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Abstract. We study the large deviation principle for M—estimators (and maximum
likelihood estimators in particular). We obtain the rate function of the large deviation
principle for M—estimators. For exponential families, this rate function agrees with
the Kullback—Leibler information number. However, for location or scale families this
rate function is smaller than the Kullback—Leibler information number. We apply our
results to obtain confidence regions of minimum size whose coverage probability con-
verges to one exponentially. In the case of full exponential families, the constructed
confidence regions agree with the ones obtained by inverting the likelihood ratio test
with a simple null hypothesis.
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1. Introduction

We discuss the (LDP) large deviation principle for M—estimators. M-estimators
have many good properties and they are used in many different situations. Their main
property is that they are robust statistics. As an application, we obtain new results on
the large deviations of (mle’s) maximum likelihood estimators.

The large deviations of mle’s have being considered by many authors. Let {f(-, ) :
0 € ©} be a family of pdf’s, where © is a Borel subset of R?. Let {X;}52, be a sequence
of i.i.d.r.v.’s with a pdf belonging to {f(-,0) : § € ©}. An mle 6, = én(Xl, X)) ofé
is a value such that

n n
Hf(Xj,Gn) = supr(Xj,G).
=1 6€0
Given an estimator T, of a parameter 6, the error of the estimation is |7, — 6|. The
probability that the error of estimation is bigger than € is Pp{|T;, — 8] > €}. The limit

(1.1) J(Ty,€,0) :=liminfn =" In (Pe{|T},, — 0] > €}).

is called the inaccuracy rate of the estimator 7;,. In the one dimensional case, Bahadur
(1967, 1971) proved that, if T;, is a consistent estimator of 6, then, for each 6 € ©,
(1.2) lim liminf e %n " In (Pe{|T}, — 6] > €}) > —270(h),

e—0 n—oo
where v(0) is the Fisher information at 6 and Py is the probability when 6 obtains, i.e.
(8lnf(X, 9))21 . [32 In f(X, 9)}
g ) — By | =L

v(0) = Ey o0 962
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2 M.A. ARCONES
Bahadur also proved that, under regularity conditions, for each 6

(1.3) lir% liminf e ?n~'In (P9{|én —0] > e}) = —271(0),
This shows that mle’s are asymptotically efficient in the sense that they minimize the
former limit.

Bahadur et al. (1979) showed that if 7T, is a consistent estimator of 6, for each
0 € O, then, for each 6 € ©,

(1.4) liminf, oo n™tIn (Pe{|T}, — 0] > €})
> —inf{K(f(-,61), f(-,0)) : 61 satislying |01 — 0| > €},

where K is the Kullback—Leibler information of the densities f(-,60;) and f(-, ), i.e. for
densities f and g with respect to a probability measure p,

K(f.g) = / (£ (£)/9(t)) £ (t) du(t).

In this situation, mle’s are not optimal estimators. Kester and Kallenberg (1986)
gave examples of mle’s satisfying and not satisfying

(1.5) lim inf,_.o ' In (Pg{\én — 0 > e})
= —inf{K(f(-,01), f(-,0)) : 61 satisfying |0, — 0] > €}.

For exponential families, there exists equality in the previous expression. We will prove
that for location families which are not member of an exponential family, the previous
equality does not hold.

Our techniques are based on the (LPD) large deviation principle of empirical pro-
cesses. In Section 2, we present new results on the LPD for empirical processes with
values [ (T'), where T is an index set and [ (T") is the set of bounded functions in T’
with the norm |z|o = sup,er |2(t)|. A sequence of stochastic processes {U,(t) : t € T'}
is said to follow the LDP in [, (7) with speed ¢, !, where {¢,} is a sequence of positive
numbers converging to zero, and with good rate function I if:

(i) For each 0 < ¢ < 00, {7z € lo(T) : I(z) < ¢} is a compact set of [ (T').

(ii) For each set A C I (T),

—inf{I(2) : z € A°} <liminf, o €, n(P.{{Un(t) : t € T} € A})
< limsup,, ., en In(P*{{U,(t) : t € T} € A}) < —inf{I(2) : z € A},

where A° (resp. A) denotes the interior (resp. closure) of A in [, (7T') and P, (P*) denotes
the inner (outer) probability. General references on the LDP are Deuschel and Stroock
(1989) and Dembo and Zeitouni (1998). The main property of the LDP is that it is closed
by continuous functions: if {U,,(t) : t € T} satisfies the LDP with speed ¢, ! and good
rate function I and F : [ (T) — R? is a continuous function, then F({U,(t) : t € T})
satisfies the LDP with speed €, and with good rate function

Ip(t) =inf{I(2) : z € loo(T), F(2) = t}

(see for example Lemma 2.1.4 in Deuschel and Stroock, 1989).
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From the LDP of estimators, it is possible to obtain the inaccuracy rates of estima-
tors. Suppose that a sequence of estimators {71}, } satisfies the LDP with rate function
Iy(t), when 6 obtains. Assuming that

inf{Iy(t) : t satisfying |t — 0] > e} = inf{Iy(¢) : t satisfying |t — 0] > €},

we have that
(1.6) J (T, €,0) = inf{Iy(t) : ¢ satisfying [t — 0] > €}.

In Section 3, we present sufficient condition to obtain the LDP for M—estimators.
Let g : S x ©® — R be a function such that g(-,t) : S — R is measurable for each ¢t € ©,
where © be a Borel subset of R?. A natural estimator of a parameter § € © such that
Elg(X,t) — g(X,0)] > 0 for each t # 6, is the estimator 6,, such that

(1.7) n_lzg(Xj,é =inf n~ 129

tcO

Since the estimator 6, is minimizing the stochastic process
n
(1) (n'3 g(X;0) L€ O],
j=1

it is expected that, under certain conditions, 0,, satisfies the LDP with the rate function

I;(t) = inf{Iy(2) : 2 € lso(©), 2(-) is minimized at ¢},
where I, is the rate function of the LDP of the sequence of stochastic processes in (1.8).
Heurlstlcally, this is true because in some sense, the function which assigns to a function
the value where the minimum of the function is attained is a continuous function.

We also consider M—estimators 6,, defined by

(1.9) n~t ih(X

where h(-,t) : S — R% is a measurable function for each t € ©. Here, 6, is estimating a
value 6 characterized by E[h(X,0)] = 0. In this case, it is expected that, under certain
conditions, #,, satisfies the LDP with the rate function

I;(t) = inf{I},(2) : z € I(©), 2(t) = 0},

where I}, is the rate function of the LDP of {n~! > (X, 1)+ t € ©}. We will show
that
(1.10) I;(t) = — )\mﬂg In Elexp (N h(X,t))].
€

For some one dimensional M-estimators, Sievers (1978) and Rubin and Rukhin
(1983) obtained that the rate of certain M-estimators is given by (1.10). Fu et al. (1993)
obtained much more general results for the large deviation of one dimensional mle’s.
Kester (1985) and Kester and Kallenberg (1986) found the inaccuracy rates of mle’s from
an exponential family. Borovkov and Mogulskii (1992) gave upper and lower bounds for
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the large deviations of M-estimators parameterized by a compact set. Joutard (2004)
considered the large deviations of M—estimators over a sequence of necessarily identically
distributed sequence of r.v.’s when the parameter set is compact. Our results apply non
necessarily compact parameter sets.

When applied to the mle’s, we obtain that, under certain conditions, when 6 obtains,
the mle 6, satisfies the LDP with speed n and rate function

(1.11) Iy(t) := — inf In Eglexp (\'V,1In f(X,1))],
AER?

where V; denotes the (vector of partial derivatives) gradient of In f(x,t). We prove that
for each t,0 € ©, Iy(t) < K(f(-,t), f(-,0)). If for each t,0 € ©, Iy(t) = K(f(-, 1), f(-,0)),
then the mle minimizes the limit in (1.4) among all possible estimators. However, in
general Iy(t) < K(f(-,t),f(-,0)), for t # 6. Theorem 3.2 determines when Iy(t) =
K(f(-,t), f(-,0)). For an exponential family, we have that Ip(¢t) = K(f(-,t), f(-,6)). The
only location families for which Iy(t) = K(f(-,t), f(-,6)), for each t,6 € O, are the ones
which are exponential families.

In Section 4, we apply the results in Section 3 to obtain confidence regions whose
coverage probability approaches to 1 exponentially. Suppose that, when 6 obtains, 0,
satisfies the LDP with speed n and rate function I(-). Given 0 < o < oo, define
Upo :={t € R : Ih(t) < a} and

(1.12) Co(X1,.., Xn) :={0€0:0,(X1,...,X,) € Upa}.

Assuming that {t € R?: Io(t) < a} is an open set, then C, (X7, ..., X,) is a confidence
region for © such that for each 6 € ©,

(1.13) limsup,,_,.n *1In(Pp{ & Co(X1,...,Xn)})
= limsup,_,.,n 'ln <P9{Ig(én) > a}) < —inf{Iy(t) : I(t) > a} < —a.

The confidence regions obtained in this way have some minimality properties. In some
sense, they are the smallest regions based on 6,, satisfying (1.13). Suppose that given 6,
Go.o is a set such that {t € R?: Iy(t) < a} ¢ Gy.qa, then,

liminf,,_.o " In (Pg{én(xl, 0 X0) € Gou }) > —inf{ly(t) : t  Gou } > —av.

Hence, if

hnnlgfnil In <P0{én(X1a cee aXn) ¢ GH,a}) < —q,
then {t € R% : I(t) < a} C Gyo. Assuming that {t € R? : I4(t) < a} is an open set,
we have that {t € R? : Ip(t) < a} C (Gg,o)°. When the mle’s are sufficient statistics,
once should expect that the regions in (1.12) are the smallest regions over all the regions
satisfying (1.13).

The classical asymptotic confidence intervals are constructed fixing the coverage
probability to a fixed number less than one and letting the size of the region go to zero
as n — oo. The procedure here is opposite. We allow the size of the confidence region
do not go to zero, but the coverage probability goes to one as the sample size goes to
infinity. In the case of full exponential families, the constructed confidence regions agree
with the ones obtained by inverting the likelihood ratio test for a simple null hypothesis.
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In Brown et al. (2003), it is argued that for a big group of exponential families the
confidence intervals obtained by inverting the likelihood ratio test are best overall. Our
results complement the results of these authors. These authors study the size of the
confidence regions when the coverage probability is constant.

Large deviations have many applications in statistics. Large deviations are used in
some definitions of efficiency (see Bahadur 1971; Serfling, 1980; Nikitin, 1995). Often in
sequential analysis, it is of interest to use confidence intervals of fixed length. Fu (1975)
proved that the limits of the density of a sequence of estimators is related with their
large deviations. Jensen and Wood (1998) have used the large deviations of mle’s to
study the density of mle’s (see also Skovgaard, 1990).

The proofs of the theorems in sections 2—4 are in Section 5. We will use usual
multivariate notation. For example, given u = (u1,...,uq) € R?and v = (vy,...,vq)" €
Re /v = Z;l:l ujv; and u| = (37, u?)l/Q. Given 6 € R? and € > 0, B(0,¢) = {z €
R? : |z — 0] < €}. Given a d x d matrix A, [|A| = Sup,, ,,cra o, |,|va|=1 V1 Av2. Given a
rate function I and a set A, we denote I(A) = inf{I(z):z € A

2. LDP of empirical processes

In this section, we study the LDP of empirical processes. Let {X;}32; be a se-
quence of iid.r.v.’s with values in a measurable space (S,S). Let {f(.,¢) : t € T}
be a collection of measurable functions on (5,S), where T is an index set. Let X be
a copy of Xj. Necessary and sufficient conditions for the LDP of empirical processes
{n=t Z?Zl f(X;,t) : t € T} with speed n were given in Arcones (2003a). However, we
need to represent the rate function in a convenient way. Our method, using the dual
(vector space of continuous linear functionals) of certain Orlicz space, is a variation of
the method used by Léonard and Najim (2002) to determine the rate function of the
LDP of empirical measures. We refer to the theory in Orlicz spaces to Rao and Ren
(1991).

A function ® : R — R is said to be a Young function if it is convex, ®(0) = 0;
®(x) = ®(—x) for each z > 0; and lim, .o, ®(x) = co. The Orlicz space L?(S,S)
(abbreviated to £?) associated with the Young function @ is the class of measurable
functions f : (S,8) — R such that E[®(Af(X))] < oo for some A > 0. Let ¥ be the
Fenchel-Legendre conjugate of @, i.e. W(x) = sup,cg (vy — ®(y)). The Minkowski (or
gauge) norm of the Orlicz space £®(S,S) is defined by

No(f) = inf{t > 0: E[®(f(X)/t)] < 1}.

It is well known that the vector space £® with the norm Ng is a Banach space.
In the case of large deviations, we have that given functions f1,..., f,, such that
for some A > 0 and each 1 < k < m, Elexp(\|fr(X)])] < oo, then

{7 AT (X))}
j=1 =1

satisfies the LDP in R™ with speed n and rate function

(2.1) I(uy,. .. um) sup ZAjuj - lnE[exp(Z A, £ (X))]

Mo Am€R \ 2
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(see Corollary 6.1.6 in Dembo and Zeitouni, 1998). We will work in the space
LY = {f:5 = R:E[® (\f(X)])] < oo for some A > 0},

where ®y(z) = el*l — |z| — 1. Let (£®)* be the dual of (£L®', Ng,). The function
feLt —In (E[ef(x)]) € R is a convex lower semicontinuous function. Observe that

@
if fp, £ f, then f,(X) ER f(X), which, by the Fatou’s lemma, implies that
In (E[efX)]) < liminf, o In (E[ef*(*)]). The Fenchel Legendre conjugate of the pre-
vious function is:

(2.2) J() = sup (l(f)—ln (E[ef(X)]>>, e (L),

feLe

J is a function with values in [0,00]. Since J is a Fenchel-Legendre conjugate, it is a
nonnegative convex lower semicontinuous function. It is easy to see that if J(I) < oo,
then:

(i) 1(1) = 1, where 1 denotes the function constantly 1.

(ii) ! is a nonnegative definite functional: if f(X) > 0 a.s., then I(f) > 0.

Since the double Fenchel-Legendre transform of a convex lower semicontinuous func-
tion coincides with the original function (see e.g. Lemma 4.5.8 in Dembo and Zeitouni,
1998), we have that
(2.3) sup (I(f) — J(I)) = In E[e/PO].

le(L®1)*

We also will consider the convex function ®s(x) = e* — 1. The Fenchel-Legendre

conjugate of @5 is

(24) Yy(z)=2In (%) +1, if 2> 0;T3(0) =1; and Py(z) =00, if 2 <0.

We also have the following:

LEMMA 2.1. Ifl € (L2)* and (1) =1, then

= su — E[ef) — .
T = sup (1)~ El 1))

Given a nonnegative function vy on S such that E[y(X)] = 1 and E[¥2(v(X))] < oo,
then L, (f) = E[f(X)y(X)] defines a continuous linear functional in £1. Besides, it is
easy to see that

(2.5) J(ly) = e E[f(X)7(X) = ®2(f(X))] = E[W2(v(X))].

Observe that by the Fenchel-Young inequality,

S E[f(X)y(X) = ®2(f(X))] < E[Wa(v(X))]-

Given 1 < M < oo, taking f(z) = In(y(z))I(M~! < y(z) < M) and letting M — oo,

we get that -

S E[f(X)7(X) = ®2(f(X))] = E[W2(v(X))].
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Hence, (2.5) follows. E[U2(v(X))] = E[y(X)In(v(X))] is the Kullback-Leibler informa-
tion number of the probability measures () du(-) and du(-), where pu(-) is the distribu-
tion of X. But, the set {l, € (L®1)* : E[y(X)] = 1, E[¥2(v(X))] < oo} does not have

)
the compactness properties that {I € (£L®1)* : J(I) < oo} has.
We may express, the rate function in (2.1) using the function J:

LEMMA 2.2. Let f1,..., fm € L2, Then, for each uy, ..., uy, € R,

sup {ZT:l Aju; —In (E [exp (ZT:l /\jfj(X))D A, A € R}
= inf {J(I) : L € (L), I(f;) = u; for each 1 < j < m}.

In the case of one function f, the rate function is
Ip(t) == inf {J(I) : L € (LP)*,U(f) =t} = sup{\t — In(E[exp(Af(X))]) : A € R}.

Let py = E[f(X)]. Let by = inf{t € R: P(f(X) >t) = 0} be the least upper a.s. bound
of f(X), where inf () is interpreted as co. Let ay = sup{t € R : P(f(X) < t) = 0} be the
most lower a.s. bound of f(X), where sup ) is interpreted as —oo. It is well known that
Iy is convex in R, Iy is continuous in [af,by], Iy is infinity in R — [af, by], If(y) = 0,
If(ay) = —InP(f(X) =ay), I;(by) = —In P(f(X) = by), I is nondecreasing in [pt, 00)
and I is nonincreasing in (—oo, us] (see Lemma 6 in Chernoff, 1952). This implies that
for t > py,

(2.6) inf{J(1): L€ (L2, 0(f) >t} =inf{J(1) : 1 € (L), 1(f) =t}
and for ¢t < uy,

*

(2.7) inf{J(l): L€ (L) ,1(f) <t} =imf{J(1) : L € (£*),1(f) =t}
By Theorem 1 in Chernoff (1952), for each t > uy,

(2.8) nh_)rréo n~'In (]P’ n! Zf } = —1I4(t)
and for each t < py,
(2.9) nlirgon 'In (IP’ nt Zf } = —I(¢)
The previous limits and the continuity of the function I; imply that for each by > ¢ > puy,
(2.10) lim 7' In ( n=t Zf } = —1I;(t)
and for each ay <t < uy,

(frge]) o

(2.11) lim n~'1In

n—oo
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By Lemma 1 in Chernoff (1952), if P(f(X) < 0) > 0 and P(f(X) > 0) > 0, then
there exists A\g € R such that

(2.12) —In Elexp(Aof(X))] = inf (—In Elexp(Af(X))]) -

inf
AER
We also will use that by the Chebyshev inequality, we also have that for each ¢t € R,

n

(213) ot [ P{nTt ) F(XG) 2} | < —sup(At — In (Elexp(Af(X)))))-

= A>0

As to the LDP of empirical processes. If {n~! doi=1 f(Xj,t) : t € T} satisfies the
LDP in lo(T) with speed n, then the rate function is

(2.14) I(z) :=sup{ly,,. 1, (z(t1),...,2(tm)) 1 t1,.. ., tm € T,m > 1}, 2 € I5o(T),

where

(215) Iyt (ua, - ooy um) = s > Njuj — I Elexp(Y_ \if(X,1;))]
15--3AmE .
- =

j=1

(see Arcones, 2003a). The next lemma shows that this rate can be represented using the
function J:

.....

LEMMA 2.3. LetI andlet I, . ., be asin (2.14) and (2.15). If {f(-,t):t € T}
is a totally bounded set of (L®1, Ng,), then:
(i) For each z € loo(T),

sup{ly, ..t (2(t1),..., 2(tm)) 1 t1,..., t;m € T,m > 1}
= inf{J(l) : 1 € (LP)*,I(f(-,t)) = 2(t), for each t € T}.

(it) For each k > 0, {z € loo(T) : I(2) < k} is a compact set of loo(T).
(#ii) For each t1,...,t,m € T and each uy, ..., Uy, € R,

Iy (Ury oo uy) = Inf{I(2) : 2(¢;) = u; for each 1 < j <m}.
The total boundedness condition in the previous lemma is best in the following

sense:

LEMMA 2.4. Let {f(-,t):t € T} be a collection of functions of (L, Ng,). Let I
and let Iy, ..+, be asin (2.14) and (2.15). Suppose that:

(i) For each k > 0, {z € loo(T) : I(z) < k} is a compact set of loo(T).

(ii) For each t1,...,t,m €T, and each uy, ..., Uy, € R,

Iy (Uay o ty) = 1I0f{I(2) 1 2 € o (T), 2(t1) = w1, ..., 2(tm) = Um }-
Then, {f(-,t) : t € T} is a totally bounded set of (L®', Ng,).

Finally, we present the main result to be used:
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THEOREM 2.1. Let {f(-,t) : t € T} be a collection of measurable functions, where
T is a compact subset of R. Suppose that:

(i) For each t € T, f(-,t) € L?1.

(i1) For each X\ > 0, and each t € T there exists a n > 0, such that

Elexp(A  sup  |f(X,s) = f(X,1)])] < oo.
s€T,|s—t|<n

(iii) For each t € T,

lim sup |f(X,s)— f(X,t)] =0 a.s.

=0 seT,|s—t|<e

Then, {n="37_| f(Xj,t) : t € T} satisfies the LDP in loo(T) with speed n and rate
function

I(z) = inf{J(1) : 1 € (L2)*,I(f(-,t)) = 2(t), for each t € T}, z € loo(T).

3. Large deviations for M—estimators

In this section, we present several results on the large deviations for M-estimators.
First, we consider the LDP for the M—estimators defined in (1.7).

THEOREM 3.1. Let © be a convex set of R*. Let g : S x © — R be a function
such that for each x € S, g(x,-) is a convex function. Let 6 € ©. Let {K,,}m>1 be a
sequence of compact convex sets of R contained in © and containing 0. Suppose that:

(i) There exists a sequence of r.v.’s 0, = 0,(Xy,...,X,) such that G,(0,) =
infree G (t), where G (t) =n~" 30| g(X;,1).

(i1) For each t € ©, E[g(X,t)] > E[g(X,0)].

(iii) {g(-,t) : t € O} C L.

(i) limy,, . SUP,gp ., infrer Elexp(A(g(X,t) — g(X,0)))] = 0.

(v) For each t € ©°, there exists a function h(-,t) : S — R? such that

lim [o| ™ N, (g(-t +v) = (1) = o'h(-, 1) = 0.

(vi) For each t € ©° such that —infycga Elexp(MNh(X,t))] < 0, there exists e, > 0
such that for each e, > € > 0,

— inf ElepWVh(X,t)] < inf (- inf  Elexp(MA(X, ) + Nh(X,t1))] ) -
inf, Blexp(Xh(X. 1) n( it FlespO4h(X, 6+ Xoh 1>>1)

Then, {én} satisfies the LDP with speed n and rate function

(3.1) I(t) = { C:Oinf{ln(E'[eXp()\’h(X7 ) : A € R4} i i g (89(;,

Observe that this is the natural rate. Under regularity conditions, {G,(t) : t € ©}
satisfies the LPD in I (©) with rate function

inf{J(l):1l e (Eél)* J(g(-, 1) = 2(¢), for each t € O}, z € [(O).
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In the proof of Theorem 3.1, it is shown that for each I € (£%1)" with J(I) < oo, the
function I(g(-,t)),t € O, is differentiable in © with derivative is [(h(-,t)),t € ©. Besides,

(32) inf{J(1) : 1 € (L*)",1(g(- 1)) = sup, o lg(, 1))}
= inf{J(1): 1 € (£%)",1(h(-,t)) = 0}.
By Lemma 2.2, for each t € T',

(3.3)  inf{J(1): 1€ (L™),U(h(- ) =0} = — inf In (B [exp(Nh(X.1))])

The conditions assumed on Theorem 3.1 are minimal conditions. Example 3 shows
that condition (i) in Theorem 3.1 is needed. Condition (iv) in Theorem 3.1 is used to
show that the M—estimator is eventually inside a compact set. Condition (vi) in Theorem
3.1 is used to get (3.2).

It follows from the previous theorem that for each ¢ > 0,

—inf{I(t): |t — 0] > €} <liminf,, on~'ln (P{|én — 4] > 6})
< limsup,_, . n~'In (P{|én — 4> e}) < —inf{I(t): |t — 0] > €.

A possible choice for the sequence of compact convex sets in Theorem 3.1 is

Kn={tcO:|t—0<mand d(t,0° >m *},m>1.

Ezample 1. Let {f(-,t) : t € ©} be a family of pdf’s with respect to a measure y
defined on a measurable space (5, S). We will assume that the support of f(-,t) does not
depend on ¢ and that for each t € ©, V,In f(z,t) exists. The M—estimator with respect
to the kernel g(z,t) = —1In f(x,t) is the mle. It is well known that, by the concavity
of the logarithmic function and the Jensen inequality, for any densities f and g with
respect to the measure p,

(3.4) /S In(f () /g(x))g(x) dyu(zr) <.
Hence, for each t,0 € ©
Eylln f(X,1)] < Eylln (X, 0)],

where Ejy is the expectation when X has pdf f(z,0). If the conditions in the previous
theorem apply when 0 obtains (the data comes from the pdf f(-,8)), 8, satisfies the LDP
with rate function

Ip(t) = — /\inﬂ{ In (Eg [exp(N' Vi In £(X,1))]) = inf{Jp(1) : 1 € (£5")*,1(V¢In f(X, 1)) = 0},
= d
where E;bl, (L g) )* and Jp are defined when 6 obtains. We claim that for each 0,¢ € ©,
(-,

such that K(f(-,t), f(-,0)) < co and [ V¢ f(x,t) u(xz) = 0, then

(35) I@(t> < K(f(’t)?f(>0)>

Observe that we may define I; € (£5*)* by li(g) = Ei[g(X )] Eolg(X)v:(X)), g € L3*,
where v (z) = f(x,t)/f(z,0). We have that Eg[y(X)] =

L(VeIn f(X, 1) = / Vof (@, t) du(x) = 0.
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So, by (2.5),
Ig(t) < Jo(le) = Eg[V2(7:(X))] = K(f(-, 1), f(-.0)).

The next theorem discerns when there exists equality in (3.5):

THEOREM 3.2. Suppose that [ Vif(z,t)du(z) = 0. Then,
(i) If there exist A\ g € R¢ and cto € R such that

(3.6) MoViln f(z,t) +crp =1n f(x,t) —In f(z,0), P, —as.

then,
- )\iél]lgd In (E0 [exp()‘/vt hl(X, t))]) = K(f(’ t)7 f(v 0)) = Ct,0-

ii) If there exists A\r.g € R? such that
(i1) :

—infycpa In (Ep [exp(N' Vi 1n f(X, t))])
=-In (EO |:eXp(/\:t,0vt In f(X7 t)) ) = K(f('7t)7 fG, 6‘))7

then
In f(z,t) — In f(z,0) — A;,evt In f(z,t) = K(f(t), f(,0)), P —as.

Ezample 2. Let {f(x —0) : 0 € R} be a one dimensional location family. Assume
that f(x) > 0, for each € R. Then, condition (3.6) holds for each ¢,0 € R if and only
if for each ¢ € R, there exists A(t) and ¢(t) such that

f'(x)
/()

It is easy to see that the normal pdf f(z) = (2r)~ /20! exp (=27t 2(z — p)?), where
€ R, and o > 0, satisfies (3.7) with A\(t) =t and c(t) = 2710~ 2t2. We also have that
the pdf

(3:8) f() = (0(@)) " 1la® exp (—ae™@ + ay(z - 6))

where a > 0, v # 0 and 0 € R, satisfies (3.7) with A(¢) = v~! (1 — e ) and c(t) =
a(e™ — 1+ ~t). If X has the pdf in (3.8) and Y = v !In(Xa) — 6, then Y has a
Gamma(a, 1) distribution.

(3.7 At) +c(t) =1In f(z) — In f(x —t), for each z € R.

The following theorem determines the one dimensional location families for which
the rate function of the large deviations of the mle coincides with the Kullback—Leibler
information number.

THEOREM 3.3. Suppose that f is a second differentiable pdf satisfying (3.7), then
either f is a normal pdf or f is as in (3.8), for some a >0, v # 0 and 6 € R.

By Theorem 2 in Ferguson (1962), the normal family, with a fixed o2, and the family
in (3.8), with some fixed a > 0 and «y # 0, are the only one dimensional location families,
which are exponential families.

Theorem 3.1 gives the following for a one dimensional location family:
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THEOREM 3.4. Let {X;} be a sequence of i.i.d.r.v.’s with a pdf belonging to {f(-—
t):t € R} where f is a pdf. Suppose that the following conditions are satisfied:

(i) For each z € R, f(x) > 0.

(i) f has a continuous first derivative.

(#ii) —In f(-) is a strictly convex function.

(i) lim, .t oo f(z) = 0.

(v) limg— oo infrer [ (f(z — ) (f(2))' " dz = 0.

(vi) For each t,\ € R, [~ exp(Af'(z —t)/f(z —t))f(z) dz < co.

(vii) The function t € R f'(X —t)/f(X —t) € L is continuous.

Then, there exists a sequence of r.v.’s 0, = 9n(X1,...,Xn) such that Gn(én) =
infico Gn(t), where Gp(t) = —n~! Z;L:1 In f(X; —t). Besides, when 0 obtains, {6,}
satisfies the LDP with speed n and rate function I(t —0), t € R, where

(3.9) 1(t) = = jof n(Boexp\ (X = )/ F(X = ).

Condition (v) in the previous theorem follows if for some 0 < A < 1, [%_(f(x))'™* dz <
oo (using conditions (ii) and (iv)).

For a scale family of pdf’s, we have results similar to the ones for the location
family. For example, it is easy to see that if {A\"1f(A7x) : A > 0} is a scale family,
then this family satisfies (3.6) if and only if f(x) = aq|z|"tg1(In(—2)), if < 0 and
f(x) = apz~tgo(Inz), if x > 0, where aj, a9 > 0, a; + az = 1 and g; and g» are two
pdf’s satisfying condition (3.7). Hence, g1 and go are either normal or as in (3.8). This
implies that f(z) = aqfi(—x), if x < 0 and f(x) = a1 f2(x), if x > 0, where f1 and fo
are pdfs on (0, c0) for the form either f(z) = (27) /20 ta~Lexp (—271o2(Inz — p)?),
where € R, and ¢ > 0, or f(z) = (['(a))"te™ rc®2®™ 1 where a,7, ¢ > 0.

A common family of pdf’s is the exponential family. Let u be a measure on R
Define 9(t) := In [, e du(z). Let © := {t € R?: ¢(t) < co}. Let f(x,t) := et *=¥(0),
The family of pdf’s {f(x,t) : t € ©} is a full exponential family with a canonical
representation. By a change of parameter, any full exponential family of distribution
can have this representation (see Brown, 1986). It is easy to see that a full exponential
family of pdf’s satisfies (3.6). If ¢t € ©°, then the Kullback—Leibler information of f(-,t)
and f(-,0) is

(3.10)  K(f(-,1), f(-,0)) = ¥(0) —o(t) + /(t — 0)zexp(t'z — (t)) du(z)
=1(0) —¥(t) + (t = 0)' V()
because by taking derivates inside the integral,
-1
Vi(t) = /xexp(t'w) du(z) (/ exp(t'z) d,u(a:)) :
Theorem 3.1 gives the following for a full exponential family:

THEOREM 3.5. With the notation above, let 0 € ©° and let {Kp,}m>1 be a se-
quence of compact convex sets of R? contained in © and containing 6. Suppose that:
(i) There exists a sequence of T.v.’s 0, = 0,(X1, ..., X,) such that

¢(én) - é;LXn = tlél(f)(?/)(t) - t,Xn)a
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where X, :=n"" 3", Xj,
(i) Timp, o0 sUPg g, Infxcr (10(6 + At — 0)) — (0) — A((t) —(0))) = —o0.
(#ii) For each t1,t2 € ©°, Vip(t1) # Vip(ta).
Then, when 0 obtains, 0, satisfies the LDP with speed n rate function

(3.11) J(t):{fo(f(nt%f(w@)) i EES&

Condition (ii) in Theorem 3.5 holds if lim,, . inf;coc, % = 00, where

O ={t€0:d(t,00)>m™ |t —0] <m}.

Observe that taking A = 7|t — |71, where 79 < d(6, ©°¢), we get that

infxer (¥(0 + At = 0)) —(0) — A(¥(t) — (0)))
> (0 +7olt — 0171 (t = 0)) — ¥(0) — Tolt — 0]~ (&(t) — ¥(0)).

Ezample 3. Consider the measure p in R defined by p{0} = {1} =1 and p(R —
{0,1}) = 0. Let () :=1n [p, " du(z) = In(1+e') and let f(z,t) := et~V = ¢t /(14
el), for x € {0,1}. The family of pdf’s {f(z,t) : t € R} is a reparametrization of the
Bernoulli distribution. In this situation, the mle is not defined: sup,cg(tX, —In(1+€))
is not attained if either X,, = 0 or X,, = 1. Theorem 3.5 does not apply to this example.
The mle exists as a random element with values in [—oo,00]. Tt is easy to see that the
mle (when defined in [—o00, 00]) when 6 obtains satisfies the LPD in [—o0, co] with rate
function

In(1/p) ift = —00
Ip(t) =< uin(u/p) + (1 —uw)In((1 —w)/(1 —p)) ifteR
In(1/(1 —p)) ift =00

where p = €?/(1 + €%) and u = e'/(1 + e*). This example shows that condition (i) in
Theorem 3.5 is needed.

In Theorem 3.1, we assumed that for each z, the function g(z, -) is convex. Next, we
consider theorems which apply to other situations. Next, we consider the one dimensional
case.

THEOREM 3.6. Let h : S xR — R be a function such that for each x € S,
h(z,) : R — R is a nondecreasing function. Let 05 = inf{t : H,(t) > 0} and let
0 = sup{t : H,(t) < 0}, where H,(t) = n~1 Z?zl h(X;,t). Let 0, be a sequence of
[—00, oo]—valued r.v.’s such that HAS) <0, < éf). Let 6 € R. Suppose that:

(i) {h(-,t) : t € R} C L.

(i) E[h(X,0)] = 0.

(#ii) For each t > 6, P(h(X,t) < 0) > 0, and for each t < @, P(h(X,t) > 0) > 0.

Then, for each t > 0,

lim 0~ in (P{, > #}) = inf In(Blexp(A(X, t-))));
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for each t > 0,

lim n~'ln (P{én > t}) = }\Ié%ln(E[exp()\h(X, t+))]);

n—oo

for each t < 0,

lim n~'ln (P{én < t}) = )i\g%ln(E[exp()\h(X, t+))]);

n—oo

and for each t < 0,

lim n~tin (P{6, < t}) = inf In(Elexp(A(X, 1-))]),

n—oo
where h(x,t—) = lims_;— h(x,s) and h(z,t+) = lims_4 h(x, s).

The previous theorem is very close to Theorem 2 in Rubin and Kukhin (1983).
However, there is an error in Theorem 2 in Rubin and Kukhin (1983).

Example 4. Given a sequence of i.i.d.r.v’s {Xj}]?';l and 0 < p < 1, a sample p-

quantile 6, is defined as in the previous theorem with h(z,t) = I(x <t) — p. Suppose
that P(X < ) =p. Theorem 3.6 gives that for each ¢ > 6, such that P{X >t} > 0,

o . B pP(1—p)'?
i @00, 1) == (G )

and

. -1 H _ prl—p)? ;
A 0 {0 > 1) = —In ((F(t»p(l - F(t))l—p> |

and for each ¢ < 6, such that P{X <t} >0,

. —1 A _ pp(l _p)lip
nh_gion In(P{f, <t})=—1In ((F(t))p(l — F(t))1p>

and

Tim n n(P{d, < 1)) = ~1n ( P —p) ) .

(F(t=))P(1 = F(t=))'="

Ezample 5. Condition (iii) in Theorem 3.6 is needed. Suppose that h(x,t) =
(t—2)I(0 <z <t),ift>0; h(z,0) =0; and h(z,t) = (t —2)I(t <z < 0),if t <O0.
Suppose that X has a nondegenerate distribution symmetric about 0. Then, the rate
functions of the large deviations of é£}> and 67;2) are different. We have that éﬁﬂ) = —00,
if X; >0, foreach 1 <17 < mn; éﬁf) = max{X; : X; < 0}, if X; < 0, for some 1 <1i < mn;
92(3) = 00, if X; <0, for each 1 < i < m; 922) = min{X; : X; > 0}, if X; > 0, for
some 1 < i < n. We have that for each ¢ > 0, lim,,_,oo n ! ln(IP’{QAgll) > t}) = —oo and
lim,, o n 1 ln(]P’{ég) > t}) = —In2; and for each ¢ < 0, limy, oo n~? ln(]P’{é,(,l) <t}) =
—In2 and lim,, oo n~! ln(P{é,(f) <t}) = —o0.
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Theorem 3.6 gives the large deviations for the mle over an one-dimensional expo-
nential family under minimal conditions:

THEOREM 3.7. Le u be a measure in (R, B(R)) such that:
(i) For each a € R, u(R — {a}) > 0.
(ii) © :={t e R: [ e du(x) < oo} has nonempty interior.
Let (t) := In [e“du(z), t € O, and let f(z,t) := exp(tz — (), z € R, t € O.
Let ay, = inf{t € R: [e”du(x)} and let by, = sup{t € R : [e®du(x)}. Let {X;}
be a sequence of i.i.d.r.v.s from the pdf f(-,0), where € ©°. Let 6, = inf{t € ©° :
n~t Z?:l(w’(t) — X;) > 0}, where inf(0) = ay.

Then, for each by >t >0,

lim n~'In (]P’{én > t}) = —K(f(-1), f(-,0))

n—oo

and for each ay <t <0,

lim n~1n (P{én < t}) — —K(f(-, 1), f(-0)).

n—oo

The following theorem deals with the multivariate case.

THEOREM 3.8. Let © be a subset of RY. Let h: S x © — R? be a function. Let
{Km}m>1 be a nondecreasing sequence of compact sets of RY contained in ©. Suppose
that:

(i) There exists a sequence of r.v.’s 0, = 0,(X1,...,X,) such that H,(0,) = 0,
where Hy(t) :==n~" 3 0_) h(Xj,1).

(ii) {h(-,t) : t € O} C L%,

(iii) t € © — h(-,t) € L is a continuous function.

(iv) infreo_k, |H(t)| > 0, where H(t) = E[h(X,1)].

(v) For eacht > 0, lim,, o SUpy~ o (At—In(E[exp(AR,,(X))])) = oo, where Ry, (x) :=

h(w,t)—H(t
SUPtco— K, L(LH)(t) @l

(vi) For each m > 1, {n~! Yo M(X,t)  t € Ky} satisfies the LDP in loo(Kp)
with speed n.
(vii) For each t € ©° such that —infycga Elexp(Nh(X,t))] <0, and each t; € O,
- )\iélﬂgd Elexp(Nh(X,1))] < — N iAnfe]Rd Elexp(Mh(X,t) + Noh(X, t1))].

1,72

Then, 0, satisfies the LDP with speed n and rate function
I(t) = —inf{In(E[exp(N'h(X,1))]) : A € R9}.

Condition (v) in the previous theorem can be checked using Theorem 2.1.

Example 6. The previous theorem applies to many common parametric families of
(z—1)2
T2

pdf’s. For example, consider the mle over the family of pdf’s {f(z,t) :=

1
Vamt©
t > 0}, i.e. t71(X —t) has a standard normal distribution. If § obtains, 6,, satisfies the
LDP with speed n and rate function Iy(t) = r(¢/6), where

r(a) := 21 1n(2—|—(4—|—5a2(2—a)2)1/2)—2_1 ln(5a2)+2_1—2_1a+(3/4)a2—2_2(4+5a2(2—a)2)1/2.
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It is easy to see that if t # 6, (3.6) does not hold. The Kullback-Leibler information is

E(f(1). f(-.0) = (t/6)* — (t/0) — In(t/0).
For each t # 6, K(f(-,t), f(-,0)) > Iy(t), i.e. for a # 1, a®> —a —Ina > r(a).

4. Confidence regions

As mentioned in the introduction, the LDP of statistics can be used to obtain
confidence regions of non vanishing size such that their coverage probability goes to one
exponentially fast. These confidence regions have a certain minimality properties. Let
O be a parameter set. Suppose that, when 6 obtains, 0,, satisfies the LDP with speed n
and continuous rate function Iy(-). Given 0 < a < oo, let

(4.1) Co(X1,..., X)) ={0 €0 : (0, (X1,..., X)) < ).

Assuming that Uy, := {t € R? : Iy(t) < a} is an open set, then Cp(X7,...,X,) is a
confidence region for © such that

(4.2) limsup,,_,n ' In(Pp{f & Co(X1,...,Xpn)}) < —au
By the results in Section 3, the rate function for the LDP of mle’s is
(4.3) Iy(t) = — )\inﬂgd In Eylexp (N'ViIn f(X, t))].
€
Because of the equivariance properties of the mle, the constructed confidence regions

satisfy the usual equivariance properties. For a location family of pdf’s, i.e. © = RY,
f(z,t) = f(x —t), 8 € ©, where f is a fixed pdf, then

— fé}l{d In Eglexp (N (VIn f)(X —t))] = I(t —0),

where
I(t) = — )\iélﬂ{d In Eylexp (N (VIn f)(X —t))].

Hence, the confidence region in (4.1) is Co(X1,...,X,) = {0 € © : I(6, — 0) < a}.
Similarly, for a scale family (© = (0,00), f(z,t) = t~1 f(t~1z), where f is a fixed pdf),
Ip(t) = I(t/0), where

I(t) = — inf In £, {exp <§t ln(tlf(th))ﬂ .

Ezample 7. Let Xy,..., X, be aiidrv’s from an exponential distribution with
mean 6 > 0. The mle of 0 is 6,, = X,,. From the results in Section 3, 6,, satisfies the
LDP with rate function

Ip(t) = —iI)\lflnEe[eXp()\% In f(X,t))] = (¢t/6) — 1 —1n(¢/0),
when 6 obtains. Given a > 0, take a, < 1 < b, such that

(4.4) ao — 1 —1In(ay) = by — 1 —1n(by) = .
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Then, the confidence region in (4.1) is (b;'0,a;',0). By Example 9.3.4 in Casella and
Berger (2002), the shortest confidence interval based on the pivotal quantity #~1X,, has
the form [b=1X,,a"1X,], where al*" e~ = pl*7 'e=b. As n — oo, this condition
goes to (4.4). Simulations show that the two confidence intervals are very close.

For mle’s from a full exponential family the constructed confidence regions agree
with the confidence regions obtained by inverting the acceptance region of the likelihood
ration test with the null hypothesis Hy : ¢t = 6.

THEOREM 4.1. Consider the parametric family {f(z,t) == e/*=¥®) . ¢t € O} in
Theorem 3.2. Assuming that sup,cg L(t) is attained in the interior of ©, then

—n_1 n ﬂ — _ J ) _ Y 5\ — ) )
! <SuPte® L(t)) w(e) 1/)(6‘71) (6 9) v¢(9n) K(f( 76‘n)7 f( 70))7

where L(t) := [[;—, f(X;,1).

5. Proofs
PROOF OF LEMMA 2.1. If [(1) = 1, then

supsegor (I(f) = Ble!®) —1]) = supjean ner (1AL + f) = B[/ —1])
= SUPfer®1 zeR (/\ +I(f) - GAE[ef(X)] + 1) = SUPjcpay (l(f) — lnE[ef(X)]) ,

(the maximum over \ is attained when 1 = e*E[ef(X)]). O
Proor or LEMMA 2.2. Define

IO (g, ) = Sup{zyll Ajuj —In (E [exp (2721 )\jfj(X))D P A € ]R} ,
and

I (uy, ... um) :inf{J(l) le (/J‘bl)* JA(fj) =uy foreach 1 < j < m}.

Then, I and I are convex lower semicontinuous functions. To prove that the two
functions are equal, it suffices to prove that their Fenchel conjugates agree. Using (2.3),
we have that for each A\1,..., A, € R,

sup{zjmzl Ajuj — I (ug, . up) U, ..., Uy € R}
= SUDy, 4, cr SUD Z;nzl Njuj—J(): 1€ (E‘Pl)* JA(fj) =wuj foreach 1 < j < m}
SUDPy,, ... u,, R SUD Z(Z;-n:l Nifi)—=J(1):le (ﬁ‘I’l)* JA(fj) =uj foreach 1 < j < m}
sup {17y Aify) — T <L (£%)'}
n (B [exp (75 05 (X)) 0

We will need the following lemma:

LEMMA 5.1. (i) For each k > 0 and each function f € L1,

sup{|I(f)] : 1€ (L), J(1) <k} < (k+1+2"%)Ng, ().
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(ii) For each function f € L1,

(ks ) Mau () < supleCh) 0 € (%)) < 13

Proof. First, we prove (i). Let A := Ng, (f) (so that E[e* /) _1-\=1|f(X)[] <
1). By (2.2), for each [ € L1,

A ) < (1) + (B[ O) < () + Bled 00 1],
I(=A"1f) < J(0) + W(Ble™ X)) < J(1) + Ele™ /(0 1],
So, for J with J(I) < k,
L(f)] < AJ(1) + AE[X VOl — 1
< M+ B[ (X)) + AB[eX VOO -1 =AY F(X)]] < Ak + 1) + B[ f(X)]]
We also have that
ATLE[F(X)I)? < EN2F(X)P) < 2E[er Tl -1 - A1 f(X)]) < 2

From these estimations (i) follows.
As to (ii). Define

£l := sup{|E[f (X)v(X)]| : E[y(X)] = 1, E[¥2(y(X))] < 1}.

First, we prove that for each function f with E[f(X)] = 0 and each nonnegative
function v, with E[y(X)] =1,

(5.1) [ELf(X)y(X]] < (1 + E[W2(v(X))DIf ]l

(5.1) is obviously true if E[Ws(y(X))] < 1. If E[¥a(y(X))] > 1, take t = (E[Ua(y(X))]) L.
By convexity E[Ws(ty(X)+1—1)] < tE[W5(y(X))] = 1. So, |E[f(X)(ty(X)+1-1)]] <
1l and [BLF(X)(X)]| < E[@a(y(X)][If(X)][x Hence, (5.1) holds.

Next, we prove that for each function f with E[f(X)] =0,

In(2e)
~ In(2)

Given a function f with ||f|lx < 1 and E[f(X)] = 0, we get from (5.1) with v(z) =
S I(F(X) > 0)(Ele! X (£(X) > 0))) " that

(5-2) No, (f) < (e

E[f(X)e!OI(f(X) = 0)(E[e/ NOI(f(X) = 0))) ] < 1+ E[¥a((X))]
= 1+ E[e/POI(f(X) 2 0)(E[e/ M I(f(X) = 0)])~ ln(ef(X)(E[ef‘X)I(( )= 0))7Y)]
= 1+ E[f(X)I(f(X) = 0)e! O (E[e/COI(f(X) > 0)])) "] = In(Elef OI(f(X) > 0))).

So, E[e/X)I(f(X) > 0)] < e. Similarly, we get that Ele=/)I(f(X) < 0)] < e. Hence,
E[el/(X)] < 2e. Finally, we have that

>
2

E[eln(2)(1n(2e))*1|f(X)| —1—1In(2)(In(2e)) | f(X)]] < E[eln(2)(ln(2e))*1|f(X)\ —1]
—1
< (E[elf(X)l])ln(2)(ln(2e)) _1<1.
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Hence, if || f||x < 1, then Ng, (f) < ln((%) and (5.2) follows.

2)
Using that |E[f(X)]| < ||f]lx and (5.2),

Na, (£(X)) < Na, (f = EIf(X)]) + Na, (BIF(X)]) < 2221 = BIF(X)]lx + B (X))
< (14 252) 170l = (B22) 1£CO

Hence, (ii) follows. O

By the previous lemma, given a class of functions {f(-,#) : t € T} in £®* and
l € (£*)" with J(I) < oo, then t € (T,ds,) ~— I(f(-,t)) € R is a Lipschitz func-
tion, where dg, (s,t) = No, (f(-,s) — f(-,t)). We also have that if z € I(T) satisfies
supg et 1s,6(2(8), 2(t)) < oo, then t € (T,ds,) — 2(t) € R is a Lipschitz function. Ob-
serve that if supg ;cr [s¢(2(s), 2(t)) < ¢, then for each s,t € T, there exists | € (E‘bl)*
with J(I) < ¢, I(f(-,s)) = z(s) and I(f(-,t)) = 2z(t). So, by Lemma 5.1 (i)

2(s) = 2(t)] = [1(f (-, 5) = £ )] < (c+ 1+ 2"%)dg, (5,1).
PrROOF OF LEMMA 2.3. First, we prove (i). Let
I () =sup{ly, 4, (2(t1), -, 2(tm)) s t1, ..oyt € Tym > 1},

and let
I () =inf{J(1) : 1 € (L), 1(f(-,1)) = 2(¢t) for each t € T'}.

By Lemma 2.2, for each z € I(T), we have that I(V)(z) < I®)(z). To prove the reverse

inequality, we may assume that I(l)(z) < oo. Since for each r1,...,7m,81,...,8, € T
and each uy, ..., Um,v1,...,v, €R,
IT’l,mJ’m (ulﬂ s ) < I”‘l, T yS1,-00,8p (u17 sy Um, U1y e ey Up)y

we can find a sequence {s,} of T' such that

nh—{go Loy oo (2(51) s 2(sm)) = TV (2)
and {f( $n) 152, is a dense set of {f(-,t) : t € T} with respect to the norm Ng,. Take
€ (c® ) such that {,,(f(-,s;)) = z(s;) for each 1 < j <n and
s (2(81)5 .y 2(80)) 7L
Let k := sup,,~; J(ln) < oco. By Lemma 5.1, {l,,} is a bounded set of (chl)*. By
the Alouglu theorem, {l,} is compact in the a((/fbl)* ,L?1) topology. Hence, there
exists a subnet {l,,_} of {l,,} which converges in the weak* topology. Let I be the limit
of this subnet. We have that for each j > 1, [(f(-,s;)) = 2(s;). Since the functions
te (T,ds,) — I(f(-,t)) e Rand t € (T,ds,) — 2(t) € R are continuous, we get that
I(f(-,t)) = 2z(t) for each t € T. Hence, I (z) < J(I) < IM(2).

To prove (ii), we show that each sequence {z,} in l(T), such that I(z,) < k, has
a converging subnet. Take I, € (£®)" such that J(I,) < k+ 1 and L, (f(-,t)) = zn( )
for each t € T'. Since sup,,~; J(ln) < oo, there exists a subnet [, and [ € (£ * such
that I, — [ in the weak* topology. Hence, for each t € T, I,,_ (f(-,t)) — I(f(,t)). Since
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{l,} and [ are uniformly Lipschitz functions from (T, ds,) into R, sup,cp |ln, (f(:,1)) —
1(F( )] — 0.

Part (iii) follows from (i) and Lemma 2.2. O

PrROOF OF LEMMA 2.4. Fix k > 1. Since K := {z € Io(T) : I(2) < k} is a
compact set of Io(T'), K is totally bounded. Hence, (T,e) is a totally bounded set,
where e(s,t) = sup,c g |2(s) — z(t)|. We have that

e(s,t) = sup{|=(s)

—z(t)] : I(2) <k} >sup{|v — u| : Iy t(u,v) < k}
= sup{[I(f(-;8) = F(-, 1))l

L (La,) I 0) <k} = () Nou () = F(-1),

by Lemma 5.1. So, the claim follows. [J
PROOF OF THEOREM 2.1. We apply Theorem 2.8 in Arcones (2003a). Let d(s,t) =
|t — s|. By conditions (ii) and (iii), given € > 0 and ¢ € T, there exists a § > 0 such that

(5.3) E[ sup [f(X,s) - f(X,t)]| <e
SET,|s—t|<é

This implies that {f(X,¢) : t € T'} is a totally bounded set of Lq, i.e. condition (a.1) in
Theorem 2.8 in Arcones (2003a) holds. Conditions (i) and (ii) imply that there exists
a A > 0 such that Elexp(AF(X))] < oo, where F(x) := sup,cr |f(z,t)], i.e. condition
(a.2) in Theorem 2.8 holds. Conditions (i) and (ii) and the compactness of T" imply that
given A > 0, there exists a 7 > 0, such that

E[exp()\ sup ‘f(X,S) - f(Xv t)|)] < oo.
d(s,t)<n

i.e. condition (a.3) in Theorem 2.8 in Arcones (2003a) holds. Since T is a compact set
of R? and (5.3) holds, given e > 0, there exists ty,...,%, € T and § > 0 such that for
each1 <j<m,
E[ sup |f(Xat)_f(X7tj)|]§6
teT,|t—t;]<6
and T C UL {t € R? : |t —t;| < &§}. Hence, by the Blum-DeHardt theorem (see for
example Theorem 7.1.5 in Dudley, 1999), condition (a.4) in Theorem 2.8 in Arcones
(2003a) holds. O
In the proof of Theorem 3.1, we will use the following lemma:

LEMMA 5.2. Let © be a convex set of R, let K be a compact convex set contained
in O, let tg € K and let g : © — R be a convex function. If g(to) < inficor g(t), where
to € K, then inficpx g(t) < infigx g(t).

ProoF. Taket ¢ K. Let Cy ;= {u € R:tg+u(t —tg) € O} and let r; : C; — R
defined by r(u) = g(to + u(t — o)), u € C¢. Let a = sup{u € R : ¢ + u(t — to) € K}.
Since K is a compact set, tg € K° andt ¢ K, 0 < a <1 and tg + a(t —ty) € K. By
convexity of the function ry, a=1(r¢(a) —r.(0)) < (1—a)~1(r¢(1) —r¢(a)). Using that 0 <
infiear g(t) —g(to) < ri(a) —r(0), we get that 0 < ry(1) —ry(a) = g(t) — g(to +a(t—to)).
Hence, infsear g(s) < g(t). O

PrOOF OoF THEOREM 3.1. First, we prove that

(5.4) lim limsupn~'ln (}P’{én 4 Km}) = —o0.

Mm—00 5 0o
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By Lemma 5.2, .
P{b, ¢ K.} <P{G,(0) > . i;llg Gn(t)}.
€OK

By Corollary 3.5 in Arcones (2003b), for each compact set T C O, {G,(t) : t € T}
satisfies the LPD. In particular, we may take T' = {} UOK,,. Since the set {z € Ioo(T) :
z(t) > infiepk,, 2(t)} is a closed set of I, (T), we have that
limsup,,_, . 7t In (P{G,(0) > inficork,, Gn(t)})
< —inf{J(0): (€M), and I(g(-,0)) > infreor,, Ug(~ D)}

Using that if J(I) < oo, then I(g(+,t)),t € ©, is a continuous function, (2.6) and Lemma
2.2, we have that

(5.5) inf{J(l):1 € (Eq’l) JUg(+,0)) > infienr,, 1(g(-, 1))}
inf{J(l):1l e (E‘I’l) ( ( 0)) > 1(g(-, )) for some t € aKm}
= infieak,, iInf{J(l) ( <1>1>* JA(g9(+,0) > (g
= infyear,, inf{J(l ) e (L) ,l(g(~,0)) = l(g :
= infieok,, (—infrer In (Elexp(A(g(X,t) —

= —SUPyepr,, infaer In (Elexp(A(g(X,t) —

9

Hence, by condition (iv), (5.4) holds.

Next, we prove that if J(I) < oo, where [ € (E‘I’l)*, then the convex function
I(g(-,1)),t € ©, has a minimum on O. By (iv) and (5.5), for m large enough, I(g(+,0)) <
infieok,, 1(g(-,t)). Hence, Lemma 5.2 implies that {(g(-,0)) < infigxk,, 1(g(-,t)). There-
fore, the function I(g(-,t)),¢ € ©, has a minimum on ©.

To prove that for each open set U,

(5.6) liminfn ' InP{f, € U} > —I(U)

n—oo
it suffices to prove that for each t € R? and each € > 0,

(5.7) liminf n =t In(P{h, € B(t,e)}) > —I(t).

n—oo

If I(t) = oo, (5.7) is obviously satisfied. Assume that I(t) < co. By Lemma 5.2,

P{0, € B(t,e)} > P{G,(t) < t e@‘il?fit‘: Gn(t)}.

Since the set {z € lo(T) : 2(t) < inf, co:jt,—0|= 2(t1)}, where T' = {t} U {t; € © :
|t1 — t| = €}, is an open set of I (T),
(5.8) liminf, .o 7' InP{f, € B(t, )}
—inf{J(0) : 1€ (£%)", Ug(-, 1)) < infe,conjr, —rj=c Lg( £1))}.
Using that if J(I) < oo, and I(h(-,t)) = 0, then the function I(g(-,t)),t € ©, has a
minimum at ¢, and condition (vi), we get that
{I() 1€ (E9)°, 0, ) = 01066, ) = fui-cllat )

= lnftle@ [ty — t\—elnf{‘] lE( (I)l)*v h at) ( (’ ))_l(g('atl))}
infy, ety —tj=c f{J(1) 1 1 € (L2)",U(R(,1)) = ( (-, t1)) =0} > I(¢).
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So,

(5.9) I(t) =f{J(1): 1€ (L2)"U(h(-1)) = 0,1(g(-t)) < infy e, 1< U9 (- 11))}
> inf{J(1) : 1€ (L2)",1(g(,1)) < infy, coujsy—tj=c Lg(- 1))}

(5.8) and (5.9) imply (5.7).
We claim that for each closed set F,

(5.10) limsupn ™' InP{f, € F} < —I(F).

n—oo

We may assume that I(F') < co. The case I(F) = oo is similar. Take m such that

(5.11) inf{J(l): L e (£*)",1(g(-0)) > oot (1))} > I(F).

‘We have that A R .
P{b, e F} <P{0, e FNK,,} +P{0, & K,,,}.

Using that the set {z € loo(K),) : infiek,,nr 2(t) = infiek,, 2(t)} is a closed set of
loo(K ), we get that
limsup,, ., n " *1n <]P’{én ern Km}>

< limsup,, o n~ ' In (P{infsec prr,, Gn(0) = infick,, Gn(t)})

< —inf{J(): 1€ (ﬁq’l)* Jnfiepnk,, 1(g(-, 1) = infiek,, 1(g(-,1))}.
Let [ € (E‘I’l)* such that J(I) < oo and inficpng,, 1(g(-,t)) = infock,, (g(-,t)). If
l(g(-,0)) = infrcox,, U(g(- 1)), then, by (5.11), J (1) = I(F). Ifi(g(-,0)) < infycox,, 1(g(- 1)),
then, by Lemma 5.2, infico l(g(+,t)) = infiek,, I(g(-,1)) = infiernk,, ((g(-,1)). Thus,
there exists t; € F N K,, be such that inf;cq l(g(-,t)) = l(g(-,%)). By Lemma 5.1 (ii)

and hypothesis (v), I(g(-, %)), t € O, is differentiable in ©° and V(I(g(-,%))) = I(h(-,1)).
Hence, I(h(-,t;)) = 0,

J() = inf inf{J (1) : L € (LE)U(h(-,t)) = 0}.
and (5.10) holds. O

PROOF OF THEOREM 3.2. (i) By (3.5), it suffices to prove that Iy(t) > K(f(-,t), f(-,0)).
We have that

Io(t) = — infycpa In (Ep [exp(N'V: In(X, ))]) > —In (E(, {exp()\i,evt In(X, t))D
= —In (Eg [exp(In(f(X, 1)/ f(X,0)) — crp)]) = cro
and

K(f(7t)a f(a 0)) =E; [ln(f(X7 t)/f(Xv 0))]
= E; [A;ﬂvt In f(X,t)+ Ct’9:| = [\ g Vif(z,t) +crof(2,t) dp(z) = cte.

(ii) Let g(x) = In(f(=,t)/f(x,0)) — A\ Vi In f(z,t). Then,

—In (Ep [exp(\; 4 Ve In(X,1))]) = — 1n/e_g(”)f(m, t) dp(x)
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and

K(f(-,1) = [In(f(2,t)/f(2,0)) f(z,t) dp(z)
= J(X Vi 1nf x t)+9( NS (@, t) dp(z) = [ g(x)f (2, ) dp(z)-

Hence,
o [ ~ate)f@.0au(e)) = [ espl-gle)sto. ) dnto)

which implies that g is a constant P; a.s. [

PrROOF OF THEOREM 3.3. Let g(x) = In f(z). We have that A(¢)¢'(z) + c(t) =
g(x) — g(x —t), for each z,t € R. Taking derivatives with respect to ¢ and with respect
to x, we get that for each z,t € R,

(5.12) N(t)g"(z) = g"(z —t).

If ¢"(z) = 0, for each z € R, then g is a linear function, which contradicts the fact
that f is a pdf. So, there exists g € R, such that ¢”(z9) # 0. Using (5.12), we
get that N (t) = ¢"(x0 — t)/g"(x0). So, from (5.12), we get that ¢”(z¢ — t)g" () =
9" (x0)g" (z — t), for each z,t € R. Hence, h(z + y) = h(z)h(y), for each z,y € R,
where h(z) = ¢’ (x + ©0)/g"(x¢). This means that h satisfies the Cauchy’s exponential
equation, h(0) = 1 and it is measurable. So, by Theorem 5 in Aczél and Dhombres
(1989), h(x) = e** for some a € R. Hence, ¢”(z) = be® for some a € R and some
b#0. If a =0, then g(x) = 27022 + cx + d, for some b # 0 and some ¢,d € R, and
f has a normal pdf. If a # 0, then g(z) = a=2be? + cx + d, for some a # 0, b # 0
and ¢,d € R. Since e9(*) is pdf, b < 0 and ac > 0. Taking o = a'¢, ¥ = a and
0 =—a"'In(—a"te1b), we get that In f(z) = —ae?@=9 + ay(z — 0) + d + a0, where
a>0,v#0and 0 € R. Hence, f has the form in (3.8). O
We will need the following lemma:

LEMMA 5.3. Let X be a r.v. defined in a measurable space (S,S). Let h: SXxT —
R be a function such that h(-,t) is measurable for each t € T, where T is an index set.
Let tg € T. Suppose that for each t € T, h(X,t) € L®. Then, M(t) = inf{J(l) : | €
(Cq’l)* JA(R(t0)) = U(R(-,t)) = 0}, t € T, defines a lower semicontinuous function in
(T,ds, ), where de, (s,t) = No, (f(X,s) — f(X,1)).

PROOF. We need to prove that if dg, (t,,t) — 0, then, liminf, . M(t,) > M(t).
We may assume that ¢ := liminf,, o, M(t,) < co. There exists [,, € (L‘bl)* such that
J(l,) < M(t,) + n~t and 1, (h(-,t0)) = ln(h(-,t,)) = 0. Since sup,,~; J(I,) < oo, there
exists a subnet [, and ! € (E‘I’l)* such that [,,, — [ in the weak* topology. This implies
that J(I) < ¢ and I(h(-,t9)) = 0. By Lemma 5.1, I,_(h(-,t,,)) — l(h(-,t)). Hence,
J(1) > M(t) and the claim follows. O

PROOF OF THEOREM 3.4. Without loss of generality, we may assume that 6 = 0.
We apply Theorem 3.1 to g(z,t) = In(f(z —t)/f(z)), ® =R and K,,, = [-m, m]. Since
Gn(+), is a continuous function and lim;_, 1., G, (t) = oo, there exists a 6,, such that
Gn(6,) = infiee Gy (t). Hence, (i) in Theorem 3.1 holds. Condition (i) in Theorem 3.1
follows from (3.4). Using that f/(-)/f(-) is a decreasing function, for each ¢ > 0 and each

z € R,
f(@)/f(@) < —In(f(z —t)/f(2) < tf'(z —1)/f(z —1).
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Hence, for each A € R, Eplexp(Aln(f(X —t)/f(X)))] < oo. A similar argument holds
for t < 0. Hence, condition (iii) in Theorem 3.1 follows. Condition (iv) in Theorem 3.1
follows from (v). Again using that f’(-)/f(-) is a decreasing function, for each v > 0,
each t € R and each x € R,

0<—vtIn(f(z —t—v)/flx—1)+ (f'(x—1)/flz—1))
< —flle—t=v)/flz—t—v)+(f'(x=1)/flx-1))

By the monotone convergence theorem,
No,(=(f'(X =t =v)/f(X =t =) + (f(X = )/f(X = 1))) >0, asv = 0+.

A similar argument holds if v — 0—. Hence, condition (v) in Theorem 3.1 follows. By
Lemma 5.3, to prove condition (vi) in Theorem 3.1, it suffices to prove that if ¢; # to,
then

(5.13) irel%M()\ 0) < _/\1,1/I\IEERM(>\1’)\2),

where
M (A1, A2) := Eolexp( A1 (f'(X — 1)/ f(X = 1)) + X (f'(X — t2)/ f(X — 12)))].
Since limyso0 f(z) = 0, limy—. oo f/(2)/f(2) > 0 and limy_..c f/(z)/f(z) < 0. Hence
Po{ /(X — t1)/F(X —t1) < 0} > 0 and Po{f/(X — t1)/f(X —t1) > 0} > 0.
Hence, by (2.12), there exists A} € R, such that

(5.14) M(X{,0) = — inf M(),0)

Since —infyer M (A, 0) < —infy, a,er M (A1, A2), to prove (5.13), it suffices to prove that

1 —M (X} — inf M(\] .
(5 5) ( 1 0) < Alzne]R (/\15 )‘2>
The derivative at zero of the function M (AT, A2), A2 € R, is

Eo[(f'(X —t2)/ f(X —t2)) exp( AT f/(X — 1)/ f(X — 11))]

If we show that the previous number is different from zero, then (5.15) will follow. Since
A7 satisfies (5.14),

Eo[(f'(X = t1)/f(X = t1)) exp(ALf' (X = t1)/f(X = t1))] = 0.
Since f'(-)/f(:) is a decreasing function and ¢ # to,

Eo[(f'(X = t2)/ f(X — ta)) exp(Ae, f/(X — 1)/ f(X — t1))] # 0.

Therefore, condition (vi) in Theorem 3.1 follows. O
PROOF OF THEOREM 3.5. We apply Theorem 3.1 with g(z,t) = —t'z + ¥ (t) and
h(z,t) = —x + Vi(t). Condition (i) in Theorem 3.1 is assumed. Condition (ii) follows
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from (3.4). Since § € ©°, there exists a A\g > 0, such that [ el*1+0'#(2) < co. This
implies condition (iii) in Theorem 3.1. We have that

Bolexp(\g(X,0) — g(X, )] = [ expA(~0'z + $(6) + ' — $(6)))e”* 4O dyz)
= exp (P(0 + At = 0)) — 9 (0) = AW (1) —9(0))) -
Hence, (ii) implies condition (iv) in Theorem 3.1. Condition (v) in Theorem 3.1 holds

because for each ¢t € ©° Vi (t) exists. For each t,to € ©° with t; # to, taking
)\1 = 7/\2 = ’U,(Vl,[)(tl) — Vw(tg))7 we get that

Al,lilzf RE[exp()\ h(X,t1) + Ayh(X, t2))] < ig%exp(u|vw(t1) — V(t2)]?) = 0.

Hence, condition (vi) in Theorem 3.1 holds. O

PRrROOF OF THEOREM 3.6. We only prove the case t > 0. The casest =6 and t < 0
is similar. Let Hy(t) = n~' Y7 h(Xj,t) and let Hy,(t—) = n~" 37 h(Xj,t—). We
have that for each ¢t > 6,

(H,(t—) <0} c {89 >t} c {6, >t} c {0 >t} = {H,(t—) < O}
and
(H,o(t+) < 0} = {0 >t} € {0, >t} c {0 > ¢} C {H,(t+) <0}
By hypotheses (ii) and (iii), we have that 0 = E[h(X,0)] < E[h(X,t-)] < E[h(X,t+)]
and if < t < s, then
sup{u : P{h(X,t—) < u} = 0} <sup{u:P{h(X,t+) <u} =0}
< sup{u : P{h(X,s) <u} =0} <O0.

Hence, by (2.9) and (2.11),
limy—oo n~! In (]P’{én > t}) = infreg In(ElexpOMh(X, t-)))).

and

n—oo

lim n~'ln (P{én > t}) = )i\relg{ln(E[exp()\h(X7 t+))]).0

PROOF OF THEOREM 3.7. We apply Theorem 3.6 to h(z,t) = ¢/(t) — z, t € ©°.
Note that Theorem 3.6 holds true if the range of ¢ is restricted to ©°. Since p is
nondegenerate, v is a striclty convex function. Hence, h(x,t) = ¢/ (t) —x is an increasing
function on ¢, for each fixed z. It is easy to see that hypotheses (i) and (ii) in Theorem
3.6 hold. Let a,, = sup{t € R: u(—o0,t) =0} and b, = inf{t € R : u(t,c0) = 0}. Then,
for each t € ©°, a,, < ¢/(t) < b,. The support of X contains (a,,b,). Hence, hypothesis
(iii) in Theorem 3.6 hold. We have that

infrer In(Eg[exp(Ah(X,1))]) = infaer In [ exp(A(y'(t) — z)) exp(zt — ¥(0)) dp()
= infaer (AY'(t) + (0 — A) = 4(0)) = (1) — ¥(0) — (t = 0)y'(t) = —K( (1), f(-,0)),
because of convexity of the function 1,
infxer (AY'(2) +¢(0 = A) —¥(0)) — (¥(t) — (8) — (£ — 0)¥'(1))

infaer(P(0 — A) —(t) — (0 — A =)y’ (1))
infuer(YP(u) — ¥(t) — (u —)Y'(t)) = 0. U
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PROOF OF THEOREM 3.8. First, we prove that

(5.16) lim limsupn~!ln (P{én 4 Km}> = —00

Mm—00 n_, 50

Given 1 > € > 0, we claim that for each m > 1,
(5.17) {(n™' ) Rn(X;) <1—€} C {0, € K}
j=1

If n=! > i1 Bin(Xj) <1 —¢ then for t € © — K,
[H ()| = [Ha(t)| < [Hn(t) = H(t)| < n™" 350 [W(X;,t) — H(t)|
< HBIT 5 R (X;) < (1= ¢)[H(t)].

So, fort € ©—K,,, |Hy(t)| > €|H(t)| > einfigk,, |H(t)| > inf;zx, |H(t)| > 0. Therefore,
(5.17) holds. By (2.13) and (5.17),
n~'ln (P{én ¢ Km}) <n 'ln (P{nfl S R(X)) > 1 e})
< —supys (A1 =€) = In (Elexp(ARm (X))])).

Letting m — oo, using (v), (5.16) follows.
Next, we prove that for each ¢t € R? and each € > 0,

(5.18) liminf n = In(P{h, € B(t,e)}) > —I(¢).

n—oo

We may assume that I(¢) < co. Take an integer m > 1 such that

limsupn ™' In (}P’{én & Km}) < —I(t).

n—oo

We have that

P{, € B(t,e)} >P{  inf |H,(t1)| > 0} —P{0, & K,,,}.

t1E€EKm,|t1—t|>e

Since the set {z € loo(T') : infy, ex [2(t1)| > 0} is an open set of I (T), where T' = {t; €
K, i |t1 —t] > €},

liminf, oo n™  InP{inf; e, 1, —t)> [Hn(t1)] > 0}
> —inf{J(1): L€ (L2 inf; e x, 6y —t)>e L(R(-, t1))] > 0.

From the previous estimations, to finish the proof of (5.18), we need to get that

(5.19) inf{J(l): 1 e (L), inf [l(h(-,t1))] > 0} < I(2).

t1 €K, |t —t|>€
By condition (vii), I(t) < ¢, where

g:=inf{J(): 1€ ([,q’l)* (1) =U(h(-,t1)) =0, for some t; € Ky, [t1 — t] > €}.
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Thus, for each 7 > 0, there exists lo € (£*)", with {(h(-,t)) = 0, J(lp) < I(t) + T and
J(lo) < gq. Since lg(h(-,1)), t € ©, is continuous, inf;, ¢k, 4, —t|>e |lo(h(-,11))] > 0 and

inf{J(l): 1€ (L) inf I(h(-,t 0} < J(lo) < I(t) + .
(IO e (€)', it UG 0)) > 0} < J) <10+
Since 7 > 0 is arbitrary, (5.19) holds.

We claim that for each closed set F', we have that

(5.20) limsupn ™t InP{f, € F} < —I(F).

n—oo

Assume that I(F) < oo. The case I(F) = oo is similar. Take m > 1 such that

limsupn ! In (]P’{én & Km}) < —I(F).

n—oo

‘We have that

P{0n € F} <P{0n & Ky} +P{,_inf [Hn(t)] = 0}.

Since the set {z € loo(F' N Kyy,) @ infiepnk,, |2(t)] = 0} is a closed set of oo (F' N K,p),

limsup,, ., n ' In(P{infscprr,, |H,(t)] = 0})
< —inf{J(1): 1 € (L), infiepnk,, [I(A(~1)] =0} = —-I(FN K,,) < —I(F).0

PROOF OF THEOREM 4.1. By algebra

ot (—EO N _evw _wii
1(Supt€®L(t)> (B — 0) X,y — (62) + 0(6).

By (3.10), ) ) ) )

Since the mle maximizes likelihood function, V4 (6,) = X,,. O
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