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Abstract

We present general sufficient conditions for the moderate deviations of M–
estimators. These results are applied to many different types of M-estimators such
as the p–th quantile, the spatial median, the least absolute deviation estimator
in linear regression, maximum likelihood estimators and other location estimators.
We apply moderate deviations theorems from empirical processes.
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1 Introduction

We discuss the moderate deviations for M–estimators. Huber (1964) in-
troduced M–estimators as a way to obtain more robust estimators. Let
{Xi}∞i=1 be a sequence of i.i.d.r.v.’s with values in a measurable space (S,S).
Let g : S × Θ → IR be a function such that g(·, θ) : S → IR is measurable
for each θ ∈ Θ, where Θ be a Borel subset of IRd. Suppose that we want to
estimate a parameter θ0 ∈ Θ characterized by E[g(X, θ)− g(X, θ0)] > 0 for
each θ 6= θ0. An M–estimator θ̂n over a kernel g(x, θ) is a random variable
θ̂n = θ̂n(X1, . . . , Xn) satisfying

n−1
n∑
i=1

g(Xi, θ̂n) ' inf
θ∈Θ

n−1
n∑
i=1

g(Xi, θ). (1.1)

We also consider M–estimators θ̂n defined by

n−1
n∑
i=1

h(Xi, θ̂n) ' 0, (1.2)
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2 M. A. Arcones

where h(·, θ) : S → IRd is a measurable function for each θ ∈ Θ. Here, θ̂n
is estimating a value θ0 characterized by E[h(X, θ0)] = 0.

It is well known that under regularity conditions, these estimators are
asymptotically normal. In fact, there exists a function ψ such that,

n1/2(θ̂n − θ0) + n−1/2
n∑
i=1

(ψ(Xi)− E[ψ(Xi)])
Pr→ 0,

(see Huber, 1964, 1981; Hampel, Ronchetti, Rousseeuw and Stahel, 1986;
Serfling, 1980; and Lehmann and Casella, 1998). The function ψ is called
the influence curve. The M–estimator is more robust when the influence
curve is bounded (Hampel, 1974).

Given a sequence of r.v.’s {Yn} with values a metric space (T, d), a
sequence of positive numbers {εn} which converges to zero and a function
I : T → [0,∞), it is said that {Yn} satisfies the (LDP) large deviation
principle with speed εn and rate function I if for each Borel set A of T ,

− inf{I(v) : v ∈ Ao} ≤ lim infn→∞ εn log(Pr{Yn ∈ A})
≤ lim supn→∞ εn log(Pr{Yn ∈ A}) ≤ − inf{I(v) : v ∈ Ā}.

We refer to page 35 in Deuschel and Stroock (1989) for more information
in the large deviation principle. When dealing with stochastic processes,
we will use the definition of large deviation principle in Arcones (1998b).
We will obtain a large deviation principle for M–estimators under different
speeds.

We study the moderate deviations of M–estimators. Given a sequence
of i.i.d. random vectors {Yi} with values in IRd, and a sequence of real
numbers {an} such that an → ∞ and ann

−1/2 → 0, by Corollary 3.4 in
Arcones (2001), if

E[|Y1|2] <∞ and lim
n→∞

a−2
n log(nPr{|Y1| ≥ n1/2an}) = −∞, (1.3)

then a−1
n n−1/2

∑n
i=1(Yi − E[Yi]) satisfies the LDP with speed a2

n and the
rate function

I(t) = 2−1vΣ−2
Y v, v ∈ IRd

where Σ2
Y := E[(Y − E[Y ])(Y − E[Y ])′]. The previous result is called

moderate deviations, because the considered tail is smaller than the one
in the large deviations set–up. In the moderate deviations set–up we are
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considering the tail of |
∑n

i=1(Yi − E[Yi])| in [n1/2an,∞). The usual large
deviations considers the tail of |

∑n
i=1(Yi−E[Yi])| in [n,∞). An elementary

argument shows that if for some λ > 0, E[exp(λ|Y |)] <∞, then (1.3) holds.
(1.3) is a necessary sufficient condition for the moderate deviations, in the
sense that if an ↗ ∞, n−1/2an ↘ 0 and {a−1

n n−1/2
∑n

j=1 Yj} satisfies the
LDP with speed a2

n and a rate I(t) such that lim|t|→∞ t−1I(t) = ∞, then
E[Y ] = 0, E[Y 2] <∞ and

lim
n→∞

a−2
n log(nPr{|Y | ≥ n1/2an}) = −∞

(see Corollary 3.4 in Arcones, 2001).

We present very general theorems to obtain that for each τ > 0,

lim
n→∞

a−2
n log(Pr{|n1/2(θ̂n − θ0) (1.4)

+n−1/2
n∑
i=1

(ψ(Xi)− E[ψ(Xi)])| ≥ anτ}) = −∞.

Assuming (1.4) and that ψ(X1) satisfies (1.3), we obtain that a−1
n n1/2(θ̂n−

θ0) satisfies the LDP with speed a2
n and the rate function

Iψ(t) = 2−1vΣ−2
ψ v, v ∈ IRd

where Σ2
ψ := E[(ψ(X1)−E[ψ(X1)])(ψ(X1)−E[ψ(X1)])′], i.e. for each Borel

set A ⊂ IRd,

− inf{Iψ(v) : v ∈ Ao} ≤ lim infn→∞ log(Pr{n1/2(θ̂n − θ0) ∈ A})
≤ lim supn→∞ log(Pr{n1/2(θ̂n − θ0) ∈ A}) ≤ − inf{Iψ(v) : v ∈ Ā}.

This implies that for each τ > 0,

lim
n→∞

a−2
n log(Pr{a−1

n n1/2|θ̂n − θ0| ≥ τ} = −2−1τ2e−2
d , (1.5)

where e2d is the biggest eigenvalue of the covariance matrix Σ2
ψ. This result

states that the tail of n1/2(θ̂n − θ0) decreases like the tail of a Gaussian
random vector with mean zero and covariance matrix Σ2

ψ.

We present general theorems to obtain (1.4). We apply these results to
several examples such as: p–th quantiles, location parameters, spatial me-
dians, least absolute deviation estimator in linear regression and maximum
likelihood estimators.
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A main technique in the proofs is the moderate deviation theorems
for empirical processes in Arcones (2001). In particular, we obtain the
moderate deviations of M–estimators assuming weaker conditions than the
existence of a moment generating function in a neighborhood of zero.

The moderate deviations of one dimensional mle’s was considered by
Gao (2001). By the way, it seems that some monotonicity assumption on
l
(1)
n in this paper would be necessary in order to ensure that

{θn ≥ θ + ε} ⊂ {l(1)n (θ + ε) ≥ 0}

where
θn = inf{θ : l(1)n (θ) ≤ 0}

(see Equations (1) in Gao, 2001).

Jensen and Wood (1997) considered the large deviation for M–estimators.
They gave sufficient conditions so that for each τ > 0,

lim sup
n→∞

n−1 log(Pr{|θ̂n − θ0| ≥ τ}) < 0.

In Section 2, we present the main results and several examples. The
proofs of the theorems in Section 2 are in Section 3.

c will denote an universal constant that may vary from line to line.
Let X be a copy of X1. We will use the usual multivariate notation. For
example, given u = (u1, . . . , ud)′ ∈ IRd and v = (v1, . . . , vd)′ ∈ IRd, we
denote u′v =

∑d
j=1 ujvj and |u| = (

∑n
j=1 u

2
j )

1/2. We will use the notation in
empirical processes in Giné and Zinn (1984). Given a function f : S → IR,
we define

Pnf = n−1
n∑
i=1

f(Xi) and Pf = E[f(X)].

2 Moderate deviations for M–estimators

If the stochastic processes are convex, (1.4) can be obtained from minimal
conditions:

Theorem 2.1. With notation for the M–estimators in (1.1), let φ : S →
IRd be a measurable function and let {an} be a sequence of real numbers
converging to infinity such that ann−1/2 → 0. Suppose that:
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(i) For each x ∈ IRd, g(x, ·) : Θ → IR is a convex function.

(ii) θ̂n = θ̂n(X1, . . . , Xn) is a sequence of IRd–valued random variables
such that for each τ > 0,

lim
n→∞

a−2
n log(Pr{a−2

n

n∑
j=1

g(Xj , θ̂n) ≥ inf
θ∈Θ

a−2
n

n∑
j=1

g(Xj , θ) + τ}) = −∞.

(iii) There exists a positive definite symmetric matrix V such that

E[g(X, θ)− g(X, θ0)] = (θ − θ0)′V (θ − θ0) + o(|θ − θ0|2),

as θ → θ0.

(iv) E[|φ(X)|2] <∞

(v) limn→∞ a−2
n log(nPr{|φ(X)| ≥ n1/2an}) = −∞

(vi) For each θ ∈ IR,

na−2
n E[|r(X,n−1/2anθ)|I(|r(X,n−1/2anθ)| ≥ a2

n)] → 0,

where
r(x, θ) = g(x, θ0 + θ)− g(x, θ0)− θ′φ(x).

(vii) For each θ ∈ IR,

a−2
n log

(
nPr{|r(X,n−1/2anθ)| ≥ a2

n}
)
→ 0.

(viii) For each θ ∈ IR and each λ > 0,

na−2
n E[exp(λ|r(X,n−1/2anθ)|)I(a2

n ≥ |r(X,n−1/2anθ)| ≥ 1)] → 0.

(ix) For each θ ∈ IR,

na−2
n Var(r(X,n−1/2anθ)I(|r(X,n−1/2anθ)| ≤ 1)) → 0.

Then,

lim
n→∞

a−2
n log(Pr{|n1/2(θ̂n − θ0) + 2−1n1/2(Pn − P )V −1φ| ≥ anτ}) = −∞.
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Most the conditions above are easier to check. Hypothesis (ii) in the
previous theorem is satisfied if the estimator θ̂n is close enough to maximize∑n

j=1 g(Xj , θ), θ ∈ Θ. The previous theorem gives the moderate deviations
of the sample mean assuming the minimal condition (1.3). In this case
g(x, θ) = |x−θ|2, for x, θ ∈ IRd, θ0 = E[X], φ(x) = x−θ0 and r(x, θ) = |θ|2.

The conditions in Theorem 2.1 are implied by the existence of certain
moment generating function in a neighborhood of zero:

Corollary 2.1. Assume the notation in Theorem 2.1. Suppose that:

(i) For each x ∈ IRd, g(x, ·) : Θ → IR is a convex function.

(ii) θ̂n = θ̂n(X1, . . . , Xn) is a sequence of IRd–valued random variables
such that for each τ > 0,

lim
n→∞

a−2
n log(Pr{a−2

n

n∑
j=1

g(Xj , θ̂n) ≥ inf
θ∈Θ

a−2
n

n∑
j=1

g(Xj , θ) + τ}) = −∞.

(iii) There exists a positive definite symmetric matrix V such that

E[g(X, θ)− g(X, θ0)] = (θ − θ0)′V (θ − θ0) + o(|θ − θ0|2),

as θ → θ0.

(iii) With probability one,

lim
θ→0

|θ|−1|r(X, θ)|.

(iv) There are δ0, λ0 > 0 and such that

E[exp(λ0|φ(X)|)] <∞ and E[exp(λ0L(X))] <∞,

where
L(x) = sup

0<|θ|≤δ0
|θ|−1|r(x, θ)|.

Then,

lim
n→∞

a−2
n log(Pr{|n1/2(θ̂n − θ0) + 2−1n1/2(Pn − P )V −1φ| ≥ anτ}) = −∞.
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Example 2.1. (Spatial median). Let {Xj} be a sequence of i.i.d.r.v.’s with
values in IRd. A natural extension of the median to several dimensions is
the spatial median θ̂n defined as a value which minimizes

n−1
n∑
j=1

|Xj − θ|, θ ∈ IRd.

This estimator is equivariant by rotations, translations and dilations. This
estimator was introduced by Haldane (1948) as a robust alternative to the
sample mean. If X is not supported in a linear space of dimension one,
then there exists a unique value θ0 such that for each θ 6= θ0, E[|X − θ| −
|X − θ0|] > 0 (see Milasevic and Ducharme, 1987). Assuming also that
E[|X − θ0|−1] <∞, Corollary 2.1 applies with g(x, θ) = |x− θ|,

V = 2−1E[|X − θ0|−1Id×d − |X − θ0|−3(X − θ0)(X − θ0)′],

and φ(x) = −|x − θ0|−1(x − θ0)I(x 6= θ0), where Id×d is the unit d × d
matrix. Conditions (i) and (ii) in Corollary 2.1 are obviously satisfied. By
the Taylor theorem, there exists a constant c such that for each x, θ ∈ IRd,

||x− θ| − |x− θ0|+ |x− θ0|−1(θ − θ0)′(x− θ0)
+2−1|x− θ0|−3((θ − θ0)′(x− θ0))2 − 2−1|x− θ0|−1|θ − θ0|2|

≤ c(|x− θ0|−1|θ − θ0|2 ∧ |x− θ0|−2|θ − θ0|3).

This implies that

|θ − θ0|−2|E[g(X, θ)− g(X, θ0)]− (θ − θ0)′V (θ − θ0)|
≤ cE[(|X − θ0|−1 ∧ |X − θ0|−2|θ − θ0|)],

which goes to zero as θ → θ0 by the convergence dominated theorem.
So, condition (iii) in Theorem 2.1 holds. Since, |φ(x)| ≤ 1, the part in
condition (iv) involving φ(·) is satisfied. By the Taylor theorem, there
exists a constant c such that for each x, θ ∈ IRd,

|r(x, θ)| ≤ c(|x− θ0|−1|θ|2 ∧ |θ|).

This implies conditions (iii)–(iv) in Corollary 2.1.

Example 2.2. (Some mle’s for location). Let {Xi} be a sequence of IRd–
valued i.i.d.r.v.’s with density p(x − θ0), where θ0 ∈ IRd is unknown and
p is a density such that − log p(x) is a convex function. Then, the mle is
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the M–estimator which minimizes (1.1) with g(x, θ) = − log p(x− θ). The
previous theorem gives sufficient conditions in p for the moderate deviations
of the mle. It is elementary to see that the previous theorem applies when
p is either normal, or double exponential or logistic.

The following theorem applies when the observations are not i.i.d.

Theorem 2.2. Let Θ be a subset of IRd. Let {Gn(θ) : θ ∈ Θ} be a sequence
of stochastic processes. Let θ0 be a point in the interior of Θ. Let {Mn}
and let {Vn} be two sequences of nonsingular symmetric d × d matrices.
Let {ηn} be a sequence of IRd–valued r.v.’s. Let {εn} be a sequence of real
numbers converging to zero. Suppose that:

(i) Gn(θ) is a convex function in θ.

(ii) θ̂n = θ̂n(X1, . . . , Xn) is a sequence of IRd–valued random variables
such that for each τ > 0,

lim
n→∞

εn log(Pr{Gn(θ̂n) ≥ inf
θ∈Θ

Gn(θ) + τ}) = −∞.

(iii) For each θ ∈ IRd and each τ > 0,

lim
n→∞

εn log Pr({|Gn(θ0 +M−1
n θ)−Gn(θ0)− θ′ηn − θ′Vnθ| ≥ τ}) = −∞.

(iv)
lim
M→∞

lim sup
n→∞

εn log(Pr{|ηn| ≥M}) = −∞.

(v) lim infn→∞ inf |θ|=1 θ
′Vnθ > 0 and lim supn→∞ sup|θ|=1 θ

′Vnθ <∞.

Then, for each τ > 0,

lim
n→∞

εn log Pr({|Mn(θ̂n − θ0) + 2−1V −1
n ηn| ≥ τ}) = −∞.

Moreover, if {V −1
n ηn} satisfies the LDP with speed εn, then so does

{Mn(θ̂n − θ0)}.

The previous theorem applies to the next example.

Example 2.3. (Least absolute deviation estimator in linear regression).
We obtain observations (Y1, z1), . . . , (Yn, zn), where Yi = z′iθ0 +Ui, 1 ≤ i ≤
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n, {Ui}ni=1 are i.i.d.r.v.’s; {zi}ni=1 are IRd vectors and θ0 ∈ IRd is a parameter
to be estimated. zi is called the regressor or predictor variable. Yi is called
the response variable. Ui is an error variable. The least absolute deviation
estimator θ̂n of θ0 is a value such that

n∑
i=1

|Yi − z′iθ̂n| = inf
θ∈IRd

n∑
i=1

|Yi − z′iθ|.

The least absolute deviation estimator is preferred to the least squares
estimator by robustness reasons. A review in his topic is in Portnoy and
Koenker (1997).

Theorem 2.3. With the above notation, suppose that:

(i) For n large enough, Sn =
∑n

j=1 zjz
′
j is an invertible d× d matrix.

(ii) an max1≤j≤n |S−1/2
n zj | → 0.

(iii) FU (0) = 1/2 and F ′
U (0) > 0, where FU is the distribution function

of U .

Then, a−1
n S

1/2
n (θ̂n−θ0) satisfies the LDP with speed a2

n and rate function
I(t) = 2−1(F ′

U (0))2|t|2.

Next, we give sufficient conditions for the moderate deviations of the
M–estimators in (1.1) without assuming that the kernel is convex.

Theorem 2.4. With the notation in Theorem 2.1. Let Ψ be a function
form S into the set of d× d symmetric matrices. Suppose that:

(i) For each τ > 0,

lim
n→∞

a−2
n log(Pr{|θ̂n − θ0| ≥ τ}) = −∞.

(ii) For each τ > 0,

lim
n→∞

a−2
n log(Pr{

n∑
i=1

g(Xi, θ̂n) ≥ inf
θ∈Θ

n∑
i=1

g(Xi, θ) + τa2
n}) = −∞.

(iii) There is a positive definite symmetric d× d matrix V such that

E[g(X, θ)− g(X, θ0)] = (θ − θ0)′V (θ − θ0) + o(|θ − θ0|2),
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as θ → θ0.

(iv) E[|φ(X)|2] <∞

(v) limn→∞ a−2
n log(nPr{|φ(X)| ≥ n1/2an}) = −∞.

(vi) For each τ > 0,

lim
n→∞

a−2
n log(Pr{|n−1

n∑
i=1

(Ψ(Xi)− E[Ψ(Xi)])| ≥ τ}) = −∞.

(vii) limδ→0E[Bδ(X)] = 0, where

Bδ(x) = sup
|θ|≤δ

|θ−θ0|−2|g(x, θ)−g(x, θ0)−(θ−θ0)′φ(x)−(θ−θ0)′Ψ(x)(θ−θ0)|.

(viii) For each τ > 0, there exists a δ > 0 such that

lim
n→∞

a−2
n log(Pr{n−1

n∑
i=1

Bδ(Xi) ≥ τ}) = −∞.

Then,

limn→∞ a−2
n log(Pr{|n1/2(θ̂n − θ0)

+2−1ann
−1
∑n

i=1 V
−1(φ(Xi)− E[φ(Xi)])| ≥ anτ}) = −∞.

Condition (vi) in the previous theorem holds if for some λ > 0,
E[exp(λ|Ψ(X)|)] < ∞ (see the remark around (3.4) below). Similarly,
condition (viii) in the previous theorem holds if for some λ > 0,
E[exp(λBδ(X))] < ∞. To check hypothesis (i) in the previous theorem,
it helps if there exists a unique local minimum of Gn(θ). Conditions for a
function to have a unique minimum are in Mäkeläinen, Schmidt and Styan
(1981). Using this condition, we have the following:

Theorem 2.5. With the notation in the previous theorem. Suppose also
that there exists a τ0 > 0 such that:

(i) With probability one, Gn(θ), θ ∈ Θ, has a unique minimum θ̂n and
it does not have any other local minimum.

(ii) With probability one, Gn(·) is continuous in Θ.
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(iii) There is a positive definite symmetric d× d matrix V such that

E[g(X, θ)− g(X, θ0)] = (θ − θ0)′V (θ − θ0) + o(|θ − θ0|2),

as θ → θ0.

(iv) E[|φ(X)|2] <∞

(v) limn→∞ a−2
n log(nPr{|φ(X)| ≥ n1/2an}) = −∞.

(vi) For each τ > 0,

lim
n→∞

a−2
n log(Pr{|n−1

n∑
i=1

(Ψ(Xi)− E[Ψ(Xi)])| ≥ τ})−∞.

(vii) limδ→0E[Bδ(X)] = 0, where

Bδ(x) = sup
|θ|≤δ

|θ−θ0|−2|g(x, θ)−g(x, θ0)−(θ−θ0)′φ(x)−(θ−θ0)′Ψ(x)(θ−θ0)|.

(viii) For each τ > 0, there exists a δ > 0 such that

lim
n→∞

a−2
n log(Pr{n−1

n∑
i=1

Bδ(Xi) ≥ τ}) = −∞.

Then,

limn→∞ a−2
n log(Pr{|n1/2(θ̂n − θ0)

+2−1ann
−1
∑n

i=1 V
−1(φ(Xi)− E[φ(Xi)])| ≥ anτ}) = −∞.

The previous theorem applied to the moderate deviations of mle’s gives
the following:

Theorem 2.6. Let {p(x|θ) : θ ∈ Θ} be a family of densities in IRm, where
Θ is a Borel set of IRd. Let {Xi} be a sequence of IRm–valued i.i.d.r.v.’s
with density p(x|θ0) where θ0 ∈ Θo. Suppose that there exists a δ0 > 0 such
that:

(i) A := {x ∈ IRm : p(x|θ) > 0} does not depend on θ.

(ii) p(x|θ) is twice differentiable with continuity with respect to θ in a
neighborhood of θ0.



12 M. A. Arcones

(iii) With probability one, n−1
∑n

i=1 log p(Xi|θ), θ ∈ Θ has a unique
global maximum at θ̂n and this is the unique local maximum.

(iv) 0 < E[|φ(X)|2] <∞, where

φ(x) =

(
∂ log p(x|θ)

∂θ(1)

∣∣∣∣
θ=θ0

, . . . ,
∂ log p(x|θ)

∂θ(d)

∣∣∣∣
θ=θ0

)′

and θ = (θ(1), . . . , θ(d))′.

(v) limn→∞ a−2
n log(nPr{|φ(X)| ≥ n1/2an}) = −∞.

(vi) The matrix V :=
(
E

[
∂2 log p(X|θ)
∂θ(i)∂θ(j)

∣∣∣
θ=θ0

])
1≤i,j≤d

is positive definite.

(vii) There exists a λ > 0 such that

E[exp(λBδ0(X))] <∞,

where

Bδ0(x) = sup
1≤i,j≤d

sup
|θ−θ0|<δ0

∣∣∣∣∂2 log p(x|θ)
∂θ(i)∂θ(j)

∣∣∣∣ .
Then,

limn→∞ a−2
n log(Pr{|n1/2(θ̂n − θ0)

+2−1ann
−1
∑n

i=1(V
−1(φ(Xi)− E[φ(Xi)])| ≥ anτ}) = −∞.

Theorem 2.1 in Mäkeläinen, Schmidt and Styan (1981) gives sufficient
conditions implying hypothesis (iii) in the previous theorem. It is easy to
see that the previous theorem applies to many common mle’s. Another
sufficient conditions assuming less smoothness for the moderate deviations
of mle’s are in Theorem 2.9.

Next, we consider the moderate deviations of the M–estimators in (1.2).
The next theorem considers the moderate deviations for the M–estimators
over a nondecreasing kernel:

Theorem 2.7. Let {Xi}∞i=1 be a sequence of i.i.d.r.v.’s with values in a
measurable space (S,S). Let h : S × IR→ IR be function such that h(·, θ) :
S → IR is measurable for each θ and h(x, ·) : IR→ IR is nondecreasing for
each x. Let θ0 ∈ IR. Let {an} be a sequence of real numbers converging to
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infinity such that ann−1/2 → 0. Let θ̂n = sup{t : n−1
∑n

j=1 h(Xj , t) ≤ 0}.
Assume that:

(i) H(θ0) = 0 and H ′(θ0) > 0, where H(θ) := E[h(X, θ)].

(ii) E[h2(X, θ0)] <∞.

(iii) limn→∞ a−2
n log(nPr{|h(X, θ0)| ≥ ann

1/2}) = −∞.

(iv) For each t ∈ IR,

n1/2a−1
n E[|r(X,n−1/2ant)|I(|r(X,n−1/2ant)| ≥ n1/2an)] = 0,

where r(X, θ) = h(X, θ0 + θ)− h(X, θ0).

(v) For each t ∈ IR,

lim
n→∞

a−2
n log(nPr{|r(X,n−1/2ant)| ≥ ann

1/2}) = −∞.

(vi) For each t ∈ IR and each λ > 0,

limn→∞ na−2
n E

[
exp

(
λn−1/2an|r(X,n−1/2ant)|

)
×I(ann1/2 ≥ |r(X,n−1/2ant)| ≥ n1/2a−1

n )
]

= 0.

(vii) For each t ∈ IR,

lim
n→∞

Var(r(X,n−1/2ant)I(|r(X,n−1/2ant)| ≤ n1/2a−1
n )) = 0.

Then, for each τ > 0,

limn→∞ a−2
n log(Pr{a−1

n n1/2|θ̂n − θ0
+ (H ′(θ0))−1n−1

∑n
j=1(h(Xj , θ0)− E[h(Xj , θ0)])| ≥ τ}) = −∞.

Example 2.4. (p–th quantile). Let {Xi} be a sequence of i.i.d.r.v.’s with
df F . Let 0 < p < 1. Suppose that there exists θ0 such that F (θ0) = p.
The M-estimator over h(x, θ) = I(x ≤ θ)−p is the p–th quantile. It is easy
to see that if F ′(θ0) > 0, then the previous theorem applies.

Example 2.5. (Parameters of location). Let ψ be a nonincreasing odd
function with ψ(0) = 0. Take h(x, θ) = ψ(x− θ). Several possible common
choices for ψ are in Chapter 7 in Serfling (1980). Then, under minimal
conditions the previous theorem hold. For example, if ψ is bounded, the
previous theorem applies with θ0 if H(θ0) = 0, H ′(θ0) > 0 and
limθ→θ0 E[(h(X, θ)− h(X, θ0))2] = 0.
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The next theorem applies to the M–estimators in (1.2) in the multivari-
ate situation:

Theorem 2.8. Let {Xi}∞i=1 be a sequence of i.i.d.r.v.’s with values in a
measurable space (S,S). Let h : S × IRd → IRd be function such that
h(·, θ) : S → IR is measurable for each θ ∈ Θ. Let θ0 ∈ Θo. Let {an} be
a sequence of real numbers converging to infinity such that ann−1/2 → 0.
Suppose that:

(i) For each τ > 0,

lim
n→∞

a−2
n log(Pr{|θ̂n − θ0| ≥ τ}) = −∞.

(ii) For each τ > 0,

lim
n→∞

a−2
n log(Pr{a−1

n n1/2|Pnh(·, θ̂n)| ≥ τ}) = −∞.

(iii) H(θ0) = 0, where H(θ) := E[h(X, θ)]

(iv) H(θ) is differentiable at θ0 with nonsingular derivative.

(v) There exists a δ0 > 0 such that {a−1
n n1/2(Pn−P )(h(·, θ)−h(·, θ0)) :

|θ − θ0| ≤ δ0} satisfies the LDP with speed a2
n and a good rate function.

(vi) limθ→θ0 Var(h(X, θ)− h(X, θ0)) = 0.

Then, for each τ > 0,

lim
n→∞

a−2
n log(Pr{a−1

n n1/2|θ̂n−θ0 +(H ′(θ0))−1(Pn−P )h(·, θ0)| ≥ τ}) = −∞.

Necessary and sufficient conditions for the moderate large deviations of
empirical processes were given in Theorem 3.6 in Arcones (2001). Applying
these necessary and sufficient conditions to hypothesis (v) in the previous
theorem, we obtain the following:

Corollary 2.2. With the notation in the previous theorem, suppose that
there exists a δ0 > 0 such that:

(i) For each τ > 0,

lim
n→∞

a−2
n log(Pr{|θ̂n − θ0| ≥ τ}) = −∞.

(ii) For each τ > 0,

lim
n→∞

a−2
n log(Pr{a−1

n n1/2|Pnh(·, θ̂n)| ≥ τ}) = −∞.
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(iii) H(θ0) = 0, where H(θ) := E[h(X, θ)]

(iv) H(θ) is differentiable at θ0 with nonsingular derivative.

(v) For each |θ − θ0| ≤ δ0, E[|h(X, θ)|2] <∞.

(vi)

lim
n→∞

a−2
n log(nPr{ sup

|θ−θ0|≤δ0
|h(X, θ)| ≥ n1/2an}) = −∞.

(vii) ({θ : |θ − θ0| ≤ δ0}, d) is totally bounded, where

d2(θ′, θ′′) = Var(h(X, θ′)− h(X, θ′′)).

(viii) sup|θ−θ0|≤δ0 a
−1
n n−1/2|

∑n
j=1(h(Xj , θ)− E[h(Xj , θ)])|

Pr−→ 0.

(ix) limθ→θ0 Var(h(X, θ)− h(X, θ0)) = 0.

Then, for each τ > 0,

lim
n→∞

a−2
n log(Pr{a−1

n n1/2|θ̂n−θ0 +(H ′(θ0))−1(Pn−P )h(·, θ0)| ≥ τ}) = −∞.

Condition (viii) in the previous theorem holds if

{n−1/2
n∑
j=1

(h(Xj , θ)− E[h(Xj , θ)]) : |θ − θ0| ≤ δ0}

converges weakly. The weak convergence of the previous stochastic process
has been study by many authors (see for example Giné and Zinn, 1984; van
der Vaart and Wellner, 1996; and Dudley, 1999).

The previous corollary applied to the moderate deviations of mle’s gives
the following:

Theorem 2.9. Let {p(x|θ) : θ ∈ Θ} be a family of densities in IRm, where
Θ is a Borel set of IRd. Let {Xi} be a sequence of IRm–valued i.i.d.r.v.’s
with density p(x|θ0) where θ0 ∈ Θo. Suppose that there exists a δ0 > 0 such
that:

(i) A := {x ∈ IRm : p(x|θ) > 0} does not dependent on θ.

(ii) p(x|θ) is second differentiable with respect to θ in a neighborhood of
θ0.
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(iii) With probability one, n−1
∑n

i=1 log p(Xi|θ), θ ∈ Θ, has a unique
global maximum at θ̂n and this is the unique local maximum.

(iv) There exists a λ > 0 such that

E

[
exp

(
λ sup

1≤i≤d
sup

|θ−θ0|<δ0

∣∣∣∣∂ log p(x|θ)
∂θ(i)

∣∣∣∣
)]

<∞.

(v) The matrix V :=
(
E

[
∂2 log p(X|θ)
∂θ(i)∂θ(j)

∣∣∣
θ=θ0

])
1≤i,j≤d

is positive definite.

(vi)

E

[
sup

1≤i,j≤d
sup

|θ−θ0|<δ0

∣∣∣∣∂2 log p(X|θ)
∂θ(i)∂θ(j)

∣∣∣∣2
]
<∞.

Then,

limn→∞ a−2
n log(Pr{|n1/2(θ̂n − θ0)

+2−1ann
−1
∑n

i=1(V
−1(φ(Xi)− E[φ(Xi)])| ≥ anτ}) = −∞,

where

φ(x) =

(
∂ log p(x|θ)

∂θ(1)

∣∣∣∣
θ=θ0

, . . . ,
∂ log p(x|θ)

∂θ(d)

∣∣∣∣
θ=θ0

)′

.

3 Proofs.

Besides of imposing conditions like (1.3), we will need to deal with some
remainders. To do that we will use the following lemma:

Lemma 3.1. Let {Xn,j : 1 ≤ j ≤ n} be a triangular array of row wise inde-
pendent r.v.’s. Let {εn} be a sequence of positive numbers which converges
to zero. Suppose that:

(i)

lim
M→∞

lim sup
n→∞

|
n∑
j=1

E[Xn,jI(|Xn,j | ≥M)]| = 0.

(ii)

lim
M→∞

lim sup
n→∞

εn log

 n∑
j=1

Pr{|Xn,j | ≥M}

 = −∞.
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(iii) For each 0 < M,λ <∞,

lim
a→∞

lim sup
n→∞

εn

n∑
j=1

log
(
E[exp(λε−1

n |Xn,j |I(M > |Xn,j | ≥ aεn))]
)

= 0.

(iv) For each a > 0,

ε−1
n

n∑
j=1

Var(Xn,jI(|Xn,j | < aεn)) = 0.

Then, for each τ > 0,

lim sup
n→∞

εn log Pr{|
n∑
j=1

(Xn,j − E[Xn,j ])| ≥ τ} = −∞.

Proof. We prove that for each λ, τ > 0,

lim sup
n→∞

εn log

Pr{|
n∑
j=1

(Xn,j − E[Xn,j ])| ≥ τ}

 ≤ −λ.

Take 0 < M <∞ such that

lim sup
n→∞

|
n∑
j=1

E[Xn,jI(|Xn,j | ≥M)]| ≤ 2−2τ (3.1)

and

lim sup
n→∞

εn log(
n∑
j=1

Pr{|Xn,j | ≥M}) < −λ. (3.2)

Take a > 0 such that

lim sup
n→∞

εn log(E[exp(16λτ−1ε−1
n

n∑
j=1

|Xn,j |I(M > |Xn,j | ≥ aεn))]) < λ.(3.3)

By (3.1), for n large enough,

Pr{|
∑n

j=1(Xn,j − E[Xn,j ])| ≥ τ}
≤

∑n
j=1 Pr{|Xn,j | ≥M}

+Pr{|
∑n

j=1(Xn,jI(aεn ≤ |Xn,j | < M)
− E[Xn,jI(aεn ≤ |Xn,j | < M)])| ≥ 2−2τ}

+Pr{|
∑n

j=1(Xn,jI(|Xn,j | < aεn)− E[Xn,jI(|Xn,j | < aεn)])| ≥ 2−2τ}
=: I + II + III.
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By (3.2), for n large enough I ≤ e−λε
−1
n .

By symmetrization (see for example Lemma 6.3 in Ledoux and Tala-
grand, 1991) and (3.3), for n large enough,

II

≤ e−2λε−1
n E[exp(8λτ−1ε−1

n |
∑n

j=1(Xn,jI(aεn ≤ |Xn,j | < M)
−E[Xn,jI(aεn ≤ |Xn,j | < M))|)])

≤ e−2λε−1
n E[exp(16λτ−1ε−1

n |
∑n

j=1 ξjXn,jI(aεn ≤ |Xn,j | < M)|)]
≤ e−2λε−1

n E[exp(16λτ−1ε−1
n

∑n
j=1 |Xn,j |I(aεn ≤ |Xn,j | < M))]

≤ e−λε
−1
n ,

where {ξj} is a sequence of i.i.d. Rademacher r.v.’s independent of {Xn,j :
1 ≤ j ≤ n}.

By the Prokhorov inequality (Theorem 1 in Prokhorov, 1959)

III
≤ 2 exp

(
−2−4a−1τε−1

n

×arcsinh
(
2−2aτεn(

∑n
j=1 Var(Xn,jI(|Xn,j | < aεn)))−1

))
.

The claim follows from all the previous estimations. �

We will also use that if {Yi} is a sequence of i.i.d.r.v.’s such that for
some λ > 0, E[exp(λ|Y |)] < ∞, and {an} is a sequence of real numbers
such that na−2

n →∞, then for each τ > 0,

lim
n→∞

a−2
n log(Pr{n−1|

n∑
i=1

(Yi − E[Yi])| ≥ τ}) = −∞. (3.4)

This follows from the Cramer–Chernoff theorem: for each τ > 0,

lim
n→∞

n−1 log(Pr{n−1
n∑
i=1

(Yi − E[Yi])| ≥ τ}) = −min(I(τ), I(−τ)),

where
I(z) = sup{λz − log(E[exp(λ(Y − E[Y ]))]) : λ ∈ IR}

and I(z) > 0 for z 6= 0 (see for example Section 1.2 in Deuschel and Stroock,
1989).

We obtain Theorem 2.1 from Theorem 2.2. So, we prove Theorem 2.2
first. We need the following lemma:
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Lemma 3.2. Let f : [−M − τ,M + τ ]d → IR be a convex function, then
for each x, y ∈ [−M,M ]d,

|f(x)− f(y)| ≤ 2 · 3d|x− y|∞τ−1 sup
z∈{−M−τ,0,M+τ}d

|f(z)|.

The previous lemma follows from lemmas 13 and 14 in Arcones (1998a).

Proof of Theorem 2.2. Let Un(θ) = Gn(θ0 + M−1
n θ) − Gn(θ0) −

θ′ηn and let Wn(θ) = θ′Vnθ and let Zn(θ) = Un(θ) − Wn(θ). Let c1 =
lim infn→∞ inf |θ|=1 θ

′Vnθ and let c2 := lim supn→∞ sup|θ|=1 θ
′Vnθ.

First, we prove that for each 0 < τ,M <∞,

limn→∞ εn log(Pr{sup|θ|≤M |Zn(θ)| ≥ τ}) = −∞. (3.5)

Take 0 < ε < 1, such that 4 · 3dεc2(M + 1)2 < τ/2. Then, there are
θ1, . . . , θm ∈ [−M,M ]d and a function π : [−M,M ]d → {θ1, . . . , θm} such
that supθ∈[−M,M ]d |θ − π(θ)| ≤ ε. By the Lemma 3.2, for n large enough,
and each θ ∈ [−M,M ]d,

|Zn(θ)|
≤ |Zn(π(θ))|+ |Un(θ)− Un(π(θ))|+ |Wn(θ)−Wn(π(θ)|
≤ max1≤j≤m |Zn(θj)|+ 2 · 3dε supθ∈{−M−1,0,M+1}d |Un(θ)|

+2 · 3dε supθ∈{−M−1,0,M+1}d |Wn(θ)|
≤ max1≤j≤m |Zn(θj)|+ 2 · 3dε supθ∈{−M−1,0,M+1}d |Zn(θ)|

+4 · 3dε supθ∈{−M−1,0,M+1}d |Wn(θ)|
≤ max1≤j≤m |Zn(θj)|+ 2 · 3dε supθ∈{−M−1,0,M+1}d} |Zn(θ)|+ τ/2.

Therefore,

εn log(Pr{sup|θ|≤M |Zn(θ)| ≥ τ})
≤ εn log

(
Pr{max1≤j≤m |Zn(θj)| ≥ 2−3τ}

+Pr{2 · 3dε supθ∈{−M−1,0,M+1}d |Zn(θ)| ≥ 2−3τ}
)
→ −∞

and (3.5) holds.

Let θ̃n = −2−1V −1
n ηn, let τ > 0, let |θ| > τ > 0, let t = θ0 +M−1

n θ̃n +
M−1
n θ and let

t∗ := θ0 +M−1
n θ̃n + τ |θ|−1M−1

n θ = |θ|−1τt+ |θ|−1(|θ| − τ)(θ0 +M−1
n θ̃n).
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By convexity,

Gn(t∗)−Gn(θ0) (3.6)
≤ |θ|−1τ(Gn(t)−Gn(θ0)) + |θ|−1(|θ| − τ)(Gn(θ0 +M−1

n θ̃n)−Gn(θ0)).

Then, for n large enough,

Gn(t∗)−Gn(θ0) (3.7)
≥ (θ̃n + τ |θ|−1θ)′ηn + (θ̃n + τ |θ|−1θ)′Vn(θ̃n + τ |θ|−1θ)

− sup|θ|≤|θ̃n|+τ |Zn(θ)|

= −2−2η′nV
−1
n ηn + |θ|−2τ2θ′Vnθ − sup|θ|≤|θ̃n|+τ |Zn(θ)|

≥ Gn(θ0 +M−1
n θ̃n)−Gn(θ0) + 2−1c1τ

2 − 2 sup|θ|≤|θ̃n|+τ |Zn(θ)|.

By (3.6) and (3.7), for n large enough,

Gn(θ0 +M−1
n θ̃n)−Gn(θ0) + 2−1c1τ

2 − 2 sup|θ|≤|θ̃n|+τ |Zn(θ)|
≤ |θ|−1τ(Gn(t)−Gn(θ0))

+|θ|−1(|θ| − τ)(Gn(θ0 +M−1
n θ̃n)−Gn(θ0)).

So, for |θ| > τ ,

Gn(θ0 +M−1
n θ̃n)−Gn(θ0)

+|θ|τ−1(2−1c1τ
2 − 2 sup|θ|≤|θ̃n|+τ |Zn(θ)|)

≤ Gn(θ0 +M−1
n θ̃n +M−1

n θ)−Gn(θ0).

This implies that if

sup
|θ|≤|θ̃n|+τ

|Zn(θ)| ≤ 2−3c1τ
2

then, for each |θ| > τ ,

Gn(θ0 +M−1
n θ̃n)−Gn(θ0) + 2−2c1τ

2

≤ Gn(θ0 +M−1
n θ̃n +M−1

n θ)−Gn(θ0).

Hence,

Pr{|Mn(θ̂n − θ0) + 2−1V −1
n ηn| ≥ τ}

≤ Pr{sup|θ|≤M+τ |Zn(θ)| ≥ 2−3c1τ
2}+ Pr{|θ̃n| ≥M}

+Pr{Gn(θ̂n) ≥ infθ∈ΘGn(θ) + 2−2c1τ
2}
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and the claim follows from (3.5) and hypotheses (ii) and (iv). �

Proof of Theorem 2.1. We apply Theorem 2.2 with
Mn = a−1

n n1/2Id×d, Vn = V , ηn = a−1
n n−1/2

∑n
j=1(φ(Xj) − E[φ(Xj)]),

and Gn(θ) = a−2
n

∑n
j=1 g(Xj , θ), where Id×d is the identity d × d matrix.

Conditions (i), (ii), (iv) and (v) in Theorem 2.1 are obviously satisfied. To
check condition (iii), we need to prove that for each θ ∈ IRd and each τ > 0,

limn→∞ a−2
n log(Pr{a−2

n n|(Pn − P )r(·, ann−1/2θ)| ≥ τ}) = −∞,

This follows from Lemma 3.1. Conditions (i), (ii) and (iv) in Lemma 3.1
are obviously satisfied. To check condition (iii) in Lemma 3.1 notice that

na−2
n log(E[exp(λ|r(X,n−1/2anθ)|)I(a2

n ≥ |r(X,n−1/2anθ)| ≥ 1)])
' na−2

n E[exp(λ|r(X,n−1/2anθ)|)I(a2
n ≥ |r(X,n−1/2anθ)| ≥ 1)− 1]

= na−2
n E[(exp(λ|r(X,n−1/2anθ)|)− 1)I(a2

n ≥ |r(X,n−1/2anθ)| ≥ 1)]
≤ na−2

n E[exp(λ|r(X,n−1/2anθ)|)I(a2
n ≥ |r(X,n−1/2anθ)| ≥ 1)]. �

Proof of Corollary 2.1. We apply Theorem 2.1. Conditions (i)–
(iii) in Theorem 2.1 are assumed. Condition (iv) implies conditions (iv)
and (v) in Theorem 2.1. For n large enough, we have that

na−2
n E[|r(X,n−1/2anθ)|I(|r(X,n−1/2anθ)| ≥ a2

n)]
≤ |θ|n1/2a−1

n E[L(X)I(|θ|L(X) ≥ n1/2an)]
≤ |θ|a−2

n E[(L(X))2I(|θ|L(X) ≥ n1/2an)] → 0.

So, condition (vi) in Theorem 2.1 follows.

We have that for θ 6= 0,

a−2
n log

(
nPr{|r(X,n−1/2anθ)| ≥ a2

n}
)

≤ a−2
n log

(
nPr{|θ|L(X) ≥ ann

1/2}
)

≤ a−2
n log

(
nce−cann1/2

)
→ 0,

which implies condition (vii) in Theorem 2.1.

For each θ 6= 0, each λ > 0 and each n large enough,

na−2
n E[exp(λ|r(X,n−1/2anθ)|)I(a2

n ≥ |r(X,n−1/2anθ)| ≥ 1)]
≤ na−2

n E[exp(cλn−1/2anL(X))I(cL(X)n−1/2an ≥ 1)]
≤ cE[(L(X))2 exp(cλn−1/2anL(X))I(cL(X)n−1/2an ≥ 1)]
≤ cE[exp(cλ0L(X))I(L(X) ≥ cn1/2a−1

n )] → 0.
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So, condition (viii) in Theorem 2.1 holds.

Given θ ∈ IR,

na−2
n Var(r(X,n−1/2anθ)I(|r(X,n−1/2anθ)| ≤ 1))

≤ E[(n1/2a−1
n r(X,n−1/2anθ))2].

By condition (iii), n1/2a−1
n r(X,n−1/2anθ) → 0 a.s. and by condition (iv),

|n1/2a−1
n r(X,n−1/2anθ)| ≤ cL(X). So, by the dominated convergence the-

orem,
E[(n1/2a−1

n r(X,n−1/2anθ))2] → 0.

This implies condition (ix) in Theorem 2.1. �

Proof of Theorem 2.3. We apply Theorem 2.2 with Mn = a−1
n S

1/2
n ,

Vn = F ′
U (0), ηn = −a−1

n

∑n
j=1 S

−1/2
n zj sign(Uj) and

Gn(θ) = a−2
n

n∑
j=1

|Yj − z′jθ| = a−2
n

n∑
j=1

|Uj − z′j(θ − θ0)|.

Conditions (i), (ii) and (v) in Theorem 2.2 are trivially satisfied.

We have that

Gn(θ0 +M−1
n θ)−Gn(θ0)− θ′ηn − θ′Vnθ

= a−2
n

∑n
j=1

(
|Uj − anz

′
jS

−1/2
n θ| − |Uj |

+anz′jS
−1/2
n θ sign(Uj)− (anz′jS

−1/2
n θ)2F ′

U (0)
)
,

=
∑n

j=1(Xn,j − E[Xn,j ])

+
∑n

j=1

(
E[Xn,j ]− (z′jS

−1/2
n θ)2F ′

U (0)
)
,

where

Xn,j := a−2
n (|Uj − anz

′
jS

−1/2
n θ| − |Uj |+ anz

′
jS

−1/2
n θ sign(Uj)).

We claim that by Lemma 3.1 for each τ > 0,

lim
n→∞

εn log(Pr{|
n∑
j=1

(Xn,j − E[Xn,j ])| ≥ τ}) = −∞. (3.8)

where εn = a−2
n . We have that

ε−1
n max

1≤j≤n
|Xn,j | ≤ an max

1≤j≤n
|z′jS−1/2

n ||θ| → 0.
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So, conditions (i)–(iii) in Lemma 3.1 hold. We claim that

Var(|U − θ| − |U |+ θ sign(U)) = O(|θ|3) as θ → 0. (3.9)

If θ > 0, then |U − θ| − |U |+ θ sign(U) = 2(θ − U)I(0 < U < θ). So,

Var(|U − θ| − |U |+ θ sign(U)) ≤ E[(|U − θ| − |U |+ θ sign(U))2]
≤ E[4(θ − U)2I(0 < U < θ)] =

∫ θ
0 4(θ − u)2 dFU (u)

=
∫ θ
0 8(θ − u)(FU (u)− F (0)) du = O(θ3).

The case θ < 0 follows similarly. So, (3.9) follows. By (3.9),

ε−1
n

∑n
j=1 Var(Xn,j)

≤ ca−2
n

∑n
j=1 |anz′jS

−1/2
n θ|3

≤ can max1≤j≤n |z′jS
−1/2
n ||θ|3 → 0,

Therefore, (3.8) holds.

We claim that

E[|U − θ| − |U |+ θ sign(U)]− θ2F ′
U (0) = o(|θ|2) as θ → 0. (3.10)

If θ > 0, we have that

E[|U − θ| − |U |+ θ sign(U)]− θ2F ′(0)
= 2

∫ θ
0 (θ − u) dFU (u)− θ2F ′(0)

= 2
∫ θ
0 (FU (u)− FU (0)) du− θ2F ′

U (0)
= 2

∫ θ
0 (FU (u)− FU (0)− uF ′

U (0)) du = o(θ2).

Thus, (3.10) follows if θ > 0. The case θ < 0 is similar. By (3.10),

|
n∑
j=1

(E[Xn,j ]− (z′jS
−1/2
n θ)2F ′

U (0))| ≤ o(1)
n∑
j=1

|z′jS−1/2
n |2 → 0, (3.11)

(3.8) and (3.11) imply (iii) in Theorem 2.2.

By Lemma 3.1 in Arcones (2001), a−1
n

∑n
j=1 S

−1/2
n zj sign(Uj) satisfies

the LDP with speed a2
n and rate function I(t) = 2−1|t|2. This implies

hypothesis (iv) in Theorem 2.2. �

To prove Theorem 2.4 we will need the following lemma:
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Lemma 3.3. Under notation for the M–estimators in (1.2), let φ : S → IRd

be a measurable function and let {an} be a sequence of real numbers which
converges to infinity such that n−1/2an → 0. Suppose that:

(i) For each τ > 0,

lim
n→∞

a−2
n log(Pr{|θ̂n − θ0| ≥ τ}) = −∞.

(ii) For each τ > 0,

lim
n→∞

a−2
n log(Pr{

n∑
i=1

g(Xi, θ̂n) ≥ inf
θ∈Θ

n∑
i=1

g(Xi, θ) + τa2
n}) = −∞.

(iii) There is a positive definite symmetric d× d matrix V such that

E[g(X, θ)− g(X, θ0)] = (θ − θ0)′V (θ − θ0) + o(|θ − θ0|2),

as θ → θ0.

(iv) E[|φ(X)|2] <∞

(v) limn→∞ a−2
n log(nPr{|φ(X)| ≥ n1/2an}) = −∞.

(vi) For each τ > 0 and each 0 < M <∞,

lim
n→∞

a−2
n log(Pr{ sup

|θ|≤Mann−1/2

na−2
n |(Pn − P )r(·, θ)| ≥ τ})−∞,

where
r(x, θ) = g(x, θ0 + θ)− g(x, θ0)− θ′φ(x).

(vii) For each τ > 0, there exists a δ > 0 such that

limM→∞ lim supn→∞ a−2
n log(Pr{sup|θ−θ0|≤δ

na−2
n |(Pn−P )(g(·,θ)−g(·,θ0))|

τna−2
n |θ−θ0|2+M

≥ 1}) = −∞.

Then, for each τ > 0,

lim
n→∞

a−2
n log(Pr{|n1/2(θ̂n − θ0) + 2−1n1/2(Pn − P )V −1φ| ≥ anτ}) = −∞.
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Proof. Let G(θ) = E[g(X, θ)] and let Gn(θ) = n−1
∑n

j=1 g(Xj , θ).
First, we prove that

lim
M→∞

lim sup
n→∞

a−2
n log(Pr{a−1

n n1/2|θ̂n − θ0| ≥M}) = −∞. (3.12)

By condition (iii), there are 0 < c, δ such that if |θ − θ0| ≤ δ, then
G(θ)−G(θ0) ≥ c|θ − θ0|2. So, if 0 < τ < δ, |θ̂n − θ0| ≤ δ,

nGn(θ̂n) ≤ inf
θ
nGn(θ) + a2

n

and

sup
|θ−θ0|≤δ

na−2
n |(Pn − P )(g(·, θ)− g(·, θ0))|

τna−2
n |θ − θ0|2 +M

≤ 1,

then

cna−2
n |θ̂n − θ0|2 ≤ na−2

n (G(θ̂n)−G(θ0))
= na−2

n (Gn(θ̂n)−Gn(θ0))− na−2
n (Pn − P )(g(·, θ̂n)− g(·, θ0))

≤ 1 + τa−2
n n|θ̂n − θ0|2 +M.

Hence, (3.12) follows.

By (3.12), (iii) and (v), we have that for each τ > 0,

limn→∞ a−2
n log(Pr{n|Gn(θ̂n)−Gn(θ0)

−n−1/2(θ̂n − θ0)′ηn − (θ̂n − θ0)′V (θ̂n − θ0)| ≥ τa2
n}) = −∞

where ηn = n1/2(Pn − P )φ. By conditions (iv)–(vi),

limn→∞ log(Pr{ n|Gn(θ0 − 2−1n−1/2V −1ηn)−Gn(θ0)
+2−2n−1ηnV

−1ηn| ≥ τa2
n}) = −∞.

Now, if

n|Gn(θ̂n)−Gn(θ0)− n−1/2(θ̂n − θ0)′ηn − (θ̂n − θ0)′V (θ̂n − θ0)| < τa2
n

n|Gn(θ0 + 2−1n−1/2V −1ηn)−Gn(θ0) + 2−2n−1ηnV
−1ηn| < τa2

n

and
Gn(θ̂n) < inf

θ
Gn(θ) + τn−1a2

n
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then
n−1/2(θ̂n − θ0)′ηn + (θ̂n − θ0)′V (θ̂n − θ0)

< n(Gn(θ̂n)−Gn(θ0)) + n−1a2
nτ

< n(Gn(θ0 − 2−1n−1/2V −1ηn)−Gn(θ0)) + 2n−1a2
nτ

< −2−2n−1η′nV
−1ηn + 3n−1a2

nτ.

So,

|V 1/2(θ̂n − θ0) + 2−1n−1/2V −1/2ηn|2
= n−1/2(θ̂n − θ0)′ηn + (θ̂n − θ0)′V (θ̂n − θ0) + 2−2n−1η′nV

−1ηn
< 3n−1a2

nτ.

We have proved that

{|V 1/2(θ̂n − θ0) + 2−1n−1/2V −1/2ηn|2 ≥ 3n−1a2
nτ}

= {n|Gn(θ̂n)−Gn(θ0)− n−1/2(θ̂n − θ0)′ηn−
(θ̂n − θ0)′V (θ̂n − θ0)| ≥ τa2

n}
∪{n|Gn(θ0 + 2−1n−1/2V −1ηn)−Gn(θ0) + 2−2n−1ηnV

−1ηn| ≥ τa2
n}

∪{Gn(θ̂n) ≥ infθGn(θ) + τa2
nn

−1},

which implies the claim. �

Proof of Theorem 2.4. We apply Lemma 3.3. We have that condi-
tions (i)–(v) in the theorem hold. We have that

sup
|θ|≤Mann−1/2

na−2
n |(Pn−P )r(·, θ)| ≤M2|(Pn−P )Ψ|+M2(Pn+P )BMann−1/2 .

By conditions (vii) and (viii), we have that

lim
n→∞

a−2
n log(Pr{M2(Pn + P )BMann−1/2 ≥ τ}) = −∞,

which implies condition (vi) in Lemma 3.3.

We also have that

sup|θ−θ0|≤δ
na−2

n |(Pn−P )(g(·,θ)−g(·,θ0))|
τna−2

n |θ−θ0|2+M

≤ sup|θ−θ0|≤δ
na−2

n |(Pn−P )(θ−θ0)′φ|
τna−2

n |θ−θ0|2+M
+ sup|θ−θ0|≤δ

na−2
n |θ−θ0|2|(Pn−P )Ψ|
τna−2

n |θ−θ0|2+M

+sup|θ−θ0|≤δ
na−2

n (Pn+P )|θ−θ0|2Bδ

τna−2
n |θ−θ0|2+M

≤ 2−1τ−1/2M−1/2n1/2a−1
n |(Pn − P )φ|+ τ−1|(Pn − P )Ψ|

+τ−1(Pn + P )Bδ,
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which implies condition (vii) in Lemma 3.3. �

Proof of Theorem 2.5. We apply Theorem 2.4. We only need to
check hypothesis (i) in Theorem 2.4. Take τ > 0 small enough such
δ := inf |θ−θ0|=τ E[g(X, θ)− g(X, θ0)] > 0. By (i)

{|θ̂n − θ0| ≥ τ}
⊂ {inf |θ−θ0|=τ Gn(θ) < Gn(θ0) + 2−1δ}
⊂ {sup|θ−θ0|=τ |(Pn − P )(g(·, θ)− g(·, θ0))| ≥ 2−1δ}.

Since condition (vii) in Lemma 3.3 is satisfied,

lim
n→∞

a−2
n log(Pr{ sup

|θ−θ0|=τ
|(Pn − P )(g(·, θ)− g(·, θ0))| ≥ 2−1δ}) = −∞.

�

To prove Theorem 2.7 we need the following lemma:

Lemma 3.4. Let {Zn(θ) : θ ∈ IR} be a sequence of stochastic processes.
Let a > 0. Let θ0 ∈ IR. Let {εn} and let {bn} be two sequences of positive
numbers which converge to zero. Let θ̂n = sup{t : Zn(t) ≤ 0}. Assume
that:

(i) As a function on θ, Zn(θ) is non increasing.

(ii) For each t ∈ IR,

lim
n→∞

bnE[Zn(θ0 + b−1
n t)− Zn(θ0)] = at.

(iii)
lim
M→∞

lim sup
n→∞

εn log(Pr{bn|Zn(θ0)| ≥M}) = −∞.

(iv) For each t ∈ IR and each τ > 0,

limn→∞ εn log(Pr{|bn(Zn(θ0 + b−1
n t)− Zn(θ0)

− E[Zn(θ0 + b−1
n t)− Z(θ0)])| ≥ τ}) = −∞.

Then, for each τ > 0,

lim
n→∞

εn log(Pr{|bn(θ̂n − θ0) + a−1bnZn(θ0)| ≥ τ}) = −∞.
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Proof. By conditions (iii) and (v), for each t ∈ IR and each τ > 0,

limn→∞ εn log(Pr{|Vn(t)| ≥ τ}) = −∞

where
Vn(t) = bn(Zn(θ0 + b−1

n t)− Zn(θ0))− at.

We claim that for each 0 < M <∞ and each τ > 0,

limn→∞ εn log(Pr{sup|t|≤M |Vn(t)| ≥ τ}) = −∞. (3.13)

Take an integer m ≥ 4Maτ−1. Let tj = −M + m−1j2M , 0 ≤ j ≤ m. If
tj−1 ≤ t ≤ tj , then

Vn(t) ≤ bn(Zn(θ0 + b−1
n tj)− Zn(θ0))− atj−1

≤ max0≤j≤m |Vn(tj)|+ am−12M ≤ max0≤j≤m |Vn(tj)|+ 2−1τ.

Similarly we get that

Vn(t) ≥ −max0≤j≤m |Vn(tj)| − 2−1τ.

Hence, sup|t|≤M |Vn(t)| ≤ max0≤j≤m |Vn(tj)|+ 2−1τ and (3.13) follows.

By (3.13), for each t ∈ IR and each τ > 0,

limn→∞ εn log(Pr{|Vn(−a−1(t+ bnZn(θ0)))| ≥ τ}) = −∞.

Now,
Vn(−a−1(t+ bnZn(θ0)))

= bnZn(θ0 − b−1
n a−1(t+ bnZn(θ0))) + t

Hence, we have that for each t ∈ IR and each τ > 0,

lim
n→∞

εn log(Pr{|bnZn(θ0 − b−1
n a−1(t+ bnZn(θ0))) + t| ≥ τ}) = −∞. (3.14)

To prove the lemma it suffices to show that for each τ > 0,

lim
n→∞

εn log(Pr{abn(θ̂n − θ0) + bnZn(θ0) ≤ −τ}) = −∞ (3.15)

and

lim
n→∞

εn log(Pr{abn(θ̂n − θ0) + bnZn(θ0) ≥ τ}) = −∞. (3.16)
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Given t, we have that {θ̂n < t} ⊂ {Zn(t) > 0}. So,

Pr{abn(θ̂n − θ0) + bnZn(θ0) < −τ}
= Pr{θ̂n < θ0 − b−1

n a−1(τ + bnZn(θ0))}
≤ Pr{Zn(θ0 − b−1

n a−1(τ + bnZn(θ0))) > 0}.

This and (3.14) imply (3.15).

Finally, given t, we have that {Zn(t) > 0} ⊂ {θ̂n ≤ t}. So,

Pr{abn(θ̂n − θ0) + bnZn(θ0) > τ}
≤ Pr{Zn(θ0 − b−1

n a−1(−τ + bnZn(θ0))) ≤ 0}.

As before, this and (3.14) implies (3.16). �

Proof of Theorem 2.7. We apply Lemma 3.4 with
Zn(θ) = n−1

∑n
j=1 h(Xj , θ), bn = a−1

n n1/2 and εn = a−2
n . Hypothesis (i)

in Lemma 3.4 is assumed. Hypothesis (ii) in Lemma 3.4 follows from (i).
By Corollary 3.4 in Arcones (2001), a−1

n n−1/2
∑n

j=1 h(Xj , θ0) satisfies the
LDP with speed a2

n. This implies hypothesis (iii) in Lemma 3.4. To check
hypothesis (iv), we need to prove that for each τ > 0,

limn→∞ a−2
n log(Pr{|

∑n
i=1(r(Xj , n

−1/2ant)
−E[r(Xj , n

−1/2ant)])| ≥ τann
1/2}) = −∞.

To check this, we use Lemma 3.1 with εn = a−2
n and

Xn,j = n−1/2a−1
n r(Xj , n

−1/2ant). �

Proof of Theorem 2.8. By (iii) and (iv), there are c,> 0 and δ0 >
δ1 > 0 such that if |θ − θ0| ≤ δ1, then

c|θ − θ0| ≤ |H(θ)|.

If |θ̂n − θ0| ≤ δ1,

sup
|θ−θ0|≤δ1

a−1
n n1/2|(Pn − P )(h(·, θ)− h(·, θ0))| ≤M,

|a−1
n n1/2(Pn − P )h(·, θ0)| ≤M

and
a−1
n n1/2|Pnh(·, θ̂n)| ≤M
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then

ca−1
n n1/2|θ̂n − θ0| ≤ |H(θ̂n)−H(θ0)|

≤ a−1
n n1/2|(Pn − P )(h(·, θ̂n)− h(·, θ0))|+ a−1

n n1/2|(Pn − P )h(·, θ0)|
+a−1

n n1/2|Pnh(·, θ̂n)| ≤ 3M.

The previous estimation and conditions (i)–(v) imply that

lim
M→∞

lim sup
n→∞

a−2
n log(Pr{a−1

n n1/2|θ̂n − θ0| ≥M}) = −∞. (3.17)

Note that condition (v) implies

limM→∞ lim supn→∞ a−2
n log(Pr{sup|θ−θ0|≤δ0 a

−1
n n1/2

× |(Pn − P )(h(·, θ)− h(·, θ0))| ≥M}) = −∞.

We also have that

a−1
n n1/2|H ′(θ0)(θ̂n − θ0) + (Pn − P )h(·, θ0)|

≤ a−1
n n1/2|(Pn − P )(h(·, θ0)− h(·, θ̂n))|+ a−1

n n1/2|Pnh(·, θ̂n)|
+a−1

n n1/2|H(θ̂n)−H(θ0)−H ′(θ0)(θ̂n − θ0)|.

The previous inequality, (3.17) and conditions (ii) and (iv)–(vi) imply the
claim of the theorem. Observe that conditions (v) and (vi) imply that for
each τ > 0,

limδ→∞ lim supn→∞ a−2
n log(Pr{sup|θ−θ0|≤δ a

−1
n n1/2

× |(Pn − P )(h(·, θ)− h(·, θ0))| ≥ τ}) = −∞.

�

Proof of Theorem 2.9. We apply Corollary 2.2. Let g(x, θ) =
log p(x, θ) and let

h(x, θ) =
(
∂ log p(x|θ)

∂θ(1)
, . . . ,

∂ log p(x|θ)
∂θ(d)

)′
.

Conditions (ii), (v)–(vii) and (ix) in Corollary 2.2 is obviously satisfied.

By the Jensen inequality for each θ ∈ Θ,

E

[
log
(
p(X|θ)
p(X|θ0)

)]
≤ logE

[
p(X|θ)
p(X|θ0)

]
= 0.
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So, each θ ∈ Θ,
E[log p(X|θ)] ≤ E[log p(X|θ0)].

By condition (vi), E[log p(X|θ)] is twice differentiable under the integral
sign with zero first derivatives and matrix of second derivatives V . This
implies conditions (iii) and (iv) in Corollary 2.2.

Take τ > 0 small enough such δ := inf |θ−θ0|=τ E[g(X, θ)−g(X, θ0)] > 0.
We have that

Pr{|θ̂n − θ0| ≥ τ}
≤ Pr{sup|θ−θ0|=τ |(Pn − P )(g(·, θ)− g(·, θ0))| ≥ 2−1δ}.

By Theorem 2.7 in Arcones (2001), {(Pn−P )(g(·, θ)−g(·, θ0)) : |θ−θ0| = τ}
satisfies the LPD with speed n. This implies that

lim
n→∞

a−2
n log(Pr{ sup

|θ−θ0|=τ
|(Pn − P )(g(·, θ)− g(·, θ0))| ≥ 2−1δ}) = −∞.

So, condition (i) in Corollary 2.2 follows.

To check condition (viii) in Corollary 2.8, it suffices to show that

{n−1/2
n∑
j=1

(h(Xj , θ)− E[h(Xj , θ)]) : |θ − θ0| ≤ δ0}

converges weakly. This follows from the central limit theorem for empirical
processes under bracketing conditions in Ossiander (1987). Observe that
for each |θ − θ0| ≤ δ0 and each η > 0,

sup
θ′:|θ′−θ0|≤δ0,|θ′−θ|≤η

|h(X, θ′)− h(X, θ)| ≤ ηBδ0(X),

where

Bδ0(x) = sup
1≤i,j≤d

sup
|θ−θ0|<δ0

∣∣∣∣∂2 log p(x|θ)
∂θ(i)∂θ(j)

∣∣∣∣ .
�
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