Moderate deviations of empirical processes

Miguel A. Arcones

Abstract. We give necessary and sufficient conditions for the moderate devia-
tions of empirical processes and of sums of i.i.d. random vectors with values in
a separable Banach space. Our approach is based in a characterization of the
large deviation principle using the large deviations of the finite dimensional
distributions plus an asymptotic exponential equicontinuity condition.
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1. Introduction

We study the moderate deviations for different types of sequences of empirical
processes {U,,(t) : t € T'}, where T is an index set. We also consider the moderate
deviations of sums of i.i.d. random vectors with values in a separable Banach space.
Our results are stated as functional large deviations with a Gaussian rate function.

General references on (functional) large deviations are Bahadur [4]; Varadhan
[23]; Deuschel and Stroock [9] and Shwartz and Weiss [21]. We consider stochastic
processes as elements of [ (7"), where T' is an index set. (o (7") is the Banach
space consisting of the bounded functions defined in 7' with the norm ||z|. =
sup,cr |z(t)|. We will use the following definition:

Definition 1.1. Given a sequence of stochastic processes {U,(t) : t € T}, a sequence
of positive numbers {e,, }22 ; such that €, — 0, and a function I : [, (T) — [0, 0],
we say that {U,(t) : ¢ € T} satisfies the LDP (large deviation principle) with
speed €, ! and with a good rate function I if:
(i) For each 0 < ¢ < 00, {2z € Io(T) : I(2) < ¢} is a compact set of I, (T).
(ii) For each set A € I (T),

—I(A°) <liminf, o €, log(Pr.{{U,(t) : t € T} € A})
< limsup,,_, . €, log(Pr*{{U,(t) : t € T} € A}) < —I(A),

where for B C loo(T), I(B) = inf{I(z) : z € B}.
By Theorem 3.2 in Arcones [1], this definition is equivalent to the large de-

viations of the finite dimension distributions plus an asymptotic equicontinuity
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condition. This will allow us to obtain necessary and sufficient conditions for the
moderate deviations of the considered stochastic processes.

We consider stochastic proceses {Uy,(t) : t € T} satisfying the large devia-
tion principle with a Gaussian rate function. This rate function is related with
a covariance function on T. By a covariance function R on T, we mean a func-
tion R : T x T — R such that for each s,t € T R(s,t) = R(t,s), and for each
AM,...,Am € R and each t1,...,t, € T, E;’szl AjARR(t;,t,) > 0. By Theorem
I1.3.1 in Doob [10], a function R : T'x T'— R is a covariance function if and only
if there exists a (Gaussian) process {Z(t) : t € T'} with mean zero and covariance
given by F[Z(s)Z(t)] = R(s,t), for each s,t € T. In the considered situations, the
rate function of the LDP of {(U,(t1),...,Un(tm))} is

(1.1) Iyt (Ut Uy) = . su];z\ Z)\juj —27! Z NAeR(t5,te) |
LseesAm j=1 k=1

where ui,...,u, € R. This is the rate function of the LDP of the finite di-
mensional distributions of a Gaussian process. If {Z(t) : t € T} is a Gauss-

ian process with mean zero and covariance function R, then for each tq,..., %,
(n=Y2Z(ty),...,n 2 Z(t,,)) satisfies the LDP with speed n and the rate function
in (1.1).

For sums of i.i.d.r.v.’s, the moderate deviations can be defined as follows.
Let {X;}52, be a sequence of nondegerate i.i.d.r.v.’s such that for some A > 0,
E[eMNX11] < 0o, Let {a,,}2, be a sequence of real numbers such that a,, — oo and
a;'n'/? — oo, it follows from the results in Petrov [19] that for each ¢ > 0,

Tlim_a?log(Pr{| Y2 (X; — ELX)))| > tn'/2a,}) =~/ (2Var(X1).

j=1

Cramér [8] obtained the previous result assuming the extra condition that

a, 1n1/21ogn — oo. We obtain necessary and sufficient conditions for the moderate
deviations of sums of i.i.d.r.v.’s which apply to r.v.’s which may not have finite
second moment. In particular, we obtain that {n~=1/2a;" Z?Zl X} satisfies the
LDP with speed a? and a Gaussian rate if and only if E[X] =0, E[X?] < oo and

lim a;?log(nPr{|X| > n'%a,}) = —cc.

We also give necessary and sufficient conditions for the moderate deviations with
a Gaussian rate of empirical processes and for sums of i.i.d.r.v.’s with values in a
separable Banach space. The partial sums processes obtained from the processes
above satisfy the LDP under the same conditions as the regular sums do. Moderate
deviations for empirical processes have been studied by Borovkov and Mogul’skii[5,
6], Ledoux [15] and Wu [24, 25], among other authors. In other situations, moderate
deviations may have not a Gaussian rate.
We will use the usual multivariate notation. For example, given

u = (ug,...,uq) € R and v = (v1,...,v4)" € R%, /v = Z;l:l ujv; and |u| =
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(> u?)l/g. Whenever, we consider a sequence of i.i.d.r.v.’s {X,}, X will denote
a copy of X;. ¢ will denote an arbitrary constant which may vary from occurrence

to occurrence.

2. Moderate deviations of empirical processes
The basis of our work is the following theorem:

Theorem 2.1. (Theorem 3.2 in Arcones [1]) Let {U,(t) : t € T} be a sequence of
stochastic processes, let {e,} be a sequence of positive numbers that converges to
zero. Let I : 1oo(T) — [0,00] and let Iy, 4, : R™ — [0,00] be a function, where
t1,...,tm € T. Let d be a pseudometric in T. Consider the conditions:

(a.1) (T, d) is totally bounded.

(a.2) For each ti,...,tm € T, (Up(t1),...,Un(tm)) satisfies the LDP with
speed €, and good rate function Iy, . ¢ .

(a.8) For each T > 0,

lim limsupe, log [ Pr*< sup |U,(t) —Un(s)| > 7y | = —cc.
1=0 n—co d(s,t)<n

(b) {Un(t) : t € T} satisfies the LDP in lo(T) with speed €' and with good
rate function I.

If the set of conditions (a) is satisfied for some pseudometric d, then (b) holds
with

I(z) = sup{ly,,. .+, (2(t1),.. ., 2(tm)) 1 t1, ... tm € T,m > 1}.
If (b) is satisfied, then the set of conditions (a) holds with

_____ o (UL, oo Uy) = 1Inf{I(2) 1 2 € loo (T), (2(t1), - - -, 2(tm)) = (U1, ..., um)}

and the pseudometric p(s,t) = > 7, k=2 min(py(s,t), 1), where pi(s,t) = sup{|us—
w] : Is(ur,u2) < k}.

First, we see how to express the rate function I, when the rate function for
the finite dimensional distributions is given by (1.1).

Theorem 2.2. Let T be a parameter set and let R be covariance function on T.
Let {f(-,t) : t € T} be a class of measurable functions on the same measure space
(Q, F, ) such that for each t € T, [ f(x,t)du(z) =0 and [(f(z,t))*du(z) < oo,
and for each s,t € T, [ f(x,s)f(z,t)du(x) = R(s,t). Then,
(i) For each t1,...,tym €T, and each uy, ..., uy, € R,
Sup{zjnll Ajuj — 21 kazl AARR(E,te) c Ay A}
— w2 12 (0) du) :

v € Lo, [~(x)f(z,t;)du(z) = z(t;) for each 1 < j < m}.
Besides, if the infimum above is finite, there exists a function ~ attaining the
mfimum.
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(i) If {f(-,t) : t € T} is a separable subset of La, then for each z € loo(T),

sup{ly, i, (z(t1), ..., 2(twm)) s t1, ..o b € T,m > 1}
= inf{27! [y*(z)du(z) : v € Lo, [~(z)f(x,t)du(z) = 2(t) for each t € T},

where

Ly (un, o ty) = Inf{271 [%(2) dp(z) :
v € Ly, [~y(x)f(x,t;)du(z) = 2(t;) for each 1 < j < m}.

As before, if the infimum above is finite, there exists a function -y attaining the
infimum.

Proof. Part (i) follows from Lemma 4.1 in Arcones [2] with ®(z) = ¥(z) = 27122,
z € R. Since a bounded set of Lo is weakly compact, the infimum in part (i) is
attained.

Let

IV (2) == sup{ly, 1. (z(t1), ..., 2(tm)) 1 t1,. ..t € Tym > 1}
and let

I?(z) .= inf{27} /fyz(x) du(x) : /’y(x)f(m,t) du(x) = z(t) for each t € T'}.

It is obvious that for each z € I(T), I®(z) > IV(z). Next, we show that
IM(2) > I (2). We may assume that 1) (z) < co. Take a sequence {t,} in T
such that

IW(2) = lim I, ., (2(t1),..., 2(tn)).
Given rq,...,7m,81,...,8 € T, we have that
I?”l,n-ﬂ“m (Z(Tl)v RN} Z(Tm)) < L"l,---#mﬁl,---ﬁk (Z(rl)a sy Z(T’m), Z(Sl)a sy Z(Sk))

Hence, we may assume that {f(-,¢,) : » > 1} is dense in L. Let v, € Ly be such
that

ZA/ﬁ@MM@:%wM@w%”J%»

Then, there exists a subsequence y,, and v € Ly such that ~,, converges weakly
to . This implies that for each m > 1,

ltm) =l [ 20 (@) @) i) = [ 2(@) (e t) du(o).

Since 1) (2) < o0, 2z : (T,] - ||l2) — R is continuous. From this and the fact that
{f(-,tm) : m > 1} is dense in Lo, we get that z(t) = [ y(z)f(z,t) du(z), for each
telT. O

Given a covariance function R, there exists a Gaussian process {Z(t) : t € T}
with mean zero and covariance R. Let £ be the closed vector space of Ly generated
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by {Z(t) : t € T}. If {U,(t) : t € T} satisfies the LDP with speed ¢, ! and for
each t1,...,t, € T, the rate function of the LDP of {(Uy(t1),...,Un(tm))} is

(2.1) I (Ut Uy) = . supA Z)\juj —9! Z NAeR(t5,te) |
1y \m j_l j,k}zl

then, by theorems 2.1 and 2.2, the rate function of the LDP of {U,(t) : t € T} is
(2.2) I(z) = inf{27'E[y?] : v € L, E[yZ(t)] = 2(t) for each t € T}.
It follows that if sup,cp R(t,t) > 0, then for each A > 0,
inf{I(z) :sup|2({)| > A\} = —————.
Q) suple()] 2 3) = 5o
If sup,cp R(t,t) = 0, then

So, if sup,cp R(t,t) > 0, then for each A > 0,
)\2
lim ¢, log [ Pr{sup |U,(t)| >} | = —————.
e (Prisup U, (0] > A} ) = s

If sup,cp R(t,t) = 0, then for each A > 0,

lim €, log <Pr{sup |U,(t)] > )\}> = —o0.

We also have that

pk(s,t) == sup{|ug — u1| : Is¢(ur,uz) <k}
=sup{|E[v(Z(s) = ZW)| : v € L£,27 E[Y?] < k} = (2k)'/?[| Z(s) — Z(t)|2-
So, the LDP implies that {Z(¢) : ¢t € T} is a totally bounded set of L.

The rates above appear in the large deviations of Gaussian processes. If
{Z(t) : t € T} is a Gaussian process with mean zero and covariance R, then the fi-
nite dimensional distributions of {n~1/2Z(t) : t € T} satisfy the LDP with speed n
and the rate function in (2.1). If sup,cq | Z(t)| < o0 a.s., then {n=Y/2Z(t): t € T}
satisfy the LDP with speed n and with the rate in (2.2).

To get the LDP for the finite dimensional distributions, we will apply the
following lemma.

Lemma 2.3. Let {X,, ; : 1 < j <n} be a triangular array of independent r.v.’s with
values in R? and mean zero. Let {a,}%; be a sequence of real numbers converging
to infinity. Suppose that:
(i) The following limit exists and it is finite: lim, o0 >35_) B[X, ; X}, ;] =1 2.
(ii) There exists a constant T such that for each 1 < j < n, |X, ;| < Ta;!

(ii) For each & >0, a,? 3" Pr{|X,, ;| > da,'} — 0.
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Then, a,;* > j=1 Xn,j satisfies the LDP with speed a2 and rate function I(u) =
sup, (Nu —271AZN).

Proof. By Theorem II.2 in Ellis [12], it suffices to prove that for each A € R%,

lim a, ?log(Elexp(an Y N X, ;)]) =27 NEA,
n—oo j:l

First, we prove that by a Taylor expansion, we have that

(2.3) a,? Y Elexp(an\' X, ;) — 1] — 27"V,

j=1

Since an| Xy |, 1 < j < n, are uniformly bounded, we need to prove that

a,? > EllanX Xn 1% — 0.
j=1
We have that for any § > 0,

a,> > EllanN X 1%
j=1
=a,% > BllanN Xp ;[ Lo, x, 1<s] + a2 > EllanX X ;[ I, x, ,1>s]
=1 j=1

SO EN X i X0, A + IMPra,? Y T Pr{| X, ) > day )
Jj=1 Jj=1
Hence, limsup,, .. a2 Py EllanN X, ;3] < §|ANEA. Since § is arbitrary, (2.3)
follows.
Again, using that a,|X, ;|, 1 < j <n, are uniformly bounded, we have that

a,® 327 |log(Elexp(an) X ;)]) — Elexp(an\ Xn,;) — 1|
ca,? 301 |Elexp(anX Xn ;) — 1]?

ca;? > i1 |ElexplanN Xy j) — 1 — anX Xn ;1|2

can? 3y (EllanN Xy %))

ca;? > i1 Ella,N X, ;'] — 0.

INIA I INA

O

Next, we consider the moderate deviations of sums of real valued i.i.d.r.v.’s.
We present a general theorem which applies to r.v.’s which may not have finite
second moment.

Theorem 2.4. Let {X;}72, be a sequence of i.i.d.r.v.’s. Let {an};2 1 and let {c, 12,
be two sequences of real numbers such that a, /' oo and a,'c,'n / oo and
{n=tc2} is nondecreasing. Then, the following sets of conditions ((a), (b), (c))
are equivalent:
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(a.1) lim, .o a,2log(nPr{|X| > c,a,}) = —oo.

(a.2) a; e, 'nE[XI(|X] < ancy)] — 0.

(a.3) ¢;?nVar(XI(|X| < a;le,)) converges to a finite limit o2,

(b) {c;ta;t Z?Zl X;} satisfies the LDP with speed a2 and a rate function I
such that limy| ALI(N) = 0o and for each § > 0, inf{I(z) : |z| >} > 0.

(c) {c;ta;? Zgnzul] X; : 0 <u <1} satisfies the LDP in ([0, 1]) with speed
a? and a rate function I such that limy_ oo A\~ 1 inf{I(2) : supg<,<; |2(u)] > A} =
oo and for each § > 0, inf{I(2) : supgey<; |2(u)| > 6} >0.

Moreover, the rate function in (l;) is given by

2

_ e 2
(2.4) I(z) = 257 if 0> 0.
and
0 ifz=0
(2.5) 1(x)=4 " .~
oo if z#0
if 02 =0.
The rate function in (c) is given by
(2.6)
I(z) = 271g72 fol (2'(u))?du if 2(0) = 0 and z is absolutely continuous
RS else

if 02 > 0, and

(2.7) 1) = 0 %f SUPg<, <1 |2(u)] =0
oo if supg<,<q |z(u)] >0

if 02 =0.

Proof. First, we prove that (a) implies (b). Observe that if n=/2¢, — M < oo,
then E[X?] < oo and E[X] = 0. If n="/2¢,, — oo, then E[X?] = co. For each
6 >0,

a,*log(Pr{|c; 'ay' > X1 x,15a,e,| = 0}) < a,,” log(nPr{|X| > ancy}) — —o0.
j=1

Next, we prove that for each § > 0,
(2.8) a,*logPr{le,'a, ' > " X1, 1, Cixicane.| = 0} — —o0.
j=1

We have that for each A > 0,

Cl;Q IOg Pr{|c;1a;1 Z;L:I Xj]a,jlcw,§|Xj|<anCn| Z 6}
< =)+ na;?log Elexp(Ac;, tay,

X|Ia;1cn§\Xj|<ancn)]'
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Hence, if we show that for each 0 < A < oo,

(2.9) na, 2Elexp(Xc;, ta, | X|) —1] — 0,

IaZICnSIXjKancn
then (2.8) follows by letting A — co. Given 1 < M < oo,
na, ?Elexp(Ac;, tan| X )1, —1]

n Cng‘xl<ancn
= na,? fooo Pr{exp()\cglan|X|)Ia;16nS|X|<ancn —1>t}dt
< (M —Dna?Pr{|X| > a;le,}
+nay? [T Pr{iexp(Ac;tan|X|) = t + 1, ancn, > | X|}dt =: T+ I1.

By the change of variables ¢t + 1 = e, we have that
/\af1
I71< a;2n/ Pr{|X| > ur"'c,a, ' }e" du.
M

Take m = m(n, u) such that a,,c,, < ul"'c,a,! < ami1cmyr. Observe m(n,1) —
00 as m — 0. So, given ¢ > 1 4+ 2\, for m large

mPr{|X| > amcn} < —e™
Hence, for © > 1, and n large enough,

na; 2 Pr{|X| > uX~lc,a;}e"

< nuN%¢ a2, e Pr{|X] > cpam et
_ _ _ 2
S ’I’L>\2Cn2&72”+163n+1m 16 Cam+u'

2 1, 1 n 22 1
U< AL, AmCm S UATCpa, - < GnCyp, for n large, m < n. So, ¢, %c;,nm™ <1,

—2.2 2 -1 -2.2 2 -1 2
ne, A 1Cpm - < 2ne,“ay,c,m” T < 2ay,

We also have that for m > 3, a2, ¢, < a2,ci(m+ 1)?m™2 < 2a2,c2,. Since

and
u < AC;1ananb-i-lc’m-‘rl < ZAcglanaman < QACIER
From these estimations, for n large enough,
(2.10) na, 2 Pr{|X| > A" tua, e, }e" < 2)\2afne*m3ﬂ+“
< 2)\26—(c—1)afn+u < 2)\26—((c—1)2*1,\*1—1)u_
Hence,
)\ai
limsupnagz/ Pr{|X| > A cpa; tule” du
n—oo M
< 2/\2((0 _ 1)2—1)\—1 _ 1)—16—((0—1)2*1)\*1—1)M.
Since M can be made arbitrarily large, I1 — 0. By the previous estimations with

u =\, we get that I < (eM — 1)2A2e~(c=Dan+X _, 0. Hence, (2.9) follows.
It follows from (2.9) that

-1 -1
na, ¢, E[|X‘Ia;1cn§\Xj|<ancn]

—0

By the previous estimations, it suffices to show that
{c;ta;! i (X cazte, — EXi1 x <oz, ])} satisfies the LDP with speed
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a? and rate function I(t) = sup,cp(ut — 27 u?0?). This follows from Lemma 2.3.
Therefore, we got that (a) implies (b).

Next, we prove that (b) implies (a). Let J(¢) = inf{I(u) : |u| > t}. Then, for
each t > 0,

lim supa 2log(Pr{a; ¢, Z X;| >t}) < —J(¢).
By Lemma 2.1 in Arcones [3], for each ¢ > 0,
limsup a, % log(n Pr{|X| > 3a,c,t}) < —J(t).
Given t > 1, m = m(n,t) such that anc, < 371t tepan < ama1cme1. Observe
that for each ¢t > 0, m(n,t) — co as n — oo. Since t > 1, m < n. For n large,
anCn < Jtam+1Cm+1 < 6tamen < 6tancn, < 6tn~1/2m1/?

So, m~'n < 36t2. We also have that

a? < 36t%c, %a?, c? < 36t°n"'aZ,m < 36t%a, 'c, ta ¢, < 12ta?,

ApCp-

From these estimations, for n large enough,
(2.11) nPr{|X| > ancn} < nPr{|X| > 3tamenm}
< mne 2 LJ(t)a?, < 362 —27% ()l

Since, limy_o, t1J(t) = oo, (a.1) follows.

Since for each § > 0, inf{I(t) : |t} > 8} > 0, ¢;'a; ' Y20, X; 2 0. By the
necessary and sufficient conditions for the weak law of the large numbers (see for
example Corollary 10.1.3 in Chow and Teicher [7]), (a.2) follows.

Since (a.1) and (a.2) hold, by the proof (a) implies (b), we have that the sum
of the r.v.’s for |X;| > a,'c, is asymptotically exponentially negligible. So, we
have that for each ¢ > 0,

hmsupa 2log(Pr{|c, *a;! Z Xil\xj<azte, = EXi x <ozt DI 2 1)) < —2(2).
j=1

Let {X/} be an independent copy of {X,,}. Then, for each t > 0,
I;rr?solipa;Q log(Pr{|c; ta, zn:(XJIIX <azlen XJI|X,‘<% o) =2t} < —z(1).
- —
By Proposition 6.14 in LedoJuX and Talagrand [16],
(2.12) Elexp(Xc mi Xilix,1<asten = Xiixs <0z e )
" 1< 2)\0,215+262)\a2(t+a_2)72z(t)a2 %

)]

Elexp(Ac an\z X; I\X |<antlcn - Xj I\X/|<aﬂ cn)
j=1
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Hence, for 0 < A < 271712(t), and n large enough.

Elexp(Aeg'an] D (X5 x, 1 cazte, = Xilix carte, )] < 2622707
J=1

Now, Lemma 10.2.1 in Chow and Teicher [7] implies that for 0 < A < 271,

exp(A\2aZs2g(—2))(1 — 2)?%))
< Elexp(Xe,'ay Z?:l(XJ’I\XjKa;lcn - XJ/'IIX}KaElcn))]’

where g(z) = 272(e®* — 1 — ) and s2 = c;QnVar(XI‘XKa;l
limsup,,_, . s2 < oo. If lim,,_,» 82 does not exist, we have sequences such that
(a.1)—(a.3) are satisfied with different 0. But, this implies that there are different
rates functions for the LDP of the whole sequence, in contradiction. Therefore,
(a.3) holds. Hence, (b) implies (a).

The contraction principle implies that (c¢) implies (b).

Finally, we prove that (b) implies (c). We use Theorem 2.1. Let

., )- Hence,

[nu]

Un(u) = c;la,;l Z(XjI\Xj|<aﬁlcn — E[XjI|Xj|<a,Tlan7O <u<l.
=1

We need to prove that {U,(u) : 0 < u < 1} satisfies the LDP in ([0, 1]) with
speed a2. The convergence of the finite dimensional distributions follows from
Lemma 2.3. The corresponding covariance function is

(2.13) R(uy,ug) = lim Cov(Uy,(uy), Un(usz)) = min(uy, ug)o?.

To prove (a.3) in Theorem 2.1, it suffices to prove that for each 7, M > 0, there
exists a function 7 : [0, 1] — [0, 1] with finite range such that

(2.14) limsup a;,? log (Pr{ sup |Up(u) — Up(w(u))| > T}) < -—-M.

n— o0 0<u<l

Let
[nu]
Ul (u) = ¢, a;? Z(X]’.[‘X;Ka;l% - E[Xﬂlx“w;l%}),o <u<l.
j=1

Given a positive integer m, let 7 : [0,1] — [0,1] given by w(u) = % By sym-
metrization (see Lemma 1.2.1 in Giné and Zinn [13]) and the Lévy ’s inequality,

we have that

Pr{supg<,<1 |Un(u) = Un(m(u))| = 7}

Pr{max;<j<m max(j—-1)/m<u<j/m |Un(u) = Un((j — 1)/m)| > 7}
m Pr{maxo<y<i/m [Un(u)| > 7}

2m Pr{max0<u<1/m ‘Un(u) - U;L(u)| Z 2717_}

4m Pr{|U,(1/m) — U, (1/m)| > 2717}

8m Pr{|U,(1/m)| > 2727}

ININININ I
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By the Prokhorov’s inequality (Prokhorov [20]),

limsup a,, 2 log(Pr{|U,,(1/m)| > 2727} < -2 37arcsinh(2" 20 2m7).
Hence, (2.13) follows.
The rate function in (b) is I(z) = sup,cp(zt — t?02/2), which is given by
(2.3) and (2.4).
The rate function in (c) is determined by the covariance function in (2.13).
The class of functions {oI(z <) : 0 < ¢t < 1} in the probability space ([0, 1], B, dx)
has this covariance function. So, the rate function is

1 1
I(z) = inf{27" / V3 (x)dx : 2(t) = 0‘/ v(x)I(z < t)dx for each 0 < ¢ < 1}.
0 0
This rate function is given by (2.5) and (2.6). O

To obtain (a) implies in (b) in the previous theorem it suffices that a,, — oo,
“Leoln — oo and inf,>1n7tc2 > 0.

Next, we will present two examples, where Theorem 2.4 applies to r.v.’s with
infinite second moment.

Let {X;}52, be a sequence of symmetric i.i.d.r.v.s with Pr{|X| >t} =72,
for each t > 1. Let {a,}3°; be a sequence of real numbers such that a, — oo and
a,?loglogn — oco. By Theorem 2.4, {n~'/2(logn)~*/2a,* Y7, X;} satisfies the
LDP with speed a? and rate function I(t) = 271#2. Observe that
{n=12(logn)~1/? > j—1 X} converges in distribution to a normal r.v. with mean
zero and variance 1.

Given 2 > p > 1, let {X;}32, be a sequence of symmetric i.i.d.r.v.’s with
Pr{|X| > t} = t7P, for each ¢t > 1. Let {a,}32; and {¢,}32; be two sequences
of real numbers such that a,, — oo and a,'c,'n — oo and a,2log(n~1c?) — oo.
Then, Theorem 2.4 gives that {c, ta,* > j—1 X} satisfies the LDP with speed a?
and the rate function I in (2.4). It is well known that n~/? Z?:l X converges in
distribution to a symmetric stable r.v. of order p.

To get (b) implies (a), we need that the rate function I(¢) satisfies
limyy 0o t 1 I(t) = o0o. There are examples of sequence of iidr.v.’s {X,} such
that {a, 'n~1/2 Z;L:1 X;} satisfies the LDP with speed a? and a rate function
I(t) = altP, for some ¢ > 0 and some 0 < p < 1 (see for example, Nagaev
[17, 18]).

When ¢, = n'/2, the conditions in the previous theorem simplify.

a

Theorem 2.5. Let {X;}32, be a sequence of i.i.d.r.v.’s. Let {a,};2 be a sequence

of real numbers such that a, / oo and n~"?a, \, 0. Then, the following condi-
tions are equivalent:
(a) E[X] =0, E[X?] < 0o and

(2.15) lim a,?log(nPr{|X| > nl/Qan}) = —o0.
n—oo
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(b) {a;n=1/? > =1 X} satisfies the LDP with speed a? and a rate I such
that lim‘)\|ﬁoo )\_1[()\) = 0.

(c) {a;tn=1/? Zg"zul] X, : 0 < u < 1} satisfies the LDP in 1.([0,1]) with
speed a? and a rate function I such that

Alim A Hinf{I(2) : [2(1)] > A} = 0.
Moreover, the rate functions in (b) and (c) are given by (2.3)-(2.5).

Proof. Assume (a). Condition (a) implies condition (a) in Theorem 2.4. So, (b)
and (c) follow. (c¢) implies (b) trivially.

Assume (b). The proof is similar to that of Theorem 2.4. The difference
is that we do not assume that the rate function satisfies that for each § > 0,
inf{I(z) : |z| > 6} > 0. The argument in the proof of Theorem 2.4 implies that

lim a;QIOg(n Pr{|X| > nl/Qan}) = —00.
n—oo

So, lim;_, t? Pr(]X| > t) = 0. In particular, for each 0 < p < 2, E[|X|P] < oo and
limy o 2" PE[|XPI(|X| > t)] = 0.
Since for M large enough, inf{I(z) : |z| > M} > 0, a;;'n"1/2 Dy X s

bounded in probability. This implies that n~'Y7_, X; ©* 0. Since E[|X]] < oo,
we have that E[X] = 0. Hence,
lim n'/2a;'E[XI(|X]| < a,n'/?] = lim n'/2a;'E[XI(|X]| > a,n'/?)] = 0.

we got that conditions (a.1) and (a.2) in Theorem 2.4 hold. Proceeding as in the
proof of Theorem 2.4, we get that F[X?] < oo. O

To obtain (a) implies in (b) in the previous theorem it suffices that a,, — oo
and n’l/Qa” — 0.

By the results in Cramér [8] and Petrov [19], if for some A > 0, E[e}X]] <
oo, then (b) in Corollary 2.4 holds. But, Corollary 2.4 applies to r.v.’s whose
moment generating function is not defined in a neighborhood of zero. It follows
from Corollary 2.4 that if X is symmetric and for some 0 < p < 1,

tlim t Plog(Pr{|X| > t}) = —1,

and {a, } a sequence of positive numbers such that n=?/2a2~? — oo and n=/?a,, —
0, then {a;'n=1/2 > j—1 X} satisfies the LDP with speed a? and with rate func-
tion I(t) = #;2] It is easy to see that if for some A > 0, E[e*¥] < oo, then
(2.14) holds.

We will obtain the LDP for empirical processes, using a general lemma deal-
ing with triangular array of empirical processes. Let (Q,,A,,Q.), n > 1, be
a sequence of probability spaces and let (S, ;,Sn;), 1 < j < kp, n > 1, be
measurable spaces. For each n > 1, let {X,,; : 1 < j < k,} be independent
r.v.’s defined on (Q,,A,,Q,) and with values in (S, ;,Sn;), 1 < j < k,. Let
frj(t) + (Sn;sSn,j) — R be a measurable function for each 1 < j < ky,
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each n > 1 and each t € T. Let U,(t) := Z?;l fn,i (X5 5,t). To avoid mea-
surability problems, we will assume that Q, := H?;l Snj, An = H?;l Sn.j
Qn = Hf;l Qn,; and that for each 1 < j < ky,, {fn j(z,t) : t € T} is an image
admissible Suslin class of functions (see page 80 in Dudley [11]). By an abuse of
notation, we denote by Pr to Q.

Lemma 2.6. Let d be a pseudometric in T. Assume that:
(i) (T,d) is totally bounded.
(i) For each 0 < M < oo,

k

lim e, log(Y  Pr{Fy ;(Xn;) > M}) = —oc,
j=1

where Fy, ;(x) = supyer | fn,j(2,t)].
(i4i) For each 0 < a, M, \ < oo,

kn
lim €n IOg E[exp(€;1)‘zFn,j(Xn,j)I]\/IZF,,L,j(Xn,j)>a6n)] =0.

n—oo
j=1

(iv) For some a > 0,

o
Elsup | > (fai(Xn g Ik, (X0 )<ac, — Elfni(Xn )15, (X, )<ac,))l] = 0.

teT

(v) For some a > 0,

kn
lim limsup sup €, Y Var((fj (X 8) = faj(Xnj )1, ; (X, )<ac,) = 0-
n—0 noco d(s,t)<n =1

(vi) For a fixred 0 < a < oo, for each s,t € T,
k

nlL»H;o 6;1 Z Cov(fnvj (Xn7j7 S)IFn,j (Xn,J)Safn ’ fn,] (Xnaj’ t)[Fn,j (Xn,j)gafn)
j=1

exists.
Then, for each a > 0,

Fn
O (Fai(Xn i) = Elfn(Xn s )IE, (X )<ac,)) 1 1 € T}
j=1

satisfies the LDP with speed €, and the rate function in (2.2) with respect to the
covariance function

R(Sa t) = hmn—>oo 67:1 Zfll COV(fn,j (Xn,j> S)IF,L,j(X,L,j)Sae”v
fri (X )Ip, (X, )<ac,); St €T
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Proof. First, we prove that condition (iii) implies that if (iv)—(vi) hold for some
a > 0, then they hold for each a > 0. Note that condition (iii) implies that for
each 0 < a, M, \ < o0,

lim e, Elexp(e 1/\ZF"J n.j IM>FnJ(XnJ)>aen) —1]=0.

n—oo

This implies that for each 0 < a, M < oo,

kn
(2.16) lim E[Y Foj(Xa )z p s (Xa,)>ae,)] = 0
j=1
and
kn
TLILII;OEZFSJ ”J)IM>F71 J(Xn1)>“€")} =0.
j=1

Hence, we may assume that (iv)—(vi) hold for each a > 0.
Fixed a > 0, we use Theorem 2.1 to prove that {U,(t) : t € T} satisfies the
LDP, where

kn

Un(t) =D (Fag(Xngs 1) = Elfng(Xng, g, (X, <acn))-

j=1
Condition (i) implies (a.1) in Theorem 2.1.
Let

: : fna] n,js IFn J(Xn ])>a/€7l

First, we prove that {V,(¢) : t € T} is uniformly exponentially asymptotically
negligible, i.e. for each 7 > 0,

(2.17) lim e, log <Pr{sup V. (¢)] > T}) = —00.
n—oo teT

By (ii) and (iii), we may take A, M > 0 such that At > 4c,

kn

limsup e, log(z Pr{F, ;(X, ;) > M}) < —

and

K

hmsupenl()gE[eXp 1)\ZF’R] n])IM>FnJ(Xn])>aen)} <47 1)\7—

Then, for n large enough,

€n 10g(Pr{bupteT | 3252 Fag Xngs OTm, (x5 | > 2717))
SEnlog(Zn Pr{Fnj( 7])>M})S_
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and
kn _
Pr{supcr | Zj:l fri (X, t)IM>Fn,,_7(Xn,j)2aen| > 2717}
ko, Z
< PI"{ZJ -1 F i (Xn, J)IM>FM(X,, D>ae, = 2 17}
-1

< 6_2 ATE[eXp( 1A Zg 1 F n.,j (Xn7j)IM>Fn,j(Xn,j)Zae")] < e~ CEn

Hence,

limsup ¢, log (Pr{sup [V ()| > T}> < —c

and (2.17) follows.
By (2.17), to get the LDP for the finite dimensional distributions, we need to
prove that for each t1,...,tym € T, (W, (t1),..., Wy (tm)) satisfies the LDP, where
kn
Wh(t) = Z(fn,j(Xn,jv IF, (X0 )<aen — Elfni(Xn g )IF, (x,.)<ac,])-
j=1
We claim that Lemma 2.3 implies the LDP for the finite dimensional distributions
of the process {W,,(t) : t € T}. Condition (i) in Lemma 2.3 follows from (vi).
Condition (ii) in Lemma 2.3 is obviously satisfied. As to condition (iii) in Lemma
2.3,givent €T and 0 < < a,

€n Z] 1 Pr{‘fn]( n,Js )IF i (Xn,j)<ena — E[fn,J( ,jvt)IFn,]-(Xn,j)Sena” > ené}
< én Z VPr{|fn; (X, ) Ia-2c,5<F, (X, J)<en

_E[fnj( n,jgs )12 26, 0<Fy i (Xn,j)<ena ” > 27 6715}

< 452 ElF, j(Xnjs ) a-2¢,5<F, ;(Xn)<enal — 0

by (2.16).
. By)(2.17), to prove (a.3) in Theorem 2.1, it suffices to consider {Z,(t) : t €
T}, where
kn
Z fnJ n,j»t Fr j(Xn,j)<ae, — E[fnyj(Xn,Jﬂ )IF i (X, ,7)<a€n])
j=1

It is easy to see that by Theorem 1.4 in Talagrand [22], condition (v) imply that
for each 7 > 0,

lim,) o limsup,,_, o, €, log(Pr{|supys 1<y, [Zn(s) — Zn(t)]
—E[supy(s,iy<y [Zn(s) = Zn(®)[]| = T}) = —o0.

Since condition (iv) implies that E[sup,cs |Zn(t)]]| — 0, (a.3) in Theorem 2.1
follows. O

Next, we present necessary and sufficient conditions for moderate deviations
of empirical processes. We will use the following set—up. Let (S,S,v) be a prob-
ability space. Let Q = SN, 4 = SN, and Q = v". Let X,, be the n-th projection
from Q into S. Then, {X,}5, is a sequence of i.i.d.r.v.’s with values in S. Let
{f(-;t) : t € T} be an image admissible Suslin class of measurable functions from
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S into R. F will denote an envelope of {f(-,t) : t € T'}, i.e. a measurable function
on S, such that F(X) > sup,cr | f(X, 1) as.

Theorem 2.7. With the notation above, let {a,}52 1 and {c,}22, be two sequences

of real numbers such that a,, / oo and a, *c,'n /' oo and {n~1c2} is nondecreas-

ing. Then, the following sets of conditions ((a), (b) and (c)) are equivalent:
(a.1) lim, .o a,;2log(nPr{F(X) > anc,}) = —oc.

-1 — n Pr
(a.2) az eyt supyer | Zj:l (X5, )] = 0.
(a.83) For each s,t € T, the following limit exists:

lim ey, 2Cov(f(X, ) pxycartens J () p(x)carte
(a.4) (T, d) is totally bounded, where
d*(s,t) = lim nc; 2Var((f(X,s) — f(X, t))IF(X)<a;10n).

(a.5) limy o limp, — o0 SUP (5 1)<y ne, 2Var((f(X,s) — f(X, t))IF(X)<a7_llc”) =

)

n

0.

(b) {a;tc;? Z?Zl (X, t) : t € T} satisfies the LDP in loo(T) with speed a?
and a rate function I such that limy_ oo A\~ inf{I(2) : sup,cp |2(t)] > A} = o0 and
for each 6 > 0, inf{I(2) : sup,cp |2(t)| > 6} > 0.

(c) {c;ta;! Zgnzul} f(Xj,t):0<wu<1,t €T} satisfies the LDP in 1 ([0, 1] x
T) with speed a? and a rate function I such that

lim A~ inf{I(z) : sup |z(1,t)| > A} = o0
A—00 teT
and for each § > 0, inf{I(z) : sup,cp |2(1,t)| > 0} > 0.
Moreover, in (b) the rate function is given by (2.2) with respect to the covari-
ance function

R(Sat) = lim nc;QE[f(X, S)f(Xa t)IF(X)SanCn]'

n—oo

In (c), the rate function in (c) is

I(a) = inf{27! fol Jo&w,w)dv(w)dv: where £:[0,1] x Q@ - R
is a measurable function such that
alu,t) = fou Jo &, w)Z(t,w) dv(w) dv, for each u € [0,1],t € T},
where (Q, F,v) is probability space, {Z(t,w) : t € T} is a Gaussian process defined
on  with zero means and covariance given by
/ Z(va)Z(tv w) dl/(a}) = lim TlC:LzE[f(X, S)f(X7 t)IF(X)<ancn}7
Q n—oo -

for each s,t € T.

Proof. To prove that (a) implies (b) we apply Lemma 2.6. Conditions (i), (ii), (v)
and (vi) in Lemma 2.6 are obviously satisfied. By the arguments used in (2.9), we
have that for each 0 < a, M, \ < oo,

(218) na;QE[(eXp()‘cgla”ﬂF(X)) - 1) I a;lcn<F(X)§anch} — 0.

a
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This implies condition (iii) in Lemma 2.6. From (a.1) and (2.18), we have that for
each a > 0,
Pr

-1
supa, e ZF Mrxsaazte, = O

This limit and (a.2) imply that for each a > 0,

SUPCL 1|Zf F(X <aplen |H0

So, by the HoffmananQrgensen inequality (see for example Proposition 6.8 in
Ledoux and Talagrand [16]), condition (iv) in Lemma 2.6 follows.

Next, we prove that (b) implies (a). From Lemma 2.1 in Arcones [3], for each
A >0,

limsup a2 log(n Pr{F(X) > 2Xanc,}) < —inf{I(2) : |2|o0 > \}.

This estimation and the argument in (2.11) imply (a.1). Since for each § > 0,
inf{I(z) : sup,er |2(t)] > 6} > 0, (a.2) holds. Since (a.1) holds, the stochastic
process

{a, ey Z(f(vat)IF(Xj)<a;10n - E[f(vat)IF(ija;lcn]) teT}

satisfies the LDP. This fact and Theorem 2.4 imply (a.3). By the remark after
Theorem 2.2, (a.4) holds. (a.5) follows from the argument in (2.12).

Finally, we prove that (a) implies (c). We use Theorem 2.1. By (2.18), it
suffices to prove that {Up,(u,t) : 0 <wu < 1,t € T} satisfies the LDP, where

[nu]

Un(u,t) := c;* 712 Mexy<ante, = B XG50 p(x))<arte,))-

The LDP for the finite dimensional distributions follows from Lemma 2.3 applied
to the independent random vectors

X n = (Y(l 1) Y( ) Y'](l ,m) . }/J(m 1) Y(m 2) }/j(m m))
[(Y;(l 1),}/}(1 2)"..71/}(1 m) Y(m 1) Y(m 2) Y(m m))]71 <j<n
where

Y'j(kl —lf( ) (F(Xj,tl) < arjlcn,j S [’Il’U/k;])7

ti,...ytm € T and wuy,...,um,m € [0,1]. Observe that the (k,l) coordinate of
Z;’L:I Xn,j s

[nug)

Cn' Z ( F(X;)<ar’ e —E[f(vatl>fF<xj><a#Cn]>'
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We have that the covariance of

[nu1] [nusa]

71 Z ‘f F(X; j)<an'cn’ Cn Z f F(X )<an ('7,)

converges to
min(uy, uz) lim e, 2Cov(f (X, 1) pixycaztens F(Xs o) g xy carte,)-

Next, we prove the asymptotic exponential equicontinuity. Given 7, M > 0, there
exists a function 7y : T'— T with finite range such that

(2.19) lim sup a;, % log(Pr{sup |V,,(1,t) — V. (1,m2(¢))| > 27%7}) < —M.
n—oo teT

Let {X}} be a independent copy of {X}. Let

[nu]

V (U t 71 712 F(X’)<an Cn _E[f(X/ ) F(X’)<an cﬂ])

By symmetrization (see Lemma 1.2.1 in Giné and Zinn [13]) and the Lévy ’s
inequality, we have that

(2.20) Pr{supier, o<uct [Valu,t) = Va(u, ma(t))| = 2717}
< 2Pr{suprer, gyt [Valt,t) — Vil ma(t)) — (Vi) — Vi (. ma(t)))] = 2727)
< APr{supyer Va1, 1) — Va(Lma(t)) — (Vi(1,8) — V(L ma(t))] = 2727}
< 8Pr{supyer |Va(1,t) — Vi (1, m2(t))| > 2737}
Let m be a positive integer such that M < 2~ *rarcsinh(2~ 3 (SUpyeny (1) R(t, 1)) ">mT).

Let mo(u) = %, 0 <u < 1. Using the the Prokhorov’s inequality as in the proof
of the Theorem 2.4, we have that

(2.21)limsup a,, ? log(Pr{ sup Vi (u, t) — Vi (w1 (u), t)] > 271 7))
n—00 teme(T), 0<u<l

< —27%rarcsinh [ 273( sup R(t,t)) *mr | < —M.
tE‘ITz(T)
From (2.19)—(2.21), we get that

limsupa,?log(Pr{ sup |V, (u,t) — Vi, (mi(u), m2(t))| > 7}) < —M.

n— oo teT, 0<u<l

When ¢,, = n!/2, the previous theorem gives the following:

Theorem 2.8. Let {a,} be a sequence of real numbers such that a, ,/ oo and
n~12q, \,0.
Then, the following sets of conditions are equivalent:
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(a.1)
lim a2 log(nPr{sup|f(X,t) — E[f(X,t)]| > n'%a,}) = —cc.
n—oo tET

(0.2) super ay 'n =12 S0 (F(X5,8) = BLF(X;,0)])] =0,
(a.3) For each t € T, E[f*(X,t)] < oo.
(a.4) (T, d) is totally bounded, where

d?(s,t) = Var(f(X,s) — f(X,1)).

(b) {a; n=1/? Z?:l(f(Xj,t) — E[f(X,,t)]) : t € T} satisfies the LDP in

loo(T) with speed a2 and a rate function I such that
lim A~ tinf{I(z) : sup |z(t)| > A} = o0
A—00 teT

and for each § > 0, inf{I(z) : sup,cp |2(t)| > 6} > 0.

(¢) {an'n™ 2SI (F(G,0) = BUA(X;,0) 0 < u < 1t € T} satis-
fies the LDP in 1.([0,1] x T) with speed a? and a rate function I such that
limy oo A1 inf{I(2) : sup,er |2(1,8)] > A} = co and for each § > 0, inf{I(z) :
sup,er |2(1,t)] > 0} > 0.

Moreover, the rate function in (b) is

I(z) = inf{27 E[0*(X)] : 2(t) = E[a(X)(f(X,1) - E[f(X,1)])]
for each t € T'}.

Moreover, the rate function in (c) is

I(z) = inf{27! fol E[y?*(u, X)]du : where v:[0,1] x S — R
is a measurable function such that for each v € [0,1],t € T,

2(u,t) = [§ Ely(v, X)(f(X,t) = E[f(X,)])] dv}.

Ledoux [15] and Wu [24] proved the part (a) implies (b) in the previous
theorem assuming a little different conditions. For example, they assume that for
some ¢ > 1 and some [§] < 1/2, anx < ck®ay,, for each n,k > 1. These conditions
do not apply to sequences that very close to n. For example, it does not apply to
sequences of the form a,, = n(logn)~%, where a > 0, for example. Condition (a.4)
above is stated differently in Ledoux [15] and Wu [24].

For classical empirical processes Theorem 2.8 gives the following:

Corollary 2.9. Let {X;}32, be a sequence of i.i.d.r.v.’s. Let {a,} be a sequence of
real numbers such that a, — oo and n=1/2a, — 0. Then,

(i) {ay'n= 230 (I(X; < t) — P{X; < t}) : t € R} satisfies the LDP in
loo(R) with speed a and rate function

I(2) = inf{27 1 E[a2(X)] : 2(t) = E[a(X)(I(X < t) — P(X < t))] for each t € T}.
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(ii) {a; '~ 2 (I(X; <) — P{X; <t}) 1t € R,0 < u < 1} satisfies
the LDP in 1o ([0,1] x R) with speed a2 and rate function
I(z) = inf{27! fol E[y?*(u, X)]du : where 7 : [0,1] x R is a measurable function

such that for each (u,t) € [0,1] x R,
2(u,t) = [y Bly(v, X)(I(X < t) = P(X <t))]dv}.

In the previous corollary, if X has a positive density fyx, then the rate function
in part (i) can be written as

oo 2fx (t)

I(2) = [ GED® g if 5 s absolutely continuous and lim;_, 2(t) = 0.
00 else .

By taking T equal to the unit ball of a Banach space, the previous theorems
give necessary and sufficient conditions for the moderate deviations of Banach
space valued random vectors. In particular, we have:

Theorem 2.10. Let {X;}32, be a sequence of i.i.d.r.v.’s with values in a separa-
ble Banach space B. Let {a,}52 1 and {c,}52 1 be two sequences of real numbers

such that a,, / 0o and a;‘c,'n / oo and {n=1c2} is nondecreasing. Then, the

following sets of conditions ((a), (b) and (¢)) are equivalent:
(a.1) lim, . a,2log(nPr{|X| > c,a,}) = —oo.
(a.2) aytct 300 X .
(a.3) For each f1, fo € B*, the following limit exists:

lim ne, 2B (X) o (X) <ot )

where B* is the dual of B.
(a.4) (B, d) is totally bounded, where

d*(f1, f2) = lim ne?Var((f1(X) = f2(X) | x)<qre

and By is the unit ball of the dual of B.
(a.5)

lim lim sup ne,, *Var((f1(X) — f2(XDI x1<0z10,) =0

n—0n=00 ¢ r e By d(f1,f2)<n -

(b) {cy; ay,t 30—y X} satisfies the LDP in loo(B) with speed a, and a good
rate function such that limy_ .o A™1inf{I(z) : |z| > A} = oo and for each § > 0,
inf{I(z):|z| > ¢} > 0.

(c) {c;ta;t Zg"zul] X, : 0 < u < 1} satisfies the LDP in l5([0,1], B) with
speed a2 and a good rate function such that limy_ . A~ 1inf{I(2) : [2(1)| > A\} =
and for each 6 > 0, inf{I(2) : |z(1)| > §} > 0.

)

n

When ¢,, = n'/2, the conditions (a) in the previous theorem simplify consid-
erably:
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Theorem 2.11. Let {X;}32, be a sequence of i.i.d.r.v.’s with values in a separable
Banach space B. Let {a,}52, be a sequence of real numbers such that a, / oo
and n~?a, \, 0. Then, the following sets of conditions ((a), (b) and (c)) are
equivalent:

(a.1) lim, . a;? log(nPr{|X| > ann'/?}) =

(a.2) az 0> 0 (X; = B[X;)) 50,

(a.3) {f(X)— [f(X)] € B}} is a totally bounded set of Lo.

(b) {a;'n=1/? Z (X — E[X;])} satisfies the LDP in lo(B) with speed a?
and a good rate functzon such that limy_ . A= tinf{I(2) : |2| > A} = oo and for
each 6 > 0, inf{I(z) : |z| > 0} > 0.

(c){a; n=1/? Z[nu} (X;—FE[X;]) : 0 < u < 1} satisfies the LDP in lo([0,
with speed a2 and a good rate function such that limy_. A~1inf{I(2) : |2(1
A} = oo and for each 6 > 0, inf{I(z) :|z(1)| > §} > 0.

|, B)
| >

Hu and Lee [14] obtained the LDP for the stochastic processes in (c¢) in the

previous theorem assuming that for some A > 0, E[eM¥] < cc.
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