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Summary: We consider estimation for a multivariate location family. Between all confidence
regions with volume less than a fixed value L, we find the equivariant confidence region with the
biggest coverage probability. This region maximizes the infimum of the coverage probability over
all confidence regions with volume less than L. As an application, we find an estimator of a location
parameter with the property that minimizes the supremum of the probability that the error of the
estimation exceeds a fixed constant. We also find a confidence region and an estimator having the
previous properties, but based on the maximum likelihood estimator. In the one dimensional case,
we find the Bahadur slope of the two obtained estimators. We show that except for certain families
of distributions, the estimator based on the whole sample is superior to the estimator based upon
the m.l.e. Hence, we get that m.l.e.’s are not asymptotically sufficient.
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1 Introduction
We consider the estimation of the parameter θ indexing a family {f(·, θ) : θ ∈ Θ} of
p.d.f.’s, where Θ is a Borel subset of Rd. Let {Xj}∞j=1 be a sequence of i.i.d.r.v.’s with a
p.d.f. belonging to {f(·, θ) : θ ∈ Θ}. Let Tn := Tn(X1, . . . , Xn) be an estimator of θ.
The error of the estimator Tn is |Tn−θ|, where |·| is the Euclidean norm. Suppose that we
select a number b, b > 0, such that any error of estimation bigger than b is impermissible.
The maximum coverage probability of the impermissible error of the estimator Tn is

sup
θ∈Θ

Pθ{|Tn − θ| > b}, (1.1)

where Pθ is the probability measure when the r.v.’s X1, . . . , Xn have p.d.f. f(·, θ). In this
paper, we study an estimator THL,b minimizing (1.1) for a location family. The estimator
THL,b may depend on b.
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Key words and phrases: error of estimation, impermissible error, confidence interval, location family, minimax,
translation equivariant.
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Coverage probability of an impermissible error appears in the literature as a way to
assess estimators. In the one dimensional case, Bahadur [4, 5, 6] proved that, if Tn is a
consistent estimator of θ, for each θ ∈ Θ, then, for each θ ∈ Θ,

lim
b→0

lim inf
n→∞

b−2n−1 log (Pθ{|Tn − θ| ≥ b}) ≥ −2−1v(θ), (1.2)

where v(θ) is the Fisher information at θ, i.e.

v(θ) := Eθ

[(
∂ log f(X, θ)

∂θ

)2
]

= −Eθ

[
∂2 log f(X, θ)

∂θ2

]
. (1.3)

Bahadur also proved, under regularity conditions, that for each θ

lim
ε→0

lim inf
n→∞

ε−2n−1 log
(
Pθ{|θ̂n − θ| ≥ ε}

)
= −2−1v(θ), (1.4)

where θ̂n is a (m.l.e.) maximum likelihood estimator of θ.
Bahadur [6] (see also Bahadur, Zabell and Gupta [7] ) showed that if Tn is a consistent

estimator of θ, for each θ ∈ Θ, then, for each θ ∈ Θ,

− lim inf
n→∞

n−1 log (Pθ{|Tn − θ| > b}) ≤ B(b) (1.5)

where
B(b) := inf{K(f(·, θ1), f(·, θ)) : θ1 satisfying |θ1 − θ| > b} (1.6)

and K is the Kullback–Leibler information of the densities f(·, θ1) and f(·, θ). Given
densities f and g with respect to a measure µ,

K(f, g) =
∫

log(f(t)/g(t))f(t) dµ(t).

The limit
− lim inf

n→∞
n−1 log (Pθ{|Tn − θ| > b}) (1.7)

is called the inaccuracy rate of the estimator Tn. Several authors have studied the inaccu-
racy rates of estimators. Fu [12, 14] gave conditions in order that sequences of estimators
satisfy (1.4). Fu [13] showed that the inaccuracy rate of an estimator is related with the
asymptotic behavior of its density (if it has one).

We consider location families, i.e. families of the form {f(· − θ) : θ ∈ Rd}. For one
dimensional location families, we find a translation equivariant estimator Tn,HL,b such
that for any other estimator Tn,

sup
θ∈R

Pθ{|Tn − θ| > b} ≥ sup
θ∈R

Pθ{|Tn,HL,b − θ| > b}, (1.8)

(see Section 2). Notice that Pθ{|Tn,HL,b − θ| > b} does not depend on θ. Tn,HL,b is
the middle point of the highest likelihood region of length 2b (assuming that this region
is an interval). Tn,HL,b is also the best equivariant estimator for the considered problem.
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It is known (see Girshick and Savage [15]) that in certain situations the best equivariant
estimator is minimax. We show that the inaccuracy rate of Tn,HL,b is

S(2b) = − lim
n→∞

n−1 log (Pθ{|Tn,HL,b − θ| > b}) , (1.9)

where

S(t) := − inf
0<λ<1

log
∫

R
(f(x− t))λ(f(x))1−λ dx, t ∈ R.

The function S(·) appeared in Chernoff [8], as the large deviations of the sum of the two
errors in a simple hypothesis testing problem. S(·) is a measure of the information in a
sample. The function S(·) also appeared in Sievers [23] as the limit of

lim
n→∞

n−1 log
(
max

(
Pθ{T (S)

n − θ > b}, (Pθ{T (S)
n − θ < −b}

))
, (1.10)

where T
(S)
n is the translation equivariant estimator minimizing

max (Pθ{Tn − θ > b},Pθ{Tn − θ < −b}) ,

over all translation equivariant estimators.
THL,b determines a confidence interval of length 2b. Finding THL,b is equivalent

to find a confidence interval of length 2b with coverage probability as large as possi-
ble. A confidence region C(X1, . . . , Xn) is determined by a map from (Rd)n to B(Rd),
where B(Rd) is the Borel σ–field of Rd. Suppose that we consider confidence regions
C(X1, . . . , Xn) of Lebesgue measure less or equal than L. Let CHL,L(X1, . . . , Xn)
be the highest likelihood region having Lebesgue measure L. For a location family,
CHL,L(X1, . . . , Xn) satisfies that for any confidence region C(X1, . . . , Xn) of Lebesgue
measure less or equal than L,

sup
θ∈Rd

Pθ{θ 6∈ C(X1, . . . , Xn)} ≥ sup
θ∈Rd

Pθ{θ 6∈ CHL,L(X1, . . . , Xn)}, (1.11)

(see Theorem 2.2). CHL,L(X1, . . . , Xn) is the best translation equivariant region. If
d = 1 and CHL,2b(X1, . . . , Xn) is an interval, then Tn,HL,b(X1, . . . , Xn) is the middle
point of CHL,2b(X1, . . . , Xn).

As to regular confidence regions, the results in Kudō [19] (see also Valand [25]; and
Joshi [17]) show that for a location family the level 1−α confidence interval obtained by
taking the highest density region of the distribution of parameter given the sample, when
the parameter has a ”uniform” distribution, minimizes the maximum expected length of
a confidence interval over all the level 1 − α confidence intervals. These confidence
intervals are different from the ones obtained. In general, these confidence intervals have
a random length.

Since m.l.e.’s are asymptotically optimal in some situations, it is of interest knowing
whether they are optimal for the considered problem. We obtain the confidence regions
Cpiv,L(θ̂n) based on the m.l.e. θ̂n which maximize the coverage probability of the pa-
rameter between all confidence regions of volume less or equal than a constant. These
confidence regions Cpiv,L(θ̂n) are obtained taking the highest density region of the pivot
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θ − θ̂n (see Theorem 2.3). In Section 2, we show that for any confidence region C(θ̂n)
based on the m.l.e. of expected Lebesgue measure less or equal than L,

sup
θ∈Rd

Pθ{θ 6∈ C(θ̂n)} ≥ sup
θ∈Rd

Pθ{θ 6∈ Cpiv,L(θ̂n)}. (1.12)

Cpiv,L(θ̂n) is a translation equivariant confidence region. We find

A(L) := − lim
n→∞

n−1 logPθ{θ 6∈ Cpiv,L(θ̂n)}. (1.13)

Cpiv,L(θ̂n) can be written as θ̂n + Cpiv,2b, where Cpiv,2b is a nonrandom set. The esti-
mator Tn,piv,b based on the m.l.e. which minimizes (1.1) between all estimators based
on the m.l.e. is the middle point of θ̂n + Cpiv,2b.

In general, the confidence regions CHL,L(X1, . . . , Xn) and Cpiv,L(θ̂n) are different.
We have that CHL,L(X1, . . . , Xn) and Cpiv,L(θ̂n) agree for the location families which
are members of an exponential family. But, when d = 1, they also do for a location
family which is a two dimensional curved exponential family (see Example 3.14). We
show that for symmetric one dimensional distributions, not of the form above, then for
some b > 0, A(2b) < S(2b). This means the m.l.e. is not asymptotically sufficient for
the considered problem.

Tn,HL is not necessarily a consistent estimator of θ. In Theorem 3.5 we obtain the
limit in probability of Tn,HL,b. Tn,HL,b is consistent for each b > 0 if and only if the
Kullback–Leibler information is symmetric.

We present examples, where S(2b) < B(b), S(2b) = B(b) and S(2b) > B(b). This
seems to indicate that the bound B(·) in (1.5) is not optimal. In Example 3.15, we have
that Tn,HL is consistent, but S(2b) < B(b).

The organization of the paper is as follows. Section 2 contains the results about
minimax confidence regions. Section 3 deals with the large deviations of the considered
confidence regions and estimators. Section 4 contains the proofs.

2 Maximin confidence regions of a fixed Lebesgue mea-
sure.

In this section, we find a confidence region of Lebesgue measure less or equal than a
constant L which maximizes the infimum of the coverage probability of the parameter.
We will use the following lemma:

Lemma 2.1 Let f, g : Rd → [0,∞) be two measurable functions. Let L > 0.
(i) Suppose that C ∈ B(Rd) satisfies that

∫
C

f(x) dx = L and that there exists
∞ ≥ λ ≥ 0 such that {x : λf(x) < g(x)} ⊂ C ⊂ {x : λf(x) ≤ g(x)}. Then, for each
B ∈ B(Rd) such that

∫
B

f(x) dx ≤ L,

∫

B

g(x) dx ≤
∫

C

g(x) dx.
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(ii) Suppose that L <
∫

f(x) dx and
∫

g(x) dx < ∞. Let

λ := inf{t ≥ 0 :
∫

x∈Rd:tf(x)≤g(x)

f(x) dx ≤ L}.

Then, 0 ≤ λ < ∞ and
∫

x∈Rd:λf(x)<g(x)

f(x) dx ≤ L ≤
∫

x∈Rd:λf(x)≤g(x)

f(x) dx.

Hence, there exists a set C ∈ B(Rd) such that
∫

C
f(x) dx = L and {x ∈ Rd : λf(x) <

g(x)} ⊂ C ⊂ {x ∈ Rd : λf(x) ≤ g(x)}.

The previous lemma is a variation on the Neyman–Pearson lemma (see also Guenther
[16] and Juola [18]). Guenther [16] and Juola [18] use a variation of the previous lemma
to construct the shortest 1− α level confidence interval for a one dimensional parameter
based on a pivotal quantity.

First, we find between all translation equivariant confidence regions for θ with
Lebesgue measure less or equal than L, the one maximizing

inf
θ∈Rd

Pθ{θ ∈ C(X1, . . . , Xn)}. (2.1)

We use the Pitman [20] transformation (see also Shao [22, Section 4.2]). Let ~Z :=
(Z1, . . . , Zn−1) = (X1 −Xn, . . . , Xn−1 −Xn). Since (X1, . . . , Xn) has p.d.f.∏n

j=1 f(xj − θ), (Xn, ~Z) has p.d.f.
∏n−1

j=1 f(zj + xn − θ) × f(xn − θ). We denote

fXn, ~Z(xn, ~z) :=
∏n−1

j=1 f(zj +xn)×f(xn). Then, (Xn, ~Z) has p.d.f. fXn, ~Z(xn−θ, ~z).

The marginal p.d.f. of ~Z is

f~Z(~z) =
∫

Rd

n−1∏

j=1

f(zj + y)× f(y) dy. (2.2)

Notice that ~Z is an ancillary statistic. The conditional pdf of Xn given ~Z is

fXn|~Z(xn − θ|~z) = (f~Z(~z))−1fXn, ~Z(xn − θ, ~z). (2.3)

If C(X1, . . . , Xn) is a translation equivariant confidence region, then
C(X1, . . . , Xn) = Xn + C(Z1, . . . , Zn−1, 0). Let C∗(~Z) = C(Z1, . . . , Zn−1, 0). We
would like to find C∗(~Z) maximizing

infθ∈Rd Pθ{θ ∈ Xn + C∗(~Z)} = P0{−Xn ∈ C∗(~Z)} (2.4)

=
∫ ∫

I(−xn ∈ C∗(~z))
∏n−1

j=1 f(zj + xn)× f(xn) dxn d~z

=
∫ ∫

I(y ∈ C∗(~z))
∏n−1

j=1 f(zj − y)× f(−y) dy d~z.

subject to ∫

Rm

I(y ∈ xn + C∗(~z)) dy =
∫

Rm

I(y ∈ C∗(~z)) dy ≤ L, (2.5)
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for each ~z. We apply Lemma 2.1 to f ≡ 1 and g ≡ ∏n−1
j=1 f(zj−y)×f(−y) conditionally

on ~z. Take C∗HL(~z) such that for each ~z,
∫

I(y ∈ C∗HL(~z)) dy = L, and

{y ∈ Rd : λHL(~z) <
∏n−1

j=1 f(zj − y)× f(−y)} ⊂ C∗HL(~z) (2.6)

⊂ {y ∈ Rd : λHL(~z) ≤ ∏n−1
j=1 f(zj − y)× f(−y))}.

where

λHL,L(~z) = inf{t ≥ 0 :
∫

t≤Qn−1
j=1 f(zj−y)×f(−y)

dy ≤ L}. (2.7)

Then, CHL,L(X1, . . . , Xn) := Xn + C∗HL,L(X1 −Xn, . . . , X1 −Xn) maximizes (2.1)
between all possible translation equivariant confidence regions of Lebesgue measure less
or equal than L.

It follows from (2.6) that

{θ ∈ Rd : λHL(~z) <
∏n

j=1 f(xj − θ)} ⊂ CHL,L(X1, . . . , Xn) (2.8)

⊂ {θ ∈ Rd : λHL(~z) ≤ ∏n
j=1 f(xj − θ)}.

Next theorem gives sufficient conditions so that CHL,L(X1, . . . , Xn) maximizes
(2.1) between all possible confidence regions of Lebesgue measure less or equal than
L.

Theorem 2.2 Suppose that:
(i) For each 0 < M < ∞, inf{f(x) : |x| ≤ M} > 0.
(ii) lim|x|→∞ f(x) = 0.
(iii) supx∈Rd f(x) < ∞.
Let C(X1, . . . , Xn) be a confidence region for θ such that for each x1, . . . , xn,∫

Rd I(y ∈ C(x1, . . . , xn)) dy ≤ L. Then,

inf
θ∈Rd

Pθ{θ ∈ C(X1, . . . , Xn)} ≤ inf
θ∈Rd

Pθ{θ ∈ CHL,L(X1, . . . , Xn)}. (2.9)

Observe that the confidence region CHL,L(X1, . . . , Xn) is not necessarily convex.
In the one dimensional situation, CHL,L(X1, . . . , Xn) is not necessarily an interval.

Next, we consider the maximim confidence region based upon an mle. An mle θ̂n of
θ, over a parametric family {f(x, θ) : θ ∈ Θ} is a r.v. such that

n−1
n∑

j=1

log f(Xj , θ̂n) = sup
θ∈Θ

n−1
n∑

j=1

log f(Xj , θ). (2.10)

Suppose that there exists a r.v. θ̂n = θ̂n(X1, . . . , Xn) satisfying (2.10) when f(x, θ) =
f(x − θ). We may assume that θ̂n is equivariant. This implies that θ̂n − θ is a pivotal
quantity, i.e. the distribution of θ̂n − θ does not depend on θ. Suppose that θ − θ̂n has a
distribution absolutely continuous with respect to the Lebesgue measure, when θ obtains.
Let hn(·) be the pdf of θ−θ̂n when θ obtains. Let L > 0. Given C ∈ B(Rd), a confidence
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region for θ is determined by {θ ∈ Rd : θ−θ̂n ∈ C} = {θ ∈ Rd : θ ∈ θ̂n+C}. Between
all sets C such that ∫

I(θ ∈ θ̂n + C) dθ =
∫

C

1 dθ ≤ L, (2.11)

a set C which maximizes

Pθ{θ − θ̂n ∈ C} =
∫

C

hn(θ) dθ (2.12)

is obtained by applying Lemma 2.1 to f ≡ 1 and g ≡ hn. Let

λpiv,L := inf{t ≥ 0 :
∫

x∈Rd:t≤hn(x)

1 dx ≤ L}. (2.13)

Take Cpiv,L ⊂ Rd such that ∫

Cpiv,L

1 dx = L (2.14)

and

{x ∈ Rd : λpiv,L < hn(x)} ⊂ Cpiv,L ⊂ {x ∈ Rd : λpiv,L ≤ hn(x)}. (2.15)

Hence, using the mle, a confidence region satisfying (2.11) and maximizing (2.12) is

θ̂n + Cpiv,L, (2.16)

where Cpiv,L satisfies (2.14) and (2.15). The obtained confidence region θ̂n + Cpiv,L is
translation equivariant. From (2.15), we get that

{θ ∈ Rd : λpiv,L < fn(θ̂n, θ)} ⊂ θ̂n + Cpiv,L ⊂ {θ ∈ Rd : λpiv,L ≤ fn(θ̂n, θ)},
(2.17)

were fn(x, θ) = hn(θ − x), x ∈ R, is the p.d.f. of θ̂n when θ obtains.
In this situation, the obtained confidence regions maximize the coverage probability

over all the regions with expected Lebesgue measure less or equal than L:

Theorem 2.3 Let C(θ̂n) be a confidence region for θ such that

sup
θ∈Rd

Eθ

[∫

Rd

I(y ∈ C(θ̂n)) dy

]
≤ L. (2.18)

Then,
inf

θ∈Rd
Pθ{θ ∈ C(θ̂n)} ≤ inf

θ∈Rd
Pθ{θ ∈ θ̂n + Cpiv,L}. (2.19)

The previous theorem implies that if C(θ̂n) is a confidence region for θ such that for
each x ∈ Rd, ∫

Rd

I(y ∈ C(x)) dy ≤ L, (2.20)

then, (2.19) holds.
Theorem 2.2 does not hold using the expected value of the Lebesgue measure of

the confidence region. In general, the confidence regions which are maximin when the
expected value of the Lebesgue measure is used do not have constant Lebesgue measure.
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3 Inaccuracy rates of minimax estimators.
Before presenting the results in this section, we recall some notation on the large devia-
tion principle (LPD). General references on the LDP are Deuschel and Stroock [10] and
Dembo and Zeitouni [9]. Let M be a metric space. Let B(M) be the Borel σ–field of M .
We say that a sequence of r.v.’s. {Un}∞n=1 with values in M is said to follow the LDP
with speed ε−1

n , where {εn} is a sequence of positive numbers converging to zero, and
with good rate function I if:

(i) For each 0 ≤ c < ∞, {z ∈ M : I(z) ≤ c} is a compact set of S.
(ii) For each set A ∈ B(M),

− inf{I(z) : z ∈ Ao} ≤ lim infn→∞ εn log(Pr{Un ∈ A})
≤ lim supn→∞ εn log(Pr{Un ∈ A}) ≤ − inf{I(z) : z ∈ Ā},

where Ao (resp. Ā) denotes the interior (resp. closure) of A.
A function Φ : R → R̄ is said to be a Young function if it is convex, Φ(0) = 0;

Φ(x) = Φ(−x) for each x > 0; and limx→∞Φ(x) = ∞. Let X be a r.v. with values
in a measurable space (S,S). The Orlicz space LΦ(S,S) (abbreviated to LΦ) associated
with the Young function Φ is the class of measurable functions f : (S,S) → R such
that E[Φ(λf(X))] < ∞ for some λ > 0. The Minkowski (or gauge) norm of the Orlicz
space LΦ(S,S) by

NΦ(f) := inf{t > 0 : E[Φ(f(X)/t)] ≤ 1}.
It is well known that the vector space LΦ with the norm NΦ is a Banach space. Define

LΦ1 := {f : S → R : E[Φ1(λ|f(X)|)] < ∞ for some λ > 0},
where Φ1(x) = e|x| − |x| − 1. Let (LΦ1)∗ be the dual of (LΦ1 , NΦ1). The function
f ∈ LΦ1 7→ log

(
E[ef(X)]

) ∈ R is a convex lower semicontinuous function. The
Fenchel–Legendre conjugate of the previous function is:

J(l) := sup
f∈LΦ1

(
l(f)− log

(
E[ef(X)]

))
, l ∈ (LΦ1)∗. (3.1)

J is a function with values in [0,∞]. Since J is a Fenchel–Legendre conjugate, it is a
nonnegative convex lower semicontinuous function. It is easy to see that if J(l) < ∞,
then:

(i) l(1) = 1, where 1 denotes the function constantly 1.
(ii) l is a nonnegative definite functional: if f(X) ≥ 0 a.s., then l(f) ≥ 0.
Given a nonnegative function γ on S such that E[γ(X)] = 1 and E[Ψ2(γ(X))] <

∞, where Ψ2(x) = x log x, then lγ(f) = E[f(X)γ(X)] defines a continuous linear
functional in LΦ1 . Besides, it is easy to see that

J(lγ) = sup
f∈LΦ1

E[f(X)γ(X)− Φ2(f(X))] = E[Ψ2(γ(X))]. (3.2)

The previous function J can be used to determine the rate function in the large devi-
ation of statistics. Let {Xj}∞j=1 be a sequence of i.i.d.r.v.’s with the distribution of X . If
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f ∈ LΦ1 , then {n−1
∑n

j=1 f(Xj)} satisfies the LDP with rate function

If (t) := sup
λ∈R

(λt− log (E[exp(λf(X))])) , t ∈ R (3.3)

(see for example Dembo and Zeitouni [9, Theorem 2.2.3]). By Arcones [3, Lemma 2.2],

If (t) = inf
{
J(l) : l ∈ (LΦ1)∗, l(f) = t

}
. (3.4)

It is well known that If (µf ) = 0, where µf = E[f(X)], If is convex, If is nondecreas-
ing in [µf ,∞) and I is nonincreasing in (−∞, µf ] (see e.g. Dembo and Zeitouni [9,
Lemma 2.2.5]). In particular, if t ≥ µf ,

inf{J(l) : l ∈ (LΦ1)∗, l(f) ≥ t} = If (t) (3.5)

and for each t ≤ µf ,

inf{J(l) : l ∈ (LΦ1)∗, l(f) ≤ t} = If (t)

(see for example Dembo and Zeitouni [9, Corollary 2.2.19]). Chernoff [8, page 496]
shows that if P{f(X) = t) < 1 and t < E[f(X)], then

If (t) = sup
λ<0

(λt− log E[exp(λf(X))]) (3.6)

Chernoff [8, page 495] shows that: (i) if P{f(X) > t) > 0 and P{f(X) < t) > 0, then
there exists a unique finite λt such that

If (t) = λtt− log E[exp(λtf(X))]; (3.7)

(ii) if P{f(X) ≥ t) > 0 and P{f(X) ≤ t) > 0, then

If (t) < ∞. (3.8)

We will also use that for each k ≥ 0 and each function f ∈ LΦ1 and each

|l(f)| ≤ (J(l) + 1 + 21/2)NΦ1(f), (3.9)

(see Arcones [3, Lemma 5.1]).
When θ obtains, we denote LΦ1 , (LΦ1)∗ and J by LΦ1

θ , (LΦ1
θ )∗ and Jθ, respectively.

In Arcones [2] the large deviations of the confidence regions of Lebesgue measure
less or equal than a constant were studied for a general family of p.d.f.’s. Let {Xj}∞j=1

be a sequence of i.i.d.r.v.’s from the parametric family {f(·, θ) : θ ∈ Θ}, where Θ is a
Borel set of Rd. Let

λHL,L(X1, . . . , Xn) := inf{t ≥ 0 :
∫

t≤Gn(θ)

d θ ≤ L},

where Gn(t) = n−1
∑n

j=1 log f(Xj , t). Take a set CHL,L(X1, . . . , Xn) such that
∫

θ∈CHL,L(X1,...,Xn)

dθ = L
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and
{θ ∈ Θ : λHL,L(X1, . . . , Xn) < Gn(θ)} ⊂ CHL,L(X1, . . . , Xn)

⊂ {θ ∈ Θ : λHL,L(X1, . . . , Xn) ≤ Gn(θ)}.
We will need the following variation of Arcones [2, Theorem 3.1].

Theorem 3.1 With the notation above. Let {KM}M≥1 be a sequence of compact convex
sets of Rd contained in Θ and containing θ. Let L > 0. Suppose that the following
conditions are satisfied:

(i) Θ is an open convex set of Rd.
(ii) For each t ∈ Θ, log f(X, t) ∈ LΦ1

θ .
(iii) For each x, log f(x, ·) is a concave function.
(iv)

lim
M→∞

sup
t∈∂KM

inf
λ∈R

Eθ[exp(λ(log f(X, t)− log f(X, θ)))] = 0.

Then,

− inf{Jθ(l) : l ∈ (LΦ1
θ )∗, (3.10)∫

Rd I(t ∈ Θ : l(log f(·, t)− log f(·, θ)) > 0) dt > L}
≤ lim infn→∞ n−1 log (Pθ{θ 6∈ CHL,L(X1, . . . , Xn)})
≤ lim supn→∞ n−1 log (Pθ{θ 6∈ CHL,L(X1, . . . , Xn)})
≤ − inf{Jθ(l) : l ∈ (LΦ1

θ )∗,
∫
Rd I(t ∈ Θ : l(log f(·, t)− log f(·, θ)) ≥ 0) dt ≥ L}

The differences between the previous theorem and Theorem 3.1 in Arcones [2] are
that we assume that Θ is an open and convex set, but we do not assume that log f(x, ·) is
a strictly concave function. It is easy to see that minor variations in the proof of Theorem
3.1 in Arcones [2] gives the previous theorem.

The previous theorem gives the following when applied to a location family.

Corollary 3.2 Let {Xj}∞j=1 be a sequence ofRd–valued i.i.d.r.v.’s from the family {f(·−
θ) : θ ∈ Rd}. Suppose that the following conditions are satisfied:

(i) log f(·) is a concave function.
(ii) For each t ∈ Θ, there exists λt > 0 such that

E0[exp(λt| log f(X − t)|)] < ∞.

(iii)

lim
M→∞

sup
|t|=M

inf
λ∈R

Eθ[exp(λ(log f(X − t)− log f(X − θ)))] = 0.

Then,

− inf{Jθ(l) : l ∈ (LΦ1
θ )∗,

∫
Rd I(t ∈ Θ : (3.11)

l(log(f(· − t)/f(· − θ)) > 0) dt > L}
≤ lim infn→∞ n−1 log (Pθ{θ 6∈ CHL,L(X1, . . . , Xn)})
≤ lim supn→∞ n−1 log (Pθ{θ 6∈ CHL,L(X1, . . . , Xn)})
≤ − inf{Jθ(l) : l ∈ (LΦ1

θ )∗,
∫
Rd I(t ∈ Θ : l(log f(· − t)/f(· − θ)) ≥ 0) dt ≥ L}.



Minimax estimators of the coverage probability of the impermissible error 11

We are able to find an expression for the bounds in (3.11) for one dimensional location
families. To do that, we need the following lemma:

Lemma 3.3 Let X be a r.v. with p.d.f. f . Let

S(t) := − inf
0<λ<1

log
∫

R
(f(x− t))λ(f(x))1−λ dx, t ∈ R.

Suppose that:
(i) For each x ∈ R, f(x) > 0.
(ii) log f(·) is a concave function.
(iii) For each t 6= 0, there exists λt > 0 such that

E[exp(λt| log(f(X − t)/f(X))|)] < ∞.

Then,
(i)

S(t) = − infλ∈R log
∫
R(f(x− t))λ(f(x))1−λ dx.

(ii) For each t 6= 0, there exists a unique λt ∈ (0, 1) such that

S(t) = − log
∫

R
(f(x− t))λt(f(x))1−λt dx, t ∈ R.

Besides, for each t 6= 0, S(t) > 0.
(iii) S is increasing on [0,∞) and S is decreasing in (−∞, 0].
(iv) S is a continuous function.
(v) lim|t|→∞ S(t) = ∞.

Theorem 3.4 Let {Xj}∞j=1 be a sequence of i.i.d.r.v.’s from the family {f(· − θ) : θ ∈
R}. Suppose that:

(i) For each x ∈ R, f(x) > 0.
(ii) log f(·) is a strictly concave function
(iii) For each t ∈ R, there exists λt > 0 such that

E0[exp(λt| log f(X − t)|)] < ∞.

Then,
lim

n→∞
n−1 logPθ{θ 6∈ CHL,L(X1, . . . , Xn)} = −S(L).

Under the conditions in the previous theorem, the smaller set in (2.6) is an open
interval, and the bigger set in (2.6) is a closed interval. Hence, we may take C∗HL,L(~Z)
to be a closed interval. Let Tn,HL,b := Tn,HL,2b(X1, . . . , Xn) be the middle point of
Xn + C∗HL,2b(~Z). Tn,HL satisfies (1.8) and (1.9).

Recall that for a convex function, the right and left derivatives exists everywhere,
and they are equal everywhere except for countably many points (see Proposition 5.16 in
Royden [21]). By an abuse of notation, we will denote by f ′ to the right derivative of f .
The following theorem deals with the consistency of Tn,HL,b.



12 Arcones

Theorem 3.5 Consider a one–dimensional location family. Suppose that:
(i) For each x ∈ R, f(x) > 0.
(ii) log f(·) is a concave function
(iii)

∫
R f ′(x) dx = 0.

(iv) For each a ∈ R,
∫
R | log f(x− a)|f(x) < ∞.

Then,
(i) Eθ[log f(X − t)] = Q(t− θ), where Q(a) =

∫
R log f(x− a)f(x) dx.

(ii) Q is decreasing in [0,∞) and increasing in (−∞, 0].
(iii) Q is continuous.
(iv) There exists a unique a ∈ [−b, b] such that Q(a− b) = Q(a + b).

(v) Tn,HL,b
Pθ→ θ + a.

It follows from the previous theorem that Tn,HL,b is a consistent estimator of θ if and
only if Q(−b) = Q(b).

Next theorem gives an expression for the bound in (1.5) for a location family.

Theorem 3.6 Consider a one–dimensional location family. Suppose that:
(i) For each x ∈ R, f(x) > 0.
(ii) log f(·) is a concave function
(iii)

∫
R f ′(x) dx = 0.

(iv) For each a ∈ R,
∫
R | log f(x− a)|f(x) < ∞.

Then,

B(b) := inf{K(f(· − θ1), f(· − θ)) : θ1 satisfying |θ1 − θ| > b}
= min(K(−b),K(b)),

where K(a) =
∫
R log(f(x)/f(x + a))f(x) dx.

Next, we consider the asymptotics of the confidence region using the pivot θ− θ̂n. we
see that the conditions in the previous theorem hold for one dimensional location classes
such that log f is a strictly concave function and other regularity conditions hold.

Theorem 3.7 Assume that d = 1. Suppose that the following conditions are satisfied:
(i) For each x ∈ R, f(x) > 0.
(ii) log f is a strictly concave function.
(iii)

∫
R f ′(x) dx = 0.

(iv) E[(f(X))−2(f ′(X))2] < ∞.
Then, θ̂n is well defined and θ − θ̂n, when θ obtains, has pdf

hn(t) := E0


I




n∑

j=1

(f(Xj + t))−1f ′(Xj + t) > 0




n∑

j=1

(f(Xj))−1f ′(Xj)


 , t ∈ R.

Besides, hn is nonincreasing in [0,∞) and nondecreasing in (−∞, 0].
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Under the conditions in the previous theorem, we may choose Cpiv,L to be a closed
interval [upiv,L, vpiv,L]. Hence, θ̂n + Cpiv,L = [θ̂n + upiv,L, θ̂n + vpiv,L] and Tn,piv,b =
θ̂n + 2−1(upiv,2b + vpiv,2b).

If there exists a one dimensional sufficient statistic S(X1, . . . , Xn), then both
CHL,L(X1, . . . , Xn) and Cpiv,L(θ̂n) depend on this statistic and they agree. However,
next theorem show that CHL,L(X1, . . . , Xn) and Cpiv,L(θ̂n) can agree under a more
general condition:

Theorem 3.8 Suppose that:
(i) For each x1, . . . , xn ∈ Rd, CHL,L(x1, . . . , xn) = {θ ∈ Rd :

∏n
j=1 f(xj − θ) ≥

k(x1, . . . , xn)}.
(ii) There are functions T : (Rd)n → Rd, g : Rd×Rd → Rm, h : (Rd)n → Rk, and

τ : Rm × Rk → R such that for each x1, . . . , xn, θ ∈ Rd,

n∏

j=1

f(xj − θ) = τ(g(T (X1, . . . , Xn), θ), h(X1, . . . , Xn)).

(iii) θ̂n = η(T (X1, . . . , Xn)) where η : B → Rd is a one–to–one function and B is
the range of T .

(iv) When θ obtains, θ − θ̂n has p.d.f. hn.
Then, CHL,L(X1, . . . , Xn) is based on the m.l.e. θ̂n.

In the situation of the previous theorem, for convenient choices Cpiv,L(θ̂n) and
CHL,L(X1, . . . , Xn) agree. The previous theorem applies to Examples 3.12–3.14. We
have that if there exists a one dimensional sufficient statistic, the previous theorem ap-
plies. But, Theorem 3.8 applies to families which do not have a natural sufficient statistic
of dimension one (see Example 3.14). The family in Example 3.14 is a curved exponen-
tial family of dimension two.

Next, we consider the large deviations of the complementary of the coverage proba-
bility.

Theorem 3.9 Suppose that:
(i) When θ obtains, θ̂n−θ satisfies the LDP with speed n and continuous rate function

R(t) := − inf
λ∈Rd

log (Eθ[exp (λ′∇t log f(X − t))]) , (3.12)

where ∇t denotes the (vector of partial derivatives) gradient of log f(x− t).
(ii) For each 0 < M < ∞,

lim
n→∞

sup
|x|≤M

|n−1 log hn(x) + R(−x)| → 0.

(iii)
lim

M→∞
lim sup

n→∞
sup
|x|≥M

n−1 log hn(x) = −∞.

(iv) For each u ≥ 0,
∫

I(x ∈ Rd : R(x) = u) dx = 0.
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Then,
lim

n→∞
n−1 logPθ{θ − θ̂n 6∈ Cpiv,L(θ̂n)} = −A(L) (3.13)

where

A(L) := inf{u ≥ 0 :
∫

y∈Rd:R(y)≤u

1 dy ≥ L}. (3.14)

In the one dimensional situation, we are able to give an expression for the rate in the
previous theorem.

Theorem 3.10 Assume that d = 1. Suppose that the following conditions are satisfied:
(i) For each x ∈ R, f(x) > 0.
(ii) log f is a concave function.
(iii) E0[(f(X))−1f ′(X)] = 0, where f ′ is the right derivative of f .
(iv) E0[(f(X))−2(f ′(X))2] < ∞.
(v) θ̂n − θ satisfies the LDP with speed n and continuous rate function

R(t) := − inf
λ∈R

log E0[exp(λ(f(X − t))−1f ′(X − t))], t ∈ R. (3.15)

Then,
lim

n→∞
n−1 logPθ{θ − θ̂n 6∈ Cpiv,L(θ̂n)} = −R(t0), (3.16)

where t0 ∈ (0, L) satisfies that R(t0) = R(t0 − L). Besides,

R(t0) = inf{u ≥ 0 :
∫

x:R(x)≤u

1 dx ≥ L}.

Notice that if R is even, then R(2−1L) = inf{u ≥ 0 :
∫

x:R(x)≤u
1 dx ≥ L}. Arcones

[3, Theorem 3.4] gives sufficient conditions to condition (v) in the previous theorem to
hold.

It follows from the theorem that the inaccuracy rate of the optimal estimator θ̂n +
2−1(upiv,L + vpiv,L) is R(t0) when L = 2b.

Theorem 3.11 Suppose that:
(i) For each x ∈ R, f(x) > 0.
(ii) log f is a concave function.
(iii) f is even.
Then,
(i) For each b > 0, R(b) ≤ S(2b).
(ii) Assume that f has a third derivative and that f is not a p.d.f. from the families of

p.d.f.’s in examples 3.12 and 3.14, then for some b 6= 0, R(b) < S(2b).

Next, we present how the previous theorems apply to several examples.

Example 3.12 If

f(x) = (2π)−1/2σ−1 exp(−2−1σ−2x2), x ∈ R,
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where σ > 0, then, it is easy to see that:
(i) THL,b = Tpiv,b = θ̂n = X̄ := n−1

∑n
j=1 Xj .

(ii) CHL,2b(X1, . . . , Xn) = Cpiv,2b(θ̂n) = [X̄ − b, X̄ + b].
(iii) A(2b) = S(2b) = R(b) = B(b) = 2−1σ−2b2.

(iv) For each θ ∈ R, THL,b
Pθ→ θ.

Example 3.13 If
f(x) = (Γ(α))−1|γ|αα exp (αγx− αeγx) (3.17)

where α > 0 and γ 6= 0, then, it is possible to see that:

(i) θ̂n = γ−1 log
(
n−1

∑n
j=1 eγXj

)
.

(ii)

CHL,2b(X1, . . . , Xn) = Cpiv,2b(θ̂n)
= θ̂n

+[γ−1 log
(
2−1γ−1b−1(e2γb − 1)

)− 2b, γ−1 log
(
2−1γ−1b−1(e2γb − 1)

)
].

(iii) THL,b = Tpiv,b = θ̂n + γ−1 log
(
2−1γ−1b−1(eγb − e−γb)

)
.

(iv) For each b > 0,

S(2b) = A(2b) = R(b)
= α log(2−1|γ|−1b−1(e2|γ|b − 1))− α(e2|γ|b − 1)−1(e2|γ|b − 1− 2|γ|b).

(v) For each b > 0, B(b) = α
(
e−|γ|b − 1 + |γ|b).

(vi) For each b > 0, S(2b) > B(b).
(vii) For each b > 0 and each θ ∈ R,

THL,b
Pθ→ θ + γ−1 log(2−1γ−1b−1(eγb − e−γb)) 6= θ.

By Theorem 2 in Ferguson [11] the location family in examples 3.12 and 3.13 are the
only one dimensional location families, which are exponential families.

Example 3.14 If

f(x) = c exp(−a1 exp(τ1x)− a2 exp(−τ2x)), (3.18)

where a1, a2, τ1, τ2 > 0 and c =
(∫
R exp(−a1 exp(τ1x)− a2 exp(−τ2x)) dx

)−1
. Then,

(i) (
∑n

j=1 eτ1Xj ,
∑n

j=1 e−τ2Xj ) is a minimal sufficient statistic for θ.
(ii) The family {f(· − θ) : θ ∈ R} is a curved exponential family.
(iii)

θ̂n = (τ1 + τ2)−1 log


a−1

2 τ−1
2 a1τ1




n∑

j=1

e−τ2Xj



−1

n∑

j=1

eτ1Xj


 .

(iv)
CHL,2b(X1, . . . , Xn) = Cpiv,2b(θ̂n) = θ̂n + [t0 − 2b, t0],
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where
t0 = (τ1 + τ2)−1 log

(
τ−1
1 τ2(e2bτ1 − 1)(1− e−2bτ2)−1

)
.

(v)

THL,b = Tpiv,b = θ̂n + (τ1 + τ2)−1 log
(
τ−1
1 τ2(ebτ1 − e−bτ1)(ebτ2 − e−bτ2)−1

)
.

Example 3.15 If
f(x) = 2−1 exp(−|x|), x ∈ R, (3.19)

then, θ̂n is not uniquely defined. The function log f(·) is concave, but not strictly con-
cave. Let X(1), . . . , X(n) be the order statistics. X1, . . . , Xn are all different with prob-
ability one. Assume that X1, . . . , Xn are all different. If n is odd, θ̂n = X(2−1(n+1)). If

n is even, then θ̂n = X(2−1n) and θ̂n = X(2−1n+1) are both m.l.e.’s. It is easy to see that
the previous choice for the m.l.e. theorems 3.2–3.8 apply giving that:

(i) CHL,2b(X1, . . . , Xn) 6= Cpiv,2b(θ̂n).
(ii) For each b > 0, S(2b) = b− log(1 + b).
(iii) For each b > 0, A(2b) = R(b) = b− 2−1 log

(
2eb − 1

)
.

(iii) For each b > 0, B(b) = e−b − 1 + b.
(iv) For each b > 0, A(2b) < S(2b) < B(b).

(v) For each θ ∈ R, THL,b
Pθ→ θ.

Notice that in the first three examples, CHL,2b(X1, . . . , Xn) = Cpiv,2b(θ̂n). The-
orem 3.8 applies to the first three examples. In Example 3.13, S(2b) > B(b), but in
Example 3.15, S(2b) < B(b).

4 Proofs.
The proof of Lemma 2.1 is omitted.

Proof of Theorem 2.2: We may assume that the confidence region is based upon ~Z
and Xn. Consider the loss function L(θ, C) = I(θ 6∈ C), where θ ∈ Rd and C ⊂ B(Rd).
The risk of the confidence region C(~Z,Xn) is

R(θ, C(~Z, Xn)) = Eθ[I(θ 6∈ C(~Z, Xn))] (4.1)

=
∫
(Rd)n−1

∫
Rd I(θ 6∈ C(~z, xn))fXn|~Z(xn − θ|~z)f~Z(~z) dxn d~z.

We need to show that if C(~Z, Xn) is a confidence region such that for each ~z, xn,
∫

I(y ∈
C(~z, xn)) dy ≤ L, then

sup
θ∈Rd

R(θ, C(~Z, Xn)) ≥ sup
θ∈Rd

R(θ,Xn + C∗HL,L(~Z)). (4.2)

Given δ > 0, take M > 0 such that (2M)d > L and

P0{(~Z,Xn) ∈ ([−M, M ]d)n} ≥ 1− δ.
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Let cf := supx∈Rd f(x) and let a := infx∈[−2M,2M ]d(f(x))n > 0. Take τ > M

such that supx 6∈[−τ,τ ]d f(x) ≤ 2−1c
−(n−1)
f a. Consider the a priori p.d.f. πm(θ) =

(2m)−dI(θ ∈ [−m,m]d), where m > τ . Then, the Bayes risk of C(~Z,Xn) is

B(πm, C(~Z,Xn)) = (2m)−d

∫

[−m,m]d
R(θ, C(~Z, Xn)) dθ.

By the changes of variable xn − θ = −y, Fubini’s theorem and the change of variables
y − θ = u, we have that

supθ∈Rd R(θ, C(~Z, Xn)) ≥ B(πm, C(~Z, Xn)) (4.3)

= (2m)−d
∫
[−m,m]d

∫
(Rd)n−1

∫
Rd I(θ 6∈ C(~z, xn))fXn|~Z(xn − θ|~z)f~Z(~z) dxn d~z dθ

= (2m)−d
∫
[−m,m]d

∫
(Rd)n−1

∫
Rd I(θ 6∈ C(~z, θ − y))fXn|~Z(−y|~z)f~Z(~z) dy d~z dθ

= (2m)−d
∫
(Rd)n−1

∫
Rd

∫
[−m,m]d

I(θ 6∈ C(~z, θ − y))fXn|~Z(−y|~z)f~Z(~z) dθ dy d~z

= (2m)−d
∫
(Rd)n−1

∫
Rd

∫
yj−m≤uj≤yj+m, for each 1≤j≤d

×I(y − u 6∈ C(~z,−u))fXn|~Z(−y|~z)f~Z(~z) du dy d~z.

= (2m)−d
∫
(Rd)n−1

∫
Rd

∫
uj−m≤yj≤uj+m, for each 1≤j≤d

×I(y − u 6∈ C(~z,−u))fXn|~Z(−y|~z)f~Z(~z) dy du d~z.

We also have that

(2m)−d
∫
(Rd)n−1

∫
Rd

∫
uj−m≤yj≤uj+m, for each 1≤j≤d

(4.4)

×I(y − u 6∈ C(~z,−u))× fXn|~Z(−y|~z)f~Z(~z) dy du d~z

≥ (2m)−d
∫
(Rd)n−1

∫
−[(m−τ),m−τ ]d

∫
uj−m≤yj≤uj+m, for each 1≤j≤d

I(y − u 6∈ C(~z,−u))

×fXn|~Z(−y|~z)f~Z(~z) dy du d~z

≥ (2m)−d
∫
(Rd)n−1

∫
[−(m−τ),m−τ ]d

∫
[τ,τ ]d

I(y 6∈ u + C(~z,−u))

×fXn|~Z(−y|~z)f~Z(~z) dy du d~z

≥ (2m)−d
∫
([−M,M ]d)n−1

∫
[−(m−τ),m−τ ]d

∫
[τ,τ ]d

I(y 6∈ u + C(~z,−u))

×fXn|~Z(−y|~z)f~Z(~z) dy du d~z.

Notice that if y ∈ [τ, τ ]d and u ∈ [−(m− τ), m− τ ]d, then uj −m ≤ yj ≤ uj + m, for
each 1 ≤ j ≤ d.

Now, u + C(~z,−u) is a confidence region such that for each ~z and u,
∫

Rd

I(y ∈ u + C(~z,−u)) dy ≤ L.

Between all confidence regions C(~z, u) with
∫

Rd

I(y ∈ C(~z, u)) dy ≤ L, (4.5)
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for each u, ~z, the one minimizing
∫

[τ,τ ]d
I(y 6∈ C(~z, u))fXn|~Z(−y|~z)f~Z(~z) dy (4.6)

is obtained applying Lemma 2.1 to f ≡ 1 and

g ≡ I(y ∈ [−τ, τ ]d)fXn|~Z(−y|~z)f~Z(~z) = I(y ∈ [−τ, τ ]d)
n−1∏

j=1

f(zj − y)× f(y).

Notice that this region does not have to depend on u. Let

λHL,L,τ (~z) = inf{t ≥ 0 :
∫

t≤I(y∈[−τ,τ ]d)
Qn−1

j=1 f(zj−y)×f(y)

dy ≤ L}. (4.7)

A confidence region CHL,L,τ (~z) minimizes (4.6) subject to (4.5) if

{y ∈ Rd : t < I(y ∈ [−τ, τ ]d)
∏n−1

j=1 f(zj − y)× f(y), } ⊂ CHL,L,τ (~z) (4.8)

⊂ {y ∈ Rd : t ≤ I(y ∈ [−τ, τ ]d)
∏n−1

j=1 f(zj − y)× f(y), }.

Since ~z ∈ ([−M,M ]d)n−1, [−M, M ]d ⊂ {y ∈ Rd : a ≤ ∏n−1
j=1 f(zj − y) × f(y)}.

This implies that a ≤ λHL,L,τ (~z). We also have that if ~z ∈ ([−M, M ]d)n−1, then
{y ∈ Rd : a ≤ ∏n−1

j=1 f(zj − y) × f(y)} ⊂ [−τ, τ ]d. Hence, the factor I(y ∈ [τ, τ ]d)
is superfluous in (4.7) and (4.8). This means we can take C∗HL,L(~z) as the confidence
region minimizing (4.6). Hence,

supθ∈Rd R(θ, C(~Z,Xn)) (4.9)

≥ (2m)−d
∫
([−M,M ]d)n−1

∫
−[(m−τ),m−τ ]d

∫
[−τ,τ ]d

I(y 6∈ C∗HL(~z))

fXn|~Z(−y|~z)f~Z(~z) dy du d~z.

= (m− τ)dm−d
∫
([−M,M ]d)n−1

∫
[−τ,τ ]d

I(y 6∈ C∗HL(~z))

fXn|~Z(−y|~z)f~Z(~z) dy d~z.

Letting m →∞, we get that

supθ∈Rd R(θ, C(~Z,Xn)) (4.10)

≥ ∫
([−M,M ]d)n−1

∫
[−τ,τ ]d

I(y 6∈ C∗HL(~z))fXn|~Z(−y|~z)f~Z(~z) dy d~z.

≥ P0{0 6∈ Xn + C∗HL(~Z)} − δ.

Since δ > 0 is arbitrary, the claim follows. ¤
In the proof of the next theorem, we need the following lemma:

Lemma 4.1 Let h : Rd → R be a measurable function. Let λ ∈ R. Let Cλ ∈ B(Rd) be
such that

{x ∈ Rd : h(x) > λ} ⊂ Cλ ⊂ {x ∈ Rd : h(x) ≥ λ}.
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Then, for any C ∈ B(Rd),
∫

C

(λ− h(x)) dx ≥
∫

Cλ

(λ− h(x)) dx.

The proof of the previous lemma is omitted.
Proof of Theorem 2.3: We abbreviate λpiv = λpiv,L and Cpiv = Cpiv,L. If λpiv =

0, then
∫

I(x : 0 < hn(x)) dx ≤ L and {x : 0 < hn(x)} ⊂ Cpiv . Hence,

P0{0 ∈ θ̂n + Cpiv} =
∫

Cpiv

hn(x) dx = 1

and the claim follows.
Assume that λpiv > 0. Consider the loss function

L(θ, C) = λpiv

∫

Rd

I(t ∈ C) dt + I(θ 6∈ C).

We restrict ourselves to decision rules depending on θ̂n, i.e. confidence regions of the
form C(θ̂n). The risk of the decision rule C(θ̂n) is

R(θ, C(θ̂n)) =
∫
Rd

(
λpiv

∫
Rd I(t ∈ C(x)) dt + I(θ 6∈ C(x))

)
hn(θ − x) dx

=
∫
Rd

(
λpiv

∫
Rd I(t ∈ C(θ − y)) dt + I(θ 6∈ C(θ − y))

)
hn(y) dy.

Let m > τ > M > 0. Consider the Bayes a priori p.d.f. πm(θ) = (2m)−dI(θ ∈
[−m,m]d). Then, by the change of variables θ − y = −u

supθ∈Rd R(θ, C(θ̂n)) = B(πm, C(θ̂n))
= (2m)−d

∫
[−m,m]d

∫
Rd

(
λpiv

∫
Rd I(t ∈ C(θ − y)) dt

+I(θ 6∈ C(θ − y))) hn(y) dy dθ
= (2m)−d

∫
Rd

∫
[−m,m]d

(
λpiv

∫
Rd I(t ∈ C(θ − y)) dt

+I(θ 6∈ C(θ − y))) hn(y) dθ dy
= (2m)−d

∫
Rd

∫
yj−m≤uj≤yj+m

(
λpiv

∫
Rd I(t ∈ C(−u)) dt

+I(y 6∈ u + C(−u))) hn(y) du dy
= (2m)−d

∫
Rd

∫
uj−m≤yj≤uj+m

(
λpiv

∫
I(t ∈ C(−u)) dt

+I(y 6∈ u + C(−u))) hn(y) dy du
≥ (2m)−d

∫
[−(m−τ),m−τ ]d

∫
[−τ,τ ]d

(
λpiv

∫
Rd I(t ∈ C(−u)) dt

+I(y 6∈ u + C(−u))) hn(y) dy du.

We have that

(2m)−d
∫
[−(m−τ),m−τ ]d

∫
[−τ,τ ]d

λpiv

∫
I(t ∈ C(−u)) dthn(y) dy du

= P{θ − θ̂n ∈ [−τ, τ ]d}(2m)−d
∫
[−(m−τ),m−τ ]d

λpiv

∫
Rd I(t ∈ C(−u)) dt du

= P{θ − θ̂n ∈ [−τ, τ ]d}(2m)−d
∫
[−(m−τ),m−τ ]d

∫
Rd λpivI(y ∈ C(−u)) dy du

= P{θ − θ̂n ∈ [−τ, τ ]d}(2m)−d
∫
[−(m−τ),m−τ ]d

∫
Rd λpivI(y ∈ u + C(−u)) dy du

≥ P{θ − θ̂n ∈ [−τ, τ ]d}(2m)−d

× ∫
[−(m−τ),m−τ ]d

∫
[−τ,τ ]d

λpivI(y ∈ u + C(−u)) dy du
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and
(2m)−d

∫
[−(m−τ),m−τ ]d

∫
[−τ,τ ]d

I(y 6∈ u + C(−u))hn(y) dy du

≥ P{θ − θ̂n ∈ [−τ, τ ]d}(2m)−d
∫
[−(m−τ),m−τ ]d

∫
[−τ,τ ]d

×I(y 6∈ u + C(−u))hn(y) dy du

= (m− τ)dm−d
(
P{θ − θ̂n ∈ [−τ, τ ]d}

)2

−P{θ − θ̂n ∈ [−τ, τ ]d}(2m)−d
∫
[−(m−τ),m−τ ]d

∫
[−τ,τ ]d

×I(y ∈ u + C(−u))hn(y) dy du.

Thus,

R(θ, C(θ̂n))

≥ (m− τ)dm−d
(
P{θ − θ̂n ∈ [−τ, τ ]d}

)2

+P{θ − θ̂n ∈ [−τ, τ ]d}(2m)−d

× ∫
[−(m−τ),m−τ ]d

∫
[−τ,τ ]d

(λpiv − hn(y)) I(y ∈ u + C(−u)) dy du.

By Lemma 4.1,

(2m)−d
∫
[−(m−τ),m−τ ]d

∫
[−τ,τ ]d

(λpiv − hn(y)) I(y ∈ u + C(−u)) dy du

≥ (2m)−d
∫
[−(m−τ),m−τ ]d

∫
[−τ,τ ]d

(λpiv − hn(y)) I(y ∈ Cpiv) dy du

= (m− τ)d(m)−d
∫
[−τ,τ ]d

(λpiv − hn(y)) I(y ∈ Cpiv) dy.

Hence,

supθ∈Rd R(θ, C(θ̂n))

≥ (m− τ)dm−d
(
P{θ − θ̂n ∈ [−τ, τ ]d}

)2

+P{θ − θ̂n ∈ [−τ, τ ]d}(m− τ)d(m)−d
∫
[−τ,τ ]d

(λpiv − hn(y)I(y ∈ Cpiv) dy.

Letting m →∞, and then τ →∞, we get that

supθ∈Rd R(θ, C(θ̂n)) (4.11)

≥ 1 +
∫
Rd(λpiv − hn(y)I(y ∈ Cpiv) dy

=
∫
Rd (λpivI(y ∈ Cpiv) + hn(y)I(y 6∈ Cpiv)) dy = R(θ, θ̂n + Cpiv).

If C(θ̂n) satisfies (2.18), (4.11) implies that C(θ̂n) satisfies (2.19 ). ¤
Proof of Lemma 3.3: (i) If t = 0, (i) is trivial. Assume that t 6= 0. If f(x− t) were

equal to f(x) a.e. with respect to the Lebesgue measure, then for each a

P{X ≤ a} =
∫ a

−∞
f(s) ds =

∫ a

−∞
f(s− t) ds = P{X ≤ a− t},

in contradiction. Hence, by the strict concavity of log, E0[log(f(X − t)/f(X))] < 0
and Et[log(f(X)/f(X − t))] < 0. Thus, by (3.6)

− infλ∈R log
∫
R(f(x− t))λ(f(x))1−λ dx

= − infλ∈R log E0[exp(λ log(f(X − t)/f(X)))],
= − infλ>0 log E0[exp(λ log(f(X − t)/f(X)))],
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and
− infλ∈R log

∫
R(f(x− t))λ(f(x))1−λ dx

= − infλ∈R log Et[exp((1− λ) log(f(X)/f(X − t)))],
= − infλ<1 log Et[exp((1− λ) log(f(X)/f(X − t)))],

By the previous two inequalities,

− infλ∈R log
∫
R(f(x− t))λ(f(x))1−λ dx

= − inf0<λ<1 log
∫
R(f(x− t))λ(f(x))1−λ dx

(ii) Let t 6= 0. Since it is not true that f(x− t) = f(x) a.e. x,

m(λ) = log
∫

R
(f(x− t))λ(f(x))1−λ dx, 0 ≤ λ ≤ 1,

is a strictly convex function with m(0) = m(1) = 0. Hence, there exists a unique
λt ∈ (0, 1) such that

S(t) = − log
∫

R
(f(x− t))λt(f(x))1−λt dx.

Besides, S(t) > 0.
(iii) Given 0 ≤ s < t, we show that S(s) < S(t). By concavity,

log(f(x− s)) ≥ (t−1s) log(f(x− t)) + (1− t−1s) log(f(x)).

Let us prove that
∫

I(log(f(x− s)) > (t−1s) log(f(x− t)) + (1− t−1s) log(f(x))) dx > 0, (4.12)

by contradiction. Assume that

log(f(x− s)) = (t−1s) log(f(x− t)) + (1− t−1s) log(f(x)) a.e.

Then, by the Hölder inequality,

1 =
∫

f(x− s) dx =
∫

(f(x− t))t−1s(f(x))1−t−1s dx

≤ (∫
f(x− t) dx

)t−1s (∫
f(x) dx

)1−t−1s = 1.

Hence, by the reverse of the Hölder inequality (see e.g. Theorem 5.32.2, in Royden [21]),
there are a, b ≥ 0 with a + b > 0 such that af(x− t) = bf(x) a.e. in contradiction.

By (ii), there exists 0 < λs < 1 such that

S(s) = − log
∫

R
(f(x− s))λs(f(x))1−λs dx

Hence, by (4.12),

S(s) = − log
∫
R exp (λs log(f(x− s)/f(x))) f(x) dx

< − log
∫
R exp

(
λst

−1s log(f(x− t)/f(x))
)
f(x) dx ≤ S(t).



22 Arcones

The proof of that S is decreasing in (−∞, 0] is similar and it is omitted.
(iv) Since log f(·) is a concave function and lim|x|→∞ log f(x) = −∞, there exists

x0 ∈ R, such that f is nondecreasing in (−∞, x0] and nonincreasing in [x0,∞). By a
change of variables, we may assume that x0 = 0. We have that:

if x ≤ −1, f(x− h) ≤ f(x + 1);
if − 1 ≤ x ≤ 1, f(x− h) ≤ f(0);
if 1 ≤ x, f(x− h) ≤ f(x− 1).

Therefore, ∫

R
sup
|h|≤1

f(x− h) dx < ∞. (4.13)

Suppose that tn → t0 ∈ R, we need to prove that S(tn) → S(t0). There are
λtn

, λ0 ∈ [0, 1] such that

S(tn) = − log
∫

R
(f(x− tn))λtn (f(x))1−λtn dx

and

S(t0) = − log
∫

R
(f(x− t0))λt0 (f(x))1−λt0 dx.

We have that for n large enough, and 0 ≤ λ ≤ 1,

(f(x−tn))λ(f(x))1−λ ≤ λf(x−tn)+(1−λ)f(x) ≤ sup
|h|≤1

f(x−t0+h)+f(x), (4.14)

whose integral in R is finite. Hence, by the dominated convergence theorem,

lim infn→∞ S(tn) ≥ lim infn→∞− log
∫
R(f(x− tn))λt0 (f(x))1−λt0 dx

= − log
∫
R(f(x− t0))λt0 (f(x))1−λt0 dx = S(t0).

Let {nk} be a subsequence such that

lim
k→∞

S(tnk
) = lim sup

n→∞
S(tn)

and λnk
→ λ̄, for some λ̄. By (4.14),

lim supn→∞ S(tn) = limk→∞− log
∫
R(f(x− tnk

))λtnk (f(x))1−λtnk dx

= − log
∫
R(f(x− t0))λ̄(f(x))1−λ̄ dx ≤ S(t0).

Hence, S(tn) → S(t0).
(v) Take t0 > 0 such that f(t0) < f(0) and f(−t0) < f(0). By concavity, for each

x > t0,
log(f(t0)/f(0)) ≥ t0x

−1 log(f(x)/f(0)).

Hence,
f(x) ≤ f(0) exp(−xt−1

0 log(f(0)/f(t0)).
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Similarly, we get that for x < −t0,

f(x) ≤ f(0) exp(−|x|t−1
0 log(f(0)/f(−t0)).

Hence, for each λ > 0, ∫

R
(f(x))λ dx < ∞. (4.15)

We have that
sup
t∈R

(f(x− t))1/2(f(x))1/2 ≤ (f(0))1/2(f(x))1/2

and ∫

R
(f(0))1/2(f(x))1/2 dx < ∞.

Hence, by the dominated convergence theorem,

lim|t|→∞ S(t) ≥ lim|t|→∞− log
∫
R(f(x− t))1/2(f(x))1/2 dx

= − log
∫
R lim|t|→∞(f(x− t))1/2(f(x))1/2 dx = ∞. ¤

We will need the following lemmas.

Lemma 4.2 Let X be a r.v. Let A be a Borel set of R. Let Φ−1
1 be the inverse of Φ1

restricted to [0,∞). Then,

NΦ1(I(X ∈ A)) = (Φ−1
1 (1/P{X ∈ A}))−1.

Proof: We have that

E[Φ1(t−1I(X ∈ A))] = P{X ∈ A}(et−1 − 1− t−1).

So, 1 ≥ E[Φ1(t−1I(X ∈ A))] is equivalent to t ≥ (Φ−1
1 (1/P{X ∈ A}))−1.

2

Lemma 4.3 Let g, h : R → R be two measurable functions. Let l ∈ (LΦ1)∗ with
J(l) < ∞. If P{g(X) < h(X)} = 1, then l(g) < l(h).

Proof: Using Lemma 4.2 and P{h(X) − g(X) ≥ m−1} → 1, as m → ∞, we get that

I(h(X) − g(X) ≥ m−1)
NΦ1−→ 1, as m → ∞. By (3.9), l(I(h(X) − g(X) ≥ m−1) →

l(1) = 1, as m →∞. Take m such that l(I(h(X)− g(X) ≥ m−1) > 0. Then,

l(h− g)
= l((h− g)I(h− g ≥ m−1)) + l((h− g)I(m−1 > h− g ≥ m−1 ≥ 0))

+l((h− g)I(0 > h− g))
≥ l((h− g)I(h− g ≥ m−1) > 0.

2
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Proof of Theorem 3.4: We apply Corollary 3.2. Hypothesis (i) and (ii) in Corollary
3.2 are assumed. By Lemma 3.3,

sup|t|=M infλ∈REθ[exp(λ(log f(X − t)− log f(X − θ)))]
= sup|t|=M infλ∈RE0[exp(λ(log f(X − t)− log f(X)))]
= sup|t|=M exp(−S(t)) → 0,

as M →∞. Hence, Corollary 3.2 gives that

−S1(θ, L) ≤ lim infn→∞ n−1 log (Pθ{θ 6∈ CHL,L(X1, . . . , Xn)})
≤ lim supn→∞ n−1 log (Pθ{θ 6∈ CHL,L(X1, . . . , Xn)}) ≤ −S2(θ, L)

where
S1(θ, L) = inf{Jθ(l) : l ∈ (LΦ1

θ )∗,∫
R I(t ∈ R : l(log(f(· − t)/f(· − θ))) > 0) dt > L}

and
S2(θ, L) = inf{Jθ(l) : l ∈ (LΦ1

θ )∗,∫
R I(t ∈ R : l(log(f(· − t)/f(· − θ))) ≥ 0) dt ≥ L}.

So, we need to prove that

S1(θ, L) = S2(θ, L) = S(L).

First, we prove that S1(θ, L) and S2(θ, L) do not depended on θ. Given θ ∈ R and
l ∈ (LΦ1

θ )∗, define l0 ∈ (LΦ1
0 )∗ as

l0(g) = l(g − log(f(· − θ)/f(·))), g ∈ LΦ1
0 .

By (3.1),

Jθ(l) = sup
g∈LΦ1

θ

(l(g)− log (Eθ[exp(g(X))]))
= sup

g∈LΦ1
θ

(l0(g + log(f(· − θ)/f(·)))
− log (E0[exp(g(X) + log(f(X − θ)/f(X)))]))

= sup
g∈LΦ1

0
(l0(g)− log (E0[exp(g(X))])) = J0(l0)

Hence,

inf{Jθ(l) : l ∈ (LΦ1
θ )∗,

∫
R I(t ∈ R : l(log(f(· − t)/f(· − θ))) > 0) dt > L}

= inf{J0(l0) : l0 ∈ (LΦ1
0 )∗,∫

R I(t ∈ R : l0(log(f(· − t)/f(· − θ)) + log(f(· − θ)/f(·))) > 0) dt > L}
= inf{J0(l) : l ∈ (LΦ1

0 )∗,
∫
R I(t ∈ R : l(log(f(· − t)/f(·))) > 0) dt > L}.

Thus, S1(θ, L) does not depend on θ. The proof that S2(θ, L) does not depend on θ is
similar.

Suppose that l ∈ (LΦ1
0 )∗ satisfies that J0(l) < ∞, then by Lemma 4.3, l(log f(·−t)),

t ∈ R is a strictly concave function. Besides we have that lim|t|→∞ l(log f(· − t)) =
−∞. Therefore, if J0(l) < ∞ and

∫

R
I(t ∈ R : l(log(f(· − t)/f(·))) > 0) dt > L,
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the set
{t ∈ R : l(log(f(· − t)/f(·))) > 0}

is an interval of the type either (s, 0) with s < −L, or (0, s) with s > L. Hence,

S1(0, L) = inf{J0(l) : l ∈ (LΦ1
0 )∗, l(log(f(· − t)) = 0,

for some s ∈ (−∞,−L) ∪ (L,∞)}
= min(infs<−L S(t), inft>L S(t)) = min(S(−L), S(L)) = S(L).

The proof that S2(0, 2L) = S(L) is similar and it is omitted. ¤
Proof of Theorem 3.5: (i) We have that

Eθ[log f(X − t)] =
∫
R log f(x− t)f(x− θ) dx

=
∫
R log f(x− t + θ)f(x) dx = Q(t− θ).

(ii) Since log f(·) is a concave function, (f(x))−1f ′(x) is nonincreasing. So, for
a > 0, −(f(x))−1f ′(x) ≥ −(f(x− a))−1f ′(x− a). Hence,

0 = Q′(0) =
∫
R(−(f(x))−1f ′(x))f(x) dx

≥ ∫
R(−(f(x− a))−1f ′(x− a))f(x) dx = Q′(a).

But, if Q′(a) = 0, then−(f(x))−1f ′(x) = −(f(x−a))−1f ′(x−a) almost everywhere.
Hence, for each x > 0,

log(f(x)/f(0)) =
∫ x

0
(f(t))−1f ′(t)) dt

=
∫ x

0
(f(t− a))−1f ′(t− a)) dt = log(f(x− a)/f(−a)).

Similarly, for x < 0, log(f(x)/f(0)) = log(f(x − a)/f(−a)). This implies that for
each x ∈ R, f(x)/f(0) = f(x − a)/f(−a). Since f is a p.d.f. f(0) = f(−a) and for
each x ∈ R, f(x) = f(x − a). Hence, for each t ∈ R, P0{X ≤ t} = P0{X ≤ t − a},
in contradiction. Hence, Q′(a) < 0. We got that for each a > 0, Q′(a) < 0. Hence, Q is
decreasing in [0,∞). The proof that Q is increasing in (−∞, 0] is omitted.

(iii) Given a ∈ R, we would like to show that by the dominated convergence theorem,
limt→a Q(t) = Q(a). Given τ > 0, we show that

∫

R
sup

a−τ<t<a+τ
| log f(x− t)| f(x) dx < ∞. (4.16)

Since f is continuous and lim|x|→∞ f(x) = 0, cf := supx∈R f(x) < ∞. Let t be
such that a − τ < t < a + τ . Since f is continuous, {x ∈ R : f(x) ≥ 1} = [α, β], for
some α < β. So,

log f(x− t) ≤ (log cf )I(x ∈ [α + a− τ, β + a + τ ]).

By concavity,

log f(x− t) ≥ min(log f(x− a− τ), log(x− a + τ))
≥ −| log f(x− a− τ)| − | log(x− a + τ)|.
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Hence,

| log f(x− t)|
≤ (log cf )I(x ∈ [α + a− τ, β + a + τ ]) + | log f(x− a− τ)|+ | log(x− a + τ)|.

(iv) Consider h(t) = Q(t+ b)−Q(t− b), −b ≤ t ≤ b. We have that h is decreasing,
h(−b) = Q(0)−Q(−2b) > 0, and h(b) = Q(2b)−Q(0) < 0. Therefore, there exists a
unique a ∈ (−b, b) such that h(a) = 0.

(v) Since Tn,HL,L is translation equivariant, we may assume that θ = 0. Let Gn(s) =

n−1
∑n

j=1 log f(Xj−s). By the law of the numbers, for each s, Gn(s) P0→ Q(s) a.s. Let
0 < τ < 2−2b. Hence, in a set of probability one with respect to P0, for n large enough,

Gn(a− b− 2τ) < Gn(a− b− τ) < Gn(a + b) < Gn(a− b + τ) < Gn(a− b + 2τ)

and

Gn(a + b + 2τ) < Gn(a + b + τ) < Gn(a− b) < Gn(a + b− τ) < Gn(a + b− 2τ).

This implies that Gn attains its maximum at some point dn in [a − b + 2τ, a + b − 2τ ],
it is nonincreasing in (−∞, dn) and nondecreasing on (dn,∞). Let

λHL,2b = inf{t ≥ 0 :
∫

t≤Gn(s)

ds ≤ 2b}.

Let CHL,2b(X1, . . . , Xn) be a convex set such that
∫

θ∈CHL,2b(X1,...,Xn)

dθ = L

and
{θ ∈ Θ : λHL,L(X1, . . . , Xn) < Gn(θ)} ⊂ CHL,2b(X1, . . . , Xn)

⊂ {θ ∈ Θ : λHL,L(X1, . . . , Xn) ≤ Gn(θ)}.
We have that if

∫
t≤Gn(s)

ds ≤ 2b, then λHL,2b ≤ t; and if 2b <
∫

t≤Gn(s)
ds, then

t ≤ λHL,2b. Since Gn(a + b) > Gn(a− b− τ),
∫

Gn(a−b−τ)≤Gn(s)

ds ≥ 2b + τ.

So, λHL,2b ≥ Gn(a − b − τ) > Gn(a − b − 2τ). Similarly, we get that λHL,2b >
Gn(a+b+2τ). Hence, a−b−2τ, a+b+2τ 6∈ CHL,2b. Since Gn(a+b) < Gn(a−b+τ),

∫

Gn(a−b+τ)≤Gn(s)

ds ≤ 2b− τ.

So, λHL,2b ≤ Gn(a − b + τ) < Gn(a − b + 2τ). Similarly, we get that λHL,2b <
Gn(a + b− 2τ). Hence, [a− b + 2τ, a + b− 2τ ] ⊂ CHL,2b. Since

[a− b + 2τ, a + b− 2τ ] ⊂ CHL,2b ⊂ (a− b− 2τ, a + b + 2τ),
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−2τ ≤ THL,2b − a ≤ 2τ . Since τ > 0 is arbitrary, THL,2b
P0→ a a.s. ¤

Proof of Theorem 3.6: We have that

K(f(· − t), f(· − θ)) =
∫
R log(f(x− t)/f(x− θ))f(x− t) dx

=
∫
R log(f(x)/(f(x + t− θ))f(x) dx = K(t− θ).

Since K(a) = Q(0)−Q(−a), we have that K is continuous, decreasing in (−∞, 0) and
increasing in [0,∞). So, B(a) = min(K(a), K(−a)). ¤

Proof of Theorem 3.7: By conditions (i)–(ii), θ̂n is well defined. We have that for
each t ∈ R,

Pθ{θ − θ̂n ≤ t} = P0{−θ̂n ≤ t} = P0{ d
dθ

∑n
j=1 log f(Xj − θ)|−t ≥ 0}

= P0{
∑n

j=1(f(Xj + t))−1f ′(Xj + t) ≤ 0}
=

∫
Rn I(

∑n
j=1(f(xj + t))−1f ′(xj + t) ≤ 0)

∏n
j=1 f(xj) dx1 · · · dxn

=
∫
Rn I(

∑n
j=1(f(xj))−1f ′(xj) ≤ 0)

∏n
j=1 f(xj − t) dx1 · · · dxn

=
∫
Rn I(

∑n
j=1(f(xj))−1f ′(xj) ≤ 0) exp

(∑n
j=1 log f(xj − t)

)
dx1 · · · dxn.

Hence,

hn(t) = − ∫
Rn I(

∑n
j=1(f(xj))−1f ′(xj) ≤ 0) exp

(∑n
j=1 log f(xj − t)

)

×
(∑n

j=1(f(xj − t))−1f ′(xj − t)
)

dx1 · · · dxn

= − ∫
Rn I(

∑n
j=1(f(xj))−1f ′(xj) ≤ 0)

×
(∑n

j=1(f(xj − t))−1f ′(xj − t)
) ∏n

j=1 f(xj − t) dx1 · · · dxn

= − ∫
Rn I(

∑n
j=1(f(xj + t))−1f ′(xj + t) ≤ 0)

(∑n
j=1(f(xj))−1f ′(xj)

)
∏n

j=1 f(xj) dx1 · · · dxn

= −E0[I(
∑n

j=1(f(Xj + t))−1f ′(Xj + t) ≤ 0)
∑n

j=1(f(Xj))−1f ′(Xj)]
= E0[I(

∑n
j=1(f(Xj + t))−1f ′(Xj + t) > 0)

∑n
j=1(f(Xj))−1f ′(Xj)],

where we have used that E0[
∑n

j=1(f(Xj))−1f ′(Xj)] = 0.
Since log f is a strictly concave function, so is

∑n
j=1 log f(Xj + t), t ∈ R. Hence,∑n

j=1(f(Xj + t))−1f ′(Xj + t), t ∈ R, is a decreasing function. Hence, for t > s ≥ 0,

n∑

j=1

(f(Xj + t))−1f ′(Xj + t) <

n∑

j=1

(f(Xj +s))−1f ′(Xj +s) ≤
n∑

j=1

(f(Xj))−1f ′(Xj),





n∑

j=1

(f(Xj + t))−1f ′(Xj + t) > 0



 ⊂





n∑

j=1

(f(Xj))−1f ′(Xj) > 0





and

E0[I(
∑n

j=1(f(Xj + t))−1f ′(Xj + t) > 0)
∑n

j=1(f(Xj))−1f ′(Xj)]
< E0[I(

∑n
j=1(f(Xj + s))−1f ′(Xj + s) > 0)

∑n
j=1(f(Xj))−1f ′(Xj)].
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Note that in the set I(
∑n

j=1(f(Xj + t))−1f ′(Xj + t) > 0),
∑n

j=1(f(Xj))−1f ′(Xj) >
0. This implies that hn is nonincreasing in [0,∞). A similar argument gives that hn

nondecreasing in (−∞, 0]. ¤
Proof of Theorem 3.8: We have that

CHL,L(x1, . . . , xn)
= {θ ∈ Rd :

∏n
j=1 f(xj − θ) ≥ k(x1, . . . , xn)}

= {θ ∈ Rd : τ(g(T (x1, . . . , xn), θ), h(x1, . . . , xn)) ≥ k(x1, . . . , xn)}
= {θ ∈ Rd : g(T (x1, . . . , xn), θ) ∈ A(x1, . . . , xn)}
= {θ ∈ Rd : g(η−1(θ̂n), θ) ∈ A(x1, . . . , xn)},

where

A(x1, . . . , xn) := {t ∈ R : τ(t, h(x1, . . . , xn)) ≥ k(x1, . . . , xn)}.

This implies that CHL,L(X1, . . . , Xn) is based on the m.l.e. ¤
Proof of Theorem 3.9: We have that if θ − θ̂n ∈ Cpiv,L, then λpiv,L ≤ hn(θ − θ̂n).

We also have that
∫

x:λpiv,L<hn(x)
1 dx ≤ L. Thus,

∫

x:hn(θ−θ̂n)<hn(x)

1 dx ≤
∫

x:λpiv,L<hn(x)

1 dx ≤ L.

Hence,
Pθ{θ − θ̂n ∈ Cpiv,L} ≤ Pθ{

∫
x:hn(θ−θ̂n)<hn(x)

1 dx ≤ L}
≤ Pθ{

∫
x:−n−1 log hn(x)<−n−1 log hn(θ−θ̂n)

1 dx ≤ L}.

Let kn(x) =
∫

y∈R:−n−1 log hn(y)<−n−1 log hn(−x)
1 dy and let

k(x) =
∫

y∈R:R(y)<R(−x)
1 dy. By hypotheses (ii)–(iv), if xn → x, then, kn(xn) →

k(x). Hence, by Arcones [1, Theorem 2.1], kn(θ − θ̂n) satisfies the LDP with speed n
and rate function

inf{R(x) : k(−x) = t}, t ∈ R.

Therefore,

lim infn→∞ n−1 log(Pθ{θ − θ̂n 6∈ Cpiv,L(θ̂n)}
≥ lim infn→∞ n−1 log(Pθ{kn(θ̂n − θ) > L})
≥ − inf{R(x) : k(−x) > L} = − inf{R(x) :

∫
y∈Rd:R(y)<R(x)

1 dy > L}
= − inf{u ≥ 0 :

∫
y∈Rd:R(y)≤u

1 dy ≥ L}.

We also have that if hn(θ − θ̂n) > 0 and
∫

y:n−1(n−1)hn(θ−θ̂n)≤hn(y)
1 dy ≤ L, then

λpiv,L < hn(θ̂n − θ), and θ − θ̂n ∈ Cpiv,L(θ̂n). Therefore,

Pθ{
∫

y:n−1(n−1)hn(θ−θ̂n)≤hn(y)
1 dy ≤ L}

≤ Pθ{θ − θ̂n ∈ Cpiv,L(θ̂n)}+ Pθ{hn(θ − θ̂n) = 0}
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So,

Pθ{θ − θ̂n 6∈ Cpiv,L(θ̂n)} (4.17)

≤ Pθ{
∫

y:n−1(n−1)hn(θ−θ̂n)≤hn(y)
1 dy > L}+ Pθ{hn(θ − θ̂n) = 0}

As before,

lim supn→∞ n−1 log(Pθ{
∫

x:n−1(n−1)hn(θ−θ̂n)≤hn(x)
1 dx > L}) (4.18)

≤ − inf{R(x) :
∫

y∈Rd:R(y)≤R(x)
1 dy > L}.

Given ε,M > 0, there exists n0 such that for n ≥ n0,

sup
|x|≤M

|n−1 log hn(x) + R(−x)| ≤ ε,

Hence, for each n ≥ n0 and each |x| ≤ M ,

−ε ≤ n−1 log hn(x) + R(−x) ≤ n−1 log hn(x) + a,

where a := sup|x|≤M R(−x) < ∞. Hence, for each n ≥ n0 and each |x| ≤ M ,

0 < exp(−n(ε + a)) ≤ hn(x).

Thus,
lim supn→∞ n−1 log

(
Pθ{hn(θ − θ̂n) = 0}

)

≤ lim supn→∞ n−1 log
(
Pθ{|θ − θ̂n| ≥ M}

)

≤ − inf{R(x) : |x| ≥ M}
Letting M →∞, we get that

lim sup
n→∞

n−1 log
(
Pθ{hn(θ − θ̂n) = 0}

)
= −∞. (4.19)

By (4.17)–(4.19),

lim supn→∞ n−1 log(Pθ{θ − θ̂n 6∈ Cpiv,L(θ̂n)})
≤ − inf{R(x) :

∫
y∈Rd:R(y)≤R(x)

1 dy > L}
= − inf{u ≥ 0 :

∫
y∈Rd:R(y)≤u

1 dy ≥ L}. ¤

Lemma 4.4 Under the conditions of Theorem 3.10,
(i) For each t ∈ R, R(t) < ∞.
(ii) R(0) = 0
(iii) R is increasing in [0,∞) and decreasing in (−∞, 0].
(iv) R is continuous in R.
(v) For each 0 < M < ∞,

sup
|x|≤M

|n−1 log hn(x) + R(−x)| → 0,

as n →∞.
(vi)

lim
M→∞

lim sup
n→∞

sup
|x|≥M

n−1 log hn(x) = −∞.
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Proof: (i) Let

τ := min( lim
x→−∞

(f(x))−1f ′(x),− lim
x→∞

(f(x))−1f ′(x)). (4.20)

Let x0 be such that supx∈R f(x) = f(x0). Since f is a p.d.f. there are x1 < x0 < x2

such that f(x1), f(x2) < f(x0). Since log f(·) is concave,

lim
x→−∞

(f(x))−1f ′(x) ≥ (x0 − x1)−1(f(x0)− f(x1)) > 0

and
lim

x→∞
(f(x))−1f ′(x) ≤ (x2 − x0)−1(f(x2)− f(x0)) < 0.

Hence, τ > 0. So, by (3.8), R(t) < ∞.
(ii) holds because E[(f(X))−1f ′(X)] = 0.
(iii) Let 0 ≤ s < t, then R(s) < R(t). Since (f(x − u))−1f ′(x − u), u ∈ R, is

increasing E0[(f(X − s))−1f ′(X − s)] > 0. By (3.7), there exists λs < 0 such that

R(s) = − log E0

[
exp

(
λs(f(X − s))−1f ′(X − s)

)]
.

Since
∫

I(x ∈ R : (f(X − s))−1f ′(X − s) < (f(X − t))−1f ′(X − t)) dx > 0,

R(s) = − log E0

[
exp

(
λs(f(X − s))−1f ′(X − s)

)]
< − log E0

[
exp

(
λs(f(X − t))−1f ′(X − t)

)]
≤ − infλ∈R log E0

[
exp

(
λ(f(X − t))−1f ′(X − t)

)]
= R(t).

Hence, R is increasing in [0,∞). The proof that R is decreasing in (−∞, 0] is similar
and it is omitted.

(iv) Suppose that tn → t0. We show that R(tn) → R(t0). Then, there are λn, λ0 ∈ R
such that

R(tn) = − log E0[exp(λn(f(X − tn))−1f(X − tn))]

and
R(t0) = − log E0[exp(λ0(f(X − t0))−1f(X − t0))].

Let η := 2 supn≥1 |tn|.
By (4.20), there exists 0 < M < ∞ such that M > 2τ ; for x < −M , (f(x))−1f ′(x) ≥

2−1τ ; and for x ≥ M , (f(x))−1f ′(x) ≤ −2−1τ . For λ > 0,

E0[exp(λ(f(X − t))−1f ′(X − t))] (4.21)

≥ ∫
x≤t−M

exp(λ(f(x− t))−1f ′(x− t))f(x) dx

≥ exp(2−1λτ)P{X ≤ t−M}.

For λ < 0,

E0[exp(λf(X − t))−1f ′(X − t))] ≥ exp(−2−1λτ)P{X ≥ t + M}. (4.22)
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By (4.21), for λ > 0,

E0[exp(λ(f(X − tn))−1f ′(X − tn))] ≥ exp(2−1λτ)P{X ≤ −τ −M}.

By (4.22), for λ < 0,

E0[exp(λ(f(X − tn))−1f ′(X − tn))] ≥ exp(−2−1λτ)P{X ≥ −τ + M}.

Take λ∗ > 0 such that

min(exp(2−1λ∗τ)P{X ≤ −τ −M}, exp(−2−1λ∗τ)P{X ≥ −τ + M}) ≥ 2.

Then, supn≥1 |λn| ≤ λ∗. Take a subsequence nk such that

lim sup
n→∞

R(tn) = lim
k→∞

R(tnk
)

and limk→∞ λnk
= λ̄ exists. Since (f(·))−1f ′(·) is nonincreasing,

exp(λtnk
(f(X − tnk

)−1f ′(X − tnk
))

≤ exp(λ∗|(f(X − 2η))−1f ′(X − 2η)|) + exp(λ∗|(f(X + 2η))−1f ′(X + 2η)|).
Hence, by the dominated convergence theorem

lim
k→∞

R(tnk
) = − log E0[exp(λ̄(f(X − t0))−1f ′(X − t0))] ≤ R(t0).

So,
lim sup

n→∞
R(tn) ≤ R(t0).

We also have that

exp(λt0(f(X − tn))−1f ′(X − tn))|
≤ exp(λ∗|(f(X − 2η))−1f ′(X − 2η)|) + exp(λ∗|(f(X + 2η))−1f ′(X + 2η)|).

Hence, by the dominated convergence theorem,

R(tn) ≥ − log E0[exp(λt0(f(X − tn))−1f ′(X − tn))]
→ − log E[exp(λt0(f(X − t0))−1f ′(X − t0))] = R(t0).

Thus,
lim inf
n→∞

R(tn) ≥ R(t0).

(v) Since hn is nonincreasing in (0,∞), for each t > 0 and each ε > 0,

Pθ{t + ε ≥ θ − θ̂n ≥ t} ≤ εhn(t).

Hence,

− inf{R(−x) : x ∈ (t, t + ε)} ≤ lim infn→∞ n−1 log(Pθ{t + ε ≥ θ − θ̂n ≥ t})
≤ lim infn→∞ n−1 log(hn(t)).
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Letting ε → 0, we get that

−R(−t) ≤ lim inf
n→∞

n−1 log(hn(t)).

Since a similar argument holds for the lim sup (and for each t < 0), we have that for
each t 6= 0,

−R(−t) = lim
n→∞

n−1 log(hn(t)).

By the CLT, n−1/2V −1/2
∑n

j=1(f(Xj))−1f ′(Xj)
d→ Z1, where V is the Fisher

information for the location family, i.e.

V := E

[(
∂ log f(X − θ)

∂θ

)2
]

= E[(f(X))−2(f ′(X))2].

By uniform integrability,

n−1/2V −1/2hn(0) = n−1/2V −1/2E0[I(
∑n

j=1(f(Xj))−1f ′(Xj) > 0)
×∑n

j=1(f(Xj))−1f ′(Xj)]
→ −E[I(Z1 > 0)Z1] = φ(0).

Note that

E0

[(
n−1/2I(

∑n
j=1(f(Xj))−1f ′(Xj) > 0)

∑n
j=1(f(Xj))−1f ′(Xj)

)2
]

≤ n−1E0

[(∑n
j=1(f(Xj))−1f ′(Xj)

)2
]

= E0

[(
(f(X))−1f ′(X)

)2
]
.

We have that
n−1 log(hn(0)) → 0.

Hence, for each t ∈ R,

−R(−t) = lim
n→∞

n−1 log(hn(t)).

Since hn is decreasing in [0,∞) and increasing in (−∞, 0], for each 0 < M < ∞,

lim
n→∞

sup
|t|≤M

|n−1 log(hn(t)) + R(−t)| = 0,

(vi) We have that

limM→∞ lim supn→∞ supt≤−M n−1 log(hn(t))
= limM→∞ lim supn→∞ n−1 log(hn(−M))
= limM→∞−R(−M) = −∞

and
limM→∞ lim supn→∞ supt≥M n−1 log(hn(t)) = −∞

2
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Proof of Theorem 3.10: It follows from Theorem 3.9 and Lemma 4.4. ¤
Proof of Theorem 3.11: (i) We have that

R(b) = inf{J0(l) : l ∈ (LΦ1
0 )∗, l((f ′(· − b))−1f(· − b)) = 0}.

Let
γ0(x) = (f(x− 2b)/f(x))1/2(E0[(f(X − 2b)/f(X))1/2])−1.

By (3.2),

J0(lγ0) = E0[γ0(X) log γ0(X)]
= E0[(f(X − 2b)/f(X))1/2(E0[(f(X − 2b)/f(X))1/2])−1

×(2−1 log(f(X − 2b)/f(X))− log(E0[(f(X − 2b)/f(X))1/2]))]
= 2−1(E0[(f(X − 2b)/f(X))])−1E0[(f(X − 2b)/f(X))1/2 log(f(X − 2b)/f(X))]
− log(E0[(f(X − 2b)/f(X))1/2]).

Using that f is even and the change of variables −x + 2b = y,

E0[(f(X − 2b)/f(X))1/2 log(f(X − 2b)/f(X))]
=

∫
R log(f(x− 2b)/f(x))(f(x− 2b)f(x))1/2 dx

=
∫
R log(f(−x + 2b)/f(−x))(f(−x + 2b)f(−x))1/2 dx

=
∫
R log(f(y)/f(y − 2b))(f(y)f(y − 2b))1/2 dy

= − ∫
R log(f(x− 2b)/f(x))(f(x− 2b)f(x))1/2 dx = 0.

Hence,
J0(lγ0) = − log(E0[(f(X − 2b)/f(X))1/2]).

By the Hölder inequality,

H2b(λ) := log
∫

R
(f(x− 2b))λ(f(x))1−λ dx, 0 ≤ λ ≤ 1,

is a convex function. Since f is an even function, we have that H2b(λ) = H2b(1 − λ),
for each 0 ≤ λ ≤ 1. Thus,

S(2b) = − log H2b(1/2) = − log(E0[(f(X − 2b)/f(X))1/2]) = J0(lγ0).

We have that

lγ0(f
′(· − b)/f(· − b))

= (E0[(f(X − b)/f(X))1/2])−1
∫
R(f

′(x− b)/f(x− b))(f(x− 2b)f(x))1/2 dx.

Now, ∫
R(f

′(x− b)/f(x− b))(f(x− 2b)f(x))1/2 dx
=

∫
R(f

′(x)/f(x))(f(x− b)f(x + b))1/2 dx
=

∫
R(f

′(−x)/f(−x))(f(−x− b)f(−x + b))1/2 dx
= − ∫

R(f
′(x)/f(x))(f(x + b)f(x− b))1/2 dx = 0.

Hence, R(b) ≤ J0(lγ0) = S(2b).
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(ii) We need to prove that if R(b) = S(2b), for each b ∈ R, then f is either normal
or one of the distributions in Example 3.14. By (3.7), there exists λ(b) ∈ R such that

R(b) = − log E0[exp(λ(b)(f ′(X − b)/f(X − b)))].

This implies that

0 = E0[(f ′(X − b)/f(X − b)) exp(λ(b)(f ′(X − b)/f(X − b)))].

Let

γ1(x) = (E0[exp(λ(b)(f ′(X − b)/f(X − b)))])−1 exp(λ(b)(f ′(x− b)/f(x− b))).

Then,
lγ1(f

′(· − b)/f(· − b)) = 0

and
R(b) = J0(lγ1) = E0[γ1(X) log γ1(X)].

If γ0(x) were not equal to γ1(x) a.e. with respect to the Lebesgue measure, then for each
0 < λ < 1

lλγ0+(1−λ)lγ1
(f ′(· − b)/f(· − b)) = 0.

and

J0(lλγ0+(1−λ)γ1) = E0[Ψ2(λγ0(X) + (1− λ)γ1(X))]
< λE0[Ψ2(γ0(X))] + (1− λ)E0[Ψ2(γ1(X))] = λJ0(lγ0) + (1− λ)J0(lγ1),

in contradiction. Note that Ψ2(x) = x log x is a strict convex function. Thus, γ0(x) =
γ1(x) a.e. with respect to the Lebesgue measure. Notice that γ0(x) and γ1(x) depend on
b. So, we assume that for each b ∈ R,

(f(x− 2b)/f(x))1/2(E0[(f(X − 2b)/f(X)])1/2])−1

= exp(λ(b)(f ′(x− b)/f(x− b)))(E0[exp(λ(b)(f ′(X − b)/f(X − b)))])−1 a.e.

Using that f is continuous, we get that for each x ∈ R,

2−1 log(f(x− 2b)/f(x)) = λ(b)(f ′(x− b)/f(x− b))− S(2b) + R(b)
= λ(b)(f ′(x− b)/f(x− b)).

Let g(x) = log f(x). We have that for each x, b ∈ R,

g(x− 2b)− g(x) = 2λ(b)g′(x− b).

Changing x into x + b, we have that for each x, b ∈ R,

g(x− b)− g(x + b) = 2λ(b)g′(x).

Interchanging x and b, we get that

g(b− x)− g(x + b) = 2λ(x)g′(b).
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Since g is even, we have that

2λ(b)g′(x) = 2λ(x)g′(b).

Since f is a p.d.f. there exists t such that g′(t) 6= 0. Then,

λ(x) =
λ(t)g′(x)

g′(t)
= 2−1cg′(x),

where c = 2λ(t)
g′(t) . Hence,

g(b− x)− g(x + b) = cg′(x)g′(b).

Taking two derivatives with respect to x and with respect to b, we get that

g′′(b− x)− g′′(x + b) = cg(3)(x)g′(b)

and

g′′(b− x)− g′′(x + b) = cg′(x)g(3)(b).

Hence,

g(3)(x)g′(b) = g′(x)g(3)(b).

If g(3)(x) = 0, for each x ∈ R, then g(x) = ax2 + b, for some a, b ∈ R. Hence, f is the
p.d.f. of a normal distribution with mean zero. If g(3)(x0) 6= 0, for some x0 ∈ R, then

g(3)(x) = τg′(x), (4.23)

where τ = (g′(x0))−1g(3)(x0). The solutions of this differential equation (see e.g.
Simmons [24, Section 17]) are

g′(x) = a1 sin(bx) + a2 cos(bx), if τ < 0,

and

g′(x) = a1 sinh(bx) + a2 cosh(bx), if τ > 0,

where a1, a2 ∈ R and b2 = |τ |. Since g′ is an odd function and eg(x) is a p.d.f. The only
solution is

f(x) = c exp(−a cosh(bx))

where a, b > 0 and c =
(∫
R exp(−a cosh(bx)) dx

)−1
. ¤

Acknowledgement: I would like to referee for pointing out several typos.
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