decreasing in $(-\infty, 0]$.

(b) S is a continuous function. (c) $\lim_{|t|\to\infty} S(t) = \infty$. **Theorem 4.** Suppose that:

(i) For each
$$x \in \mathbb{R}$$
, $f(x) > 0$.
(ii) $\log f$ is a strictly concave function.
(iii) $\int_{\mathbb{R}} f'(x) dx = 0$.
(iv) $E[(f(X))^{-2}(f'(X))^2] < \infty$.
Then, the m.l.e. $\hat{\theta}_n$ is well defined and $\theta - \hat{\theta}_n$, when θ

 $obtains, \ has \ pdf$

$$h_n(t) := E_0 \left[I \left(\sum_{j=1}^n (f(X_j + t))^{-1} f'(X_j + t) > 0 \right) \times \sum_{j=1}^n (f(X_j))^{-1} f'(X_j) \right], t \in \mathbb{R}.$$

Besides, h_n is nonincreasing in $[0, \infty)$ and nondecreasing in $(-\infty, 0]$.

Theorem 5. Suppose that:

(i) For each
$$x \in \mathbb{R}$$
, $f(x) > 0$.
(ii) $\log f$ is a concave function.
(iii) $E_0[(f(X))^{-1}f'(X)] = 0$.
(iv) $E_0[(f(X))^{-2}(f'(X))^2] < \infty$.
(v) $\hat{\theta}_n - \theta$ satisfies the LDP with speed n and continuous
rate function

 $\begin{aligned} R(t) &:= -\inf_{\lambda \in \mathbb{R}} \log E_0[\exp(\lambda(f(X-t))^{-1}f'(X-t))], t \in \mathbb{R}. \end{aligned}$ Then,

 $\lim_{n \to \infty} n^{-1} \log \mathbb{P}_{\theta} \{ \theta - \hat{\theta}_n \notin C_{\mathrm{mle},L}(\hat{\theta}_n) \} = -S_{mle}(L)$ where $S_{mle}(L) := \inf \{ u \ge 0 : \int_{x:R(x) \le u} 1 \, dx \ge L \}$. Besides,

(i) For each t ∈ ℝ, R(t) < ∞.
(ii) R(0) = 0
(iii) R is increasing in [0,∞) and decreasing in (-∞, 0].
(iv) R is continuous in ℝ.
(v) There exists a to ∈ (0, L) such that B(t) = B(t_0 = 0)

(v) There exists a $t_0 \in (0, L)$ such that $R(t) = R(t_0 - L) = S_{mle}(L)$.

Example 1. If

$$f(x) = (2\pi)^{-1/2} \sigma^{-1} \exp(-2^{-1} \sigma^{-2} x^2), x \in \mathbb{R},$$
(12)

where $\sigma > 0$, then, it is easy to see that:

(i)
$$T_{HL,b} = T_{mle,b} = \hat{\theta}_n = \bar{X} := n^{-1} \sum_{j=1}^n X_j.$$

(ii) $C_{HL,2b}(X_1, \dots, X_n) = C_{mle,2b}(\hat{\theta}_n) = [\bar{X} - b, \bar{X} + b].$
(iii) $S_{mle}(2b) = S(2b) = R(b) = 2^{-1}\sigma^{-2}b^2.$
(iv) For each $\theta \in \mathbb{R}$, $T_{HL,b} \xrightarrow{\mathbb{P}_{\theta}} \theta.$

Example 2. If

$$f(x) = (\Gamma(\alpha))^{-1} |\gamma| \alpha^{\alpha} \exp(\alpha \gamma x - \alpha e^{\gamma x})$$
(13)

where $\alpha > 0$ and $\gamma \neq 0$, then, it is possible to see that: (i) $\hat{\theta}_n = \gamma^{-1} \log \left(n^{-1} \sum_{j=1}^n e^{\gamma X_j} \right).$

(*ii*)
$$C_{HL,2b}(X_1, \dots, X_n) = C_{\text{mle},2b}(\hat{\theta}_n)$$

= $[\hat{\theta}_n + \gamma^{-1} \log (2^{-1} \gamma^{-1} b^{-1} (e^{2\gamma b} - 1)) - 2b$
 $, \hat{\theta}_n + \gamma^{-1} \log (2^{-1} \gamma^{-1} b^{-1} (e^{2\gamma b} - 1))].$

(*iii*) $T_{HL,b} = T_{\text{mle},b} = \hat{\theta}_n + \gamma^{-1} \log \left(2^{-1} \gamma^{-1} b^{-1} (e^{\gamma b} - e^{-\gamma b}) \right).$ (*iv*) For each b > 0,

$$S(2b) = S_{mle}(2b) = R(b)$$

= $\alpha \log(2^{-1}|\gamma|^{-1}b^{-1}(e^{2|\gamma|b} - 1))$
 $-\alpha(e^{2|\gamma|b} - 1)^{-1}(e^{2|\gamma|b} - 1 - 2|\gamma|b).$

(v) For each b > 0 and each $\theta \in \mathbb{R}$,

$$T_{HL,b} \xrightarrow{\mathbb{P}_{\theta}} \theta + \gamma^{-1} \log(2^{-1} \gamma^{-1} b^{-1} (e^{\gamma b} - e^{-\gamma b})) \neq \theta.$$

By Theorem 2 in Ferguson [1] the location families in examples 1 and 2 are the only one dimensional location families, which are exponential families. Example 3. If

$$f(x) = c \exp(-a_1 \exp(\tau_1 x) - a_2 \exp(-\tau_2 x)), \qquad (14)$$

where $a_1, a_2, \tau_1, \tau_2 > 0$ and c makes f a p.d.f. Then,

(i) (∑_{j=1}ⁿ e<sup>τ₁X_j, ∑_{j=1}ⁿ e<sup>-τ₂X_j) is a minimal sufficient stat.
(ii) The family {f(· − θ) : θ ∈ ℝ} is a curved exponential family.
</sup></sup>

(*iii*) The m.l.e.
$$\hat{\theta}_n$$
 of θ is
 $(\tau_1 + \tau_2)^{-1} \log \left(a_2^{-1} \tau_2^{-1} a_1 \tau_1 \left(\sum_{j=1}^n e^{-\tau_2 X_j} \right)^{-1} \sum_{j=1}^n e^{\tau_1 X_j} \right)$
(*iv*)

$$C_{HL,2b}(X_1,\ldots,X_n) = C_{\text{mle},2b}(\hat{\theta}_n) = \hat{\theta}_n + [t_0 - 2b, t_0],$$

where

$$t_0 = (\tau_1 + \tau_2)^{-1} \log \left(\tau_1^{-1} \tau_2 (e^{2b\tau_1} - 1)(1 - e^{-2b\tau_2})^{-1} \right).$$

(v)
$$T_{HL,b} = T_{\text{mle},b} = \hat{\theta}_n$$
$$+ (\tau_1 + \tau_2)^{-1} \log \left(\tau_1^{-1} \tau_2 (e^{b\tau_1} - e^{-b\tau_1})(e^{b\tau_2} - e^{-b\tau_2})^{-1} \right).$$

Example 4. If

$$f(x) = 2^{-1} \exp(-|x|), x \in \mathbb{R},$$
(15)

then, $\hat{\theta}_n$ is not uniquely defined. The function $\log f(\cdot)$ is concave, but not strictly concave. Let $X_{(1)}, \ldots, X_{(n)}$ be the order statistics. X_1, \ldots, X_n are all different wit probability one. Assume that X_1, \ldots, X_n are all different. If n is odd, $\hat{\theta}_n = X_{(2^{-1}(n+1))}$. If n is even, then $\hat{\theta}_n =$ $X_{(2^{-1}n)}$ and $\hat{\theta}_n = X_{(2^{-1}n+1)}$ are both m.l.e.'s. It is easy to see that whatever choice for the m.l.e. is made theorems 1-5 apply giving that

(i)
$$C_{HL,2b}(X_1, \ldots, X_n) \neq C_{mle,2b}(\hat{\theta}_n).$$

(ii) For each $b > 0$, $S(2b) = b - \log(1 + b).$
(iii) For each $b > 0$, $S_{mle}(2b) = b - 2^{-1} \log (2e^b - 1).$
(iii) For each $b > 0$, $S_{mle}(2b) < S(2b).$
(iv) For each $\theta \in \mathbb{R}$, $T_{HL,b} \xrightarrow{\mathbb{P}_{\theta}} \theta.$

Theorem 6. Suppose that:

(i) For each x ∈ ℝ, f(x) > 0.
(ii) log f is a concave function.
(iii) f is even.
Then,
(i) For each b > 0, R(b) ≤ S(2b).
(ii) Assume that f has a third derivative and that f is not a p.d.f. from the families of p.d.f.'s in examples 1 and 3, then for some b ≠ 0, R(b) < S(2b).

References

 Ferguson, T. S. (1962). Location and scale parameters in exponential families of distributions. Ann. Mathemat. Statist. 33 986–1001.