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Abstract

We present a new approach to study the Bahadur efficiency of likelihood tests. Our
approach is based on the large deviation principle for empirical processes. We prove
that the likelihood ratio test is Bahadur asymptotically optimal under mild sufficient
conditions. Our results apply to common families of distributions such as location and
scale families.

Running Title: likelihood ratio tests

1 Introduction

A natural definition of efficiency of tests was given by Bahadur (1965, 1967, 1971). This

definition is as follows. Let {f(·, θ) : θ ∈ Θ} be a family of pdf’s on a measurable space (S,S)

with respect to a measure µ, where Θ is a Borel subset of Rd. Let X1, . . . , Xn be i.i.d.r.v.’s

with values in (S,S) and pdf f(·, θ), for some unkonwn value of θ ∈ Θ. Let Θ0 ⊂ Θ. Consider

the hypothesis testing problem H0 : θ ∈ Θ0 versus H1 : θ 6∈ Θ1, where Θ1 := Θ − Θ0. The

p–value of a test is the smallest significance level at which the null hypothesis can be rejected.

∗AMS 2000 subject classifications. Primary 62F05; secondary 60F10.
Key words and phrases. Bahadur efficiency, likelihood ratio test, large deviation principle, empirical processes.
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Suppose that a test rejects H0 if Tn ≥ c, where Tn := Tn(X1, . . . , Xn) is a statistic and c is a

constant. Then, the p-value of the test is Hn(Tn), where

Hn(t) := sup
θ0∈Θ0

Pθ0(Tn ≥ t), (1.1)

where Pθ denotes the probability measure for which the data has pdf f(·, θ). For θ1 ∈ Θ1 we

would like that the p–value converges to zero as fast as possible. Bahadur (1967) (see also

Raghavachari, 1970) proved that for any test

lim inf
n→∞

n−1 lnHn(Tn) ≥ − inf{K(f(·, θ1), f(·, θ0)) : θ0 ∈ Θ0} a.s. (1.2)

when θ1 obtains (the alternative θ1 holds), where K(f(·, θ1), f(·, θ0) is the Kullback–Leibler

information of the densities f(·, θ1) and f(·, θ). Given densities f and g with respect to a

probability measure µ, the Kullback–Leibler information of the densities f and g is defined

by

K(f, g) =

∫
ln(f(t)/g(t))f(t) dµ(t).

A test is said to be Bahadur efficient if for each θ1 6∈ Θ0,

lim
n→∞

n−1 lnHn(Tn) = − inf{K(f(·, θ1), f(·, θ0)) : θ0 ∈ Θ0} a.s. (1.3)

when θ1 obtains. For a review on Bahadur asymptotic optimality see Serfling (1980) and

Nikitin (1995).

We consider the Bahadur efficiency of the likelihood ratio test. The likelihood ratio statistic

is

sup
θ∈Θ

n∏
j=1

f(Xj, θ)/ sup
θ∈Θ0

n∏
j=1

f(Xj, θ). (1.4)

We will prove that this statistic satisfies (1.3) for common families of distributions. Bahadur

proved that the likelihood ratio test satisfies (1.3) assuming among other conditions that Θ0

and Θ1 are relatively compact sets with respect to the topology determined by the convergence

in distribution. This condition is too stringent. In this paper, we present new sufficient

conditions for the Bahadur efficiency of the likelihood ratio test which apply to common

families of distributions.

The efficiency of the likelihood ratio test has being studied by several authors. Bahadur

and Raghavachari (1972) consider the case of Markov chains. Oosterhoff and van Zwet (1970)

consider the case of the multinomial distribution. Herr (1969) considers the case of the

multinomial distribution. Efron and Truax (1968), Kallenberg (1978) and Kourouklis (1984)

consider exponential families. Rublik (1989a, 1989b) considers several types of distributions..
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Hsieh (1979a, 1979b) considers the Bahadur efficiency of several statistics for multivariate

data. Besides the considered situation, the likelihood ratio test is optimal according with

another criteria (see e.g Brown, 1971; Kolomiec, 1989; and Rublik, 1995, 1996).

Our results apply to common families of distribution such as location and scale families.

Our results also apply to exponential families.

Given a set A of Rd, Int(A) will denote the interior of A. By an abuse of notation, given

θ1, θ2 ∈ Θ, we define

K(θ1, θ2) = K(f(·, θ1), f(·, θ2)).

Our techniques are based on the (LDP) large deviation principle for empirical processes

in Arcones (2003a, 2003b). In Section 2, we review the notation on the LDP of empirical

processes. Section 3 contains the main results. The proofs are in Section 4.

2 Large deviations via empirical processes

In this section we review some results on the LDP for empirical processes. We refer to the

large deviation principle to Deuschel and Stroock (1989) and Dembo and Zeitouni (1998). We

determine the rate function of the LDP of empirical processes using Orlicz spaces theory. A

reference in Orlicz spaces is Rao and Ren (1991). A function Φ : R → R̄ is said to be a Young

function if it is convex, Φ(0) = 0; Φ(x) = Φ(−x) for each x > 0; and limx→∞ Φ(x) = ∞. Let X

be a r.v. with values in a measurable space (S,S). The Orlicz space LΦ(S,S) (abbreviated to

LΦ) associated with the Young function Φ is the class of measurable functions f : (S,S) → R
such that E[Φ(λf(X))] < ∞ for some λ > 0. The Minkowski (or gauge) norm of the Orlicz

space LΦ(S,S) is defined as

NΦ(f) = inf{t > 0 : E[Φ(f(X)/t)] ≤ 1}.

It is well known that the vector space LΦ with the norm NΦ is a Banach space. Define

LΦ1 := {f : S → R : E[Φ1(λ|f(X)|)] <∞ for some λ > 0},

where Φ1(x) = e|x| − |x| − 1. Let (LΦ1)∗ be the dual of (LΦ1 , NΦ1). The function f ∈ LΦ1 7→
ln
(
E[ef(X)]

)
∈ R is a convex lower semicontinuous function. The Fenchel–Legendre conjugate

of the previous function is:

J(l) := sup
f∈LΦ1

(
l(f)− ln

(
E[ef(X)]

))
, l ∈ (LΦ1)∗. (2.1)

J is a function with values in [0,∞]. Since J is a Fenchel–Legendre conjugate, it is a nonneg-

ative convex lower semicontinuous function. If J(l) <∞, then:
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(i) l(1) = 1, where 1 denotes the function constantly 1.

(ii) l is a nonnegative definite functional: if f(X) ≥ 0 a.s., then l(f) ≥ 0.

Since the double Fenchel–Legendre transform of a convex lower semicontinuous function

coincides with the original function (see e.g. Lemma 4.5.8 in Dembo and Zeitouni, 1998), we

have that

sup
l∈LΦ1

(l(f)− J(l)) = lnE[ef(X)]. (2.2)

Given a nonnegative function γ on S such that E[γ(X)] = 1 and E[Ψ2(γ(X))] < ∞,

lγ(f) = E[f(X)γ(X)], f ∈ LΦ1 , defines a continuous linear functional in LΦ1 , where

Ψ2(x) = x ln
(x
e

)
+ 1, if x > 0; Ψ2(0) = 1; and Ψ2(x) = ∞, if x < 0. (2.3)

Besides, we have that

J(lγ) = sup
f∈LΦ1

(E[f(X)γ(X)− Φ2(f(X))]) = E[Ψ2(γ(X))], (2.4)

where Φ2(x) = ex− 1 (see (2.5) in Arcones ,2003b). The Fenchel–Legendre conjugate of Φ2 is

the function Ψ2. We also have that if l ∈ (LΦ1)∗ and l(1) = 1, then

J(l) = sup
f∈LΦ1

(l(f)− E[Φ2(f(X))]) . (2.5)

(see Lemma 2.1 in Arcones, 2003b).

The previous function J can be used to determine the rate function in the large deviation

of statistics. Let {Xj}∞j=1 be a sequence of i.i.d.r.v.’s with the distribution of X. If f ∈ LΦ1 ,

then {n−1
∑n

j=1 f(Xj)} satisfies the LDP with rate function

If (t) := sup
λ∈R

(λt− ln (E[exp(λf(X))])) , t ∈ R

(see for example Theorem 2.2.3 in Dembo and Zeitouni, 1998). By Lemma 2.2 in Arcones

(2003b),

If (t) := inf
{
J(l) : l ∈ (LΦ1)∗, l(f) = t

}
.

It is well known that If (µf ) = 0, where µf = E[f(X)], If is convex, If is nondecreasing in

[µf ,∞) and I is nonincreasing in (−∞, µf ] (see e.g. Lemma 2.2.5 in Dembo and Zeitouni,

1998). In particular, if t ≥ µf ,

lim
n→∞

n−1 ln

(
Pr

{
n−1

n∑
j=1

f(Xj) ≥ t

})
= −If (t) (2.6)

4



and for each t ≤ µf ,

lim
n→∞

n−1 ln

(
Pr

{
n−1

n∑
j=1

f(Xj) ≤ t

})
= −If (t) (2.7)

(see for example Corollary 2.2.19 in Dembo and Zeitouni, 1998).

Given functions f1, . . . , fm ∈ LΦ1 , then

{(n−1

n∑
j=1

f1(Xj), . . . , n
−1

n∑
j=1

fm(Xj))}

satisfies the LDP in Rm with speed n and rate function

I(u1, . . . , um) := sup
λ1,...,λm∈R

(
m∑
j=1

λjuj − lnE[exp(
m∑
j=1

λjfj(X))]

)

(see for example Corollary 6.1.16 in Dembo and Zeitouni, 1998). This rate function can be

written as

inf
{
J(l) : l ∈ (LΦ1)∗, l(fj) = uj for each 1 ≤ j ≤ m

}
,

(see Lemma 2.2 in Arcones, 2003b).

To deal with empirical processes, we will use the following theorem:

Theorem 2.1. (Theorem 2.1 in Arcones, 2003b). Let T be a compact subset of Rd. Let

{f(·, t) : t ∈ T} be a collection of measurable functions on (S,S). Suppose that:

(i) For each t ∈ T , f(·, t) ∈ LΦ1.

(ii) For each λ > 0 and each t ∈ T , there exists a η > 0, such that

E[exp(λ sup
s∈T,|s−t|≤η

|f(X, s)− f(X, t)|)] <∞.

(iii) For each t ∈ T ,

lim
ε→0

sup
s∈T,|s−t|≤ε

|f(X, s)− f(X, t)| = 0 a.s.

Then, {n−1
∑n

j=1 f(Xj, t) : t ∈ T} satisfies the LDP in l∞(T ) with speed n and rate

function

I(z) = inf{J(l) : l ∈ (LΦ1)∗, l(f(·, t)) = z(t), for each t ∈ T}, z ∈ l∞(T ). (2.8)
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3 Main Results

Let (S,S) be a measurable space, let µ be a measure on (S,S) and let {f(·, θ) : θ ∈ Θ} be a

family of pdf’s with respect to the measure µ, where Θ is a Borel subset of Rd. Let {Xj}∞j=1

be a sequence of i.i.d.r.v.’s with values in (S,S) with pdf f(·, θ) for some unknown value θ of

Θ. Since the distribution of the r.v.’s depends on θ, Eθ will denote the expectation when the

data comes from the pdf f(·, θ). Similarly, we define Pθ, LΦ1
θ , (LΦ1

θ )∗ and Jθ.

In the case of a simple null hypothesis, we present the following theorem:

Theorem 3.1. With the notation above, let θ0, θ1 ∈ Θ, let d : Θ → (0,∞) be a measurable

function. Let Θm ⊂ Θ, m ≥ 1. Suppose that:

(i) K(θ1, θ0) <∞.

(ii) {x ∈ S : f(x, θ) > 0} does not depend on θ.

(iii) {n−1
∑n

j=1 ln(f(Xj, θ)/f(Xj, θ0)) : θ ∈ Θm} satisfies the LDP in l∞(Θm) with speed

n.

(iv)

lim
m→∞

inf
λ>0

Eθ0

[
exp

(
λ sup
θ 6∈Θm

(d(θ))−1(ln f(X, θ)− ln f(X, θ0))

)]
= 0.

Then,

lim
n→∞

n−1 lnHn(Tn) = −K(θ1, θ0) a.s. (3.1)

when θ1 obtains, where

Tn := sup
θ∈Θ

n−1

n∑
j=1

(ln(f(Xj, θ)/f(Xj, θ0)),

and Hn(t) := Pθ0(Tn ≥ t).

If {n−1
∑n

j=1 ln(f(Xj, t)/f(Xj, θ0)) : t ∈ Θ} satisfies the LDP in l∞(Θ) with speed n, then

we can take Θm = Θ. The supremum over the empty set in (iv) is interpreted as −∞.

Corollary 3.1. With the notation above, let θ0, θ1 ∈ Θ, let d : Θ → (0,∞) be a measurable

function. Suppose that:

(i) K(θ1, θ0) <∞.

(ii) {x ∈ S : f(x, θ) > 0} does not depend on θ.

(iii) For each λ > 0, each t ∈ Θm and each m ≥ 1, there exists a η > 0 such that

Eθ0

exp

λ sup
s∈Θm
|s−t|≤η

| ln(f(X, s)/f(X, t))|

 <∞,
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where

Θm := {t ∈ Θ : d(t,Θc) ≥ m−1 and |t− θ0| ≤ m}.

(iv) For each t ∈ Int(Θ),

lim
ε→0

sup
s∈Θ

|s−t|≤ε

| ln(f(X, s)/f(X, t))| = 0 Pθ0 − a.s.

(v)

lim
m→∞

inf
λ>0

Eθ0

[
exp

(
λ sup
θ 6∈Θm

(d(θ))−1(ln(f(X, θ)/f(X, θ0))

)]
= 0.

Then, (3.1) holds.

Condition (ii) in the previous theorem is needed to avoid the case of families of pdf’s whose

support depends on the parameter such as the uniform distribution. Conditions (iii) and (iv) in

the previous theorem are used to get the LDP of {n−1
∑n

j=1 ln(f(Xj, θ)/f(Xj, θ0)) : θ ∈ Θm}.
Condition (v) in the previous theorem is used to deal with the large deviations of the part

outside the compact set Θm.

The previous corollary gives the Bahadur efficiency of the likelihood ratio test under dif-

ferent conditions than those in the literature. The previous corollary can be used to obtain

the optimality of the likelihood ratio statistic for common families of pdf’s. For a location

family the previous corollary gives the following:

Corollary 3.2. Let µ be a measure in Rd. Let f be a positive continuous function in Rd with∫
Rd f(x)d µ(x) = 1 and lim|x|→∞ f(x) = 0. Let d : Rd → (0,∞). Consider the location family

of pdf ’s {f(x− θ) : θ ∈ Rd}. Suppose that:

(i) K(θ1, θ0) <∞.

(ii) For each λ > 0 and each θ ∈ Rd, there exists η > 0 such that∫
Rd

exp

(
λ sup
|t|≤η

| ln(f(x− t)/f(x))|

)
f(x− θ) dµ(x) <∞.

(iii) For each λ > 0 there exists m ≥ 1 such that∫
Rd

exp

(
λ sup
|t|≥m

(
(d(t))−1 ln(f(x− t)/f(x))

))
f(x) dµ(x) <∞.

Then, (3.1) holds for each θ0, θ1 ∈ Θ with θ0 6= θ1.

From the previous corollary, we obtain the following:
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Corollary 3.3. Consider the location family of pdf ’s {a−1λde−λ
p|x−θ|p : θ ∈ Rd} with respect

to the Lebesgue measure, where λ, p > 0 and a =
∫

Rd e
−|x|p dx. Then, (3.1) holds for each

θ0, θ1 ∈ Rd with θ0 6= θ1.

For a scale family, Theorem 3.1 gives the following:

Corollary 3.4. Let µ be a measure in Rd. Let f be a nonnegative continuous function

in Rd with
∫

Rd f(x)d µ(x) = 1 and lim|x|→∞ f(x) = 0. Consider the scale family of pdf ’s

{θ−1f(θ−1x) : θ ∈ Θ}, where Θ = (0,∞). Let θ0, θ1 > 0. Suppose that:

(i) K(θ1, θ0) <∞.

(ii) For each x with f(x) > 0 and each θ > 0, f(θx) > 0.

(iii) For each λ > 0 and each θ > 0, there exists η > 0 such that∫
Rd

exp

(
λ sup
|t−1|≤η

| ln(t−1f(t−1x)/f(x))|

)
θ−1f(θ−1x) dµ(x) <∞.

(iv) For each λ > 0 there exists m ≥ 1 such that∫
Rd

exp

(
λ sup
t≥m

ln(t−1f(t−1x)/f(x))

)
f(x) dµ(x) <∞.

(v) For each λ > 0 there exists τ > 0 such that∫
Rd

exp

(
λ sup

0<t≤τ
ln(t−1f(t−1x)/f(x))

)
f(x) dµ(x) <∞.

Then, (3.1) holds for each θ0, θ1 > 0 with θ0 6= θ1.

Common families of pdf’s are exponential families. We refer to Brown (1986) for a review

on exponential families. Let µ be a measure on (Rd,B(Rd)), where B(Rd) is the Borel σ–field

in Rd. Define ψ(t) := ln
∫

Rd e
t′x dµ(x). Let Θ := {t ∈ Rd : ψ(t) < ∞}. Let f(x, t) :=

et
′x−ψ(t). The family of pdf’s {f(x, t) : t ∈ Θ} is a full exponential family with a canonical

representation. By a change of parameter, any full exponential family of distribution can

have this representation (see Brown, 1986). We present the following theorem for exponential

families

Theorem 3.2. With the notation above, let θ0 ∈ Θo and let θ1 ∈ Θ. Suppose that:

(i) For each a ∈ R, µ(Rd − {a}) > 0.

(ii) K(θ1, θ0) <∞.

(iii)

lim
τ→0+

inf{Iθ0(a) : a ∈ {b ∈ Rd : Iθ0(b) ≥ K(θ1, θ0)− τ} } ≥ K(θ1, θ0),
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where

Iθ0(a) = sup
θ∈Θ

((θ − θ0)
′a− ψ(θ) + ψ(θ0)).

Then,

lim
n→∞

n−1 lnHn(Tn) = −K(θ1, θ0) a.s. (3.2)

when θ1 obtains, where

Tn := sup
θ∈Θ

n−1

n∑
j=1

(ln(f(Xj, θ)/f(Xj, θ0)),

and Hn(t) := Pθ0(Tn ≥ t).

Condition (iii) in the previous theorem holds under minor assumptions. Since Iθ0(·) is a

convex function, if Iθ0(θ) <∞, for each θ ∈ Rd, then Iθ0(·) is continuous in Rd and condition

(iii) in Theorem 3.2 holds.

Suppose that there exists a sequence {Km}∞m=1 of compacts sets contained in {θ ∈ Rd :

Iθ0(θ) <∞} and

lim
m→∞

inf
θ 6∈Km

Iθ0(θ) = ∞,

then condition (iii) in Theorem 3.2 holds. Notice that since Iθ0(·) is a convex function, Iθ0(·)
continuous in Km. Hence, if m > K(θ1, θ0), then

{b ∈ Rd : Iθ0(b) ≥ K(θ1, θ0)− τ}
⊂ {b ∈ Rd : Iθ0(b) ≥ K(θ1, θ0)− τ} ∪Kc

m

and

inf{Iθ0(a) : a ∈ {b ∈ Rd : Iθ0(b) ≥ K(θ1, θ0)− τ} }
≥ min

(
inf{Iθ0(a) : a ∈ {b ∈ Rd : Iθ0(b) ≥ K(θ1, θ0)− τ}, inf{Iθ0(a) : a ∈ Kc

m}
)

≥ K(θ1, θ0)− τ.

The following theorem deals with the case of a composite null hypothesis.

Theorem 3.3. With the notation above, let Θ0 ⊂ Θ and let θ1 ∈ Θ−Θ0. For each θ0 ∈ Θ0,

let dθ0 : Θ → (0,∞) be a measurable function. Suppose that:

(i) {x ∈ S : f(x, θ) > 0} does not depend on θ.

(ii) For each τ > 0 and each m ≥ 1, there exists a η > 0 such that

lim
η→0

sup
θ0∈Θ0

sup
λ>0

(
λτ − Eθ0 [exp(λG

(η)
θ0,m

(X))]
)

= ∞,
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where

G
(η)
θ0,m

(x) := sup
s∈Θm
|s−t|≤η

| ln(f(x, s)/f(x, t))|

and

Θθ0,m := {t ∈ Θ : d(t,Θc) ≥ m−1 and |t− θ0| ≤ m}.

(iii)

lim
m→∞

inf
λ>0

sup
θ0∈Θ0

Eθ0

[
exp

(
λ sup
θ 6∈Θm

(dθ0(θ))
−1(ln(f(X, θ)/f(X, θ0))

)]
= 0.

(iv) For each θ0 ∈ Θ0,

Eθ1 [| ln(f(X, θ0)/f(X, θ1))|] <∞.

(v) For each ε > 0 there exists a compact set K of Rd such that K ⊂ Int(Θ0) such that

infθ∈Θ0−K b(θ) > 0 and

Eθ1 [supθ∈Θ0−K(b(θ))−1 ln(f(X, θ)/f(X, θ1))]

≤ −(infθ∈Θ0−K b(θ))
−1
(
supθ∈Θ0

Eθ1 [ln(f(X, θ)/f(X, θ1))]− ε
)
.

(vi) For each t ∈ Int(Θ0),

lim
ε→0

Eθ1 [ sup
s∈Θ

|s−t|≤ε

| ln(f(X, s)/f(X, t))|] = 0.

Then,

lim
n→∞

n−1 lnHn(Tn) = − inf
θ0∈Θ0

K(f(·, θ1), f(·, θ0)) a.s. (3.3)

when θ1 obtains, where

Tn := sup
θ∈Θ

n−1

n∑
j=1

ln(f(Xj, θ))− sup
θ0∈Θ0

n−1

n∑
j=1

ln(f(Xj, θ0)),

and Hn(t) := supθ0∈Θ0
Pθ0(Tn ≥ t).

For a location family the previous theorem gives the following:

Corollary 3.5. Let µ be a measure in Rd. Let f be a nonnegative continuous function in

Rd with
∫

Rd f(x)d µ(x) = 1 and lim|x|→∞ f(x) = 0. Consider the location family of pdf ’s

{f(x− θ) : θ ∈ Θ}, where Θ := Rd. Suppose that:

(i) K(f(· − θ1), f(· − θ0) <∞.
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(ii) For each λ > 0 and each θ ∈ Rd, there exists η > 0 such that∫
Rd

exp

(
λ sup
|t|≤η

| ln(f(x− t)/f(x))|

)
f(x− θ) dµ(x) <∞.

(iii) For each λ > 0 there exists m ≥ 1 such that∫
Rd

exp

(
λ sup
|t|≥m

ln(f(x− t)/f(x))

)
f(x) dµ(x) <∞.

Then, (3.2) holds for each Θ0 ⊂ Θ and each θ1 6∈ Θ0.

4 Proofs

Proof of Theorem 3.1. By (1.2), it suffices to prove that

lim sup
n→∞

n−1 lnHn(Tn) ≤ −K(θ1, θ0) a.s. (4.1)

when θ1 obtains. Since

lim infn→∞ Tn ≥ lim infn→∞ n−1
∑n

j=1 ln(f(Xj, θ1)/f(Xj, θ0)) = K(θ1, θ0) a.s.

when θ1 obtains, to prove (4.1), it suffices to obtain that

lim
τ→0+

lim sup
n→∞

n−1 lnHn(K(θ1, θ0)− τ) ≤ −K(θ1, θ0). (4.2)

Let Un(θ) := n−1
∑n

j=1 ln f(Xj, θ). We have that

Pθ0{supθ∈Θ Un(θ)− Un(θ0) ≥ K(θ1, θ0)− τ} (4.3)

≤ Pθ0{supθ∈Θm
Un(θ)− Un(θ0) ≥ K(θ1, θ0)− τ}+ Pθ0{supθ∈Θ Un(θ)− supθ∈Θm

Un(θ) > 0}
≤ Pθ0{supθ∈Θm

Un(θ)− Un(θ0) ≥ K(θ1, θ0)− τ}+ Pθ0{supθ 6∈Θm
Un(θ)− Un(θ0) > 0}

=: I + II

Since {Un(θ)− Un(θ0) : θ ∈ Θm} satisfies the LDP with speed n,

lim supn→∞ n−1 ln Pθ0{supθ∈Θm
Un(θ)− Un(θ0) ≥ K(θ1, θ0)− τ} (4.4)

≤ − inf{Jθ0(l) : l ∈ (LΦ1
θ0

)∗, supθ∈Θm
l(ln(f(·, θ)/f(·, θ0)) ≥ K(θ1, θ0)− τ}
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We also have that

n−1 ln
(
Pθ0{supθ 6∈Θm

n−1
∑n

j=1(ln f(Xj, θ)− ln f(Xj, θ0)) > 0}
)

(4.5)

≤ n−1 ln
(
Pθ0{n−1

∑n
j=1 supθ 6∈Θm

(d(θ))−1(ln f(Xj, θ)− ln f(Xj, θ0)) > 0}
)

≤ infλ>0 n
−1 ln

(
Eθ0

[
exp

(
λ
∑n

j=1 supθ 6∈Θm
(d(θ))−1(ln f(Xj, θ)− ln f(Xj, θ0))

)])
= infλ>0 ln

(
Eθ0

[
exp

(
λ supθ 6∈Θm

(d(θ))−1(ln f(X, θ)− ln f(X, θ0))
)])

.

Thus,

lim
m→∞

lim sup
n→∞

n−1 ln II = −∞. (4.6)

Combining (4.3)–(4.6), we obtain that

limτ→0+ lim supn→∞ n−1 ln (Pθ0{supθ∈Θ Un(θ)− Un(θ0) ≥ K(θ1, θ0)− τ})
≤ lim supτ→0+ lim supm→∞− inf{Jθ0(l) : supθ∈Θm

l(ln(f(·, θ)/f(·, θ0))) ≥ K(θ1, θ0)− τ}.

By the definition of Jθ0 , for each θ ∈ Θ and each l ∈ (LΦ1
θ0

)∗,

l(ln(f(·, θ)/f(·, θ0))) ≤ Jθ0(l) + lnEθ0 [exp(ln(f(X, θ)/f(X, θ0)))] = Jθ0(l). (4.7)

Hence, if

sup
θ∈Θm

l(ln(f(·, θ)/f(·, θ0))) ≥ K(θ1, θ0)− τ,

then K(θ1, θ0)− τ ≤ Jθ0(l). Therefore,

K(θ1, θ0)− τ ≤ inf{Jθ0(l) : sup
θ∈Θm

l(ln(f(·, θ)/f(·, θ0)) ≥ K(θ1, θ0)− τ} (4.8)

and

lim supτ→0+ lim supm→∞− inf{Jθ0(l) : supθ∈Θm
l(ln(f(·, θ)/f(·, θ0)) ≥ K(θ1, θ0)− τ}

≤ −K(θ1, θ0),

which implies (4.2). �

Proof of Corollary 3.1. We apply Theorem 3.1. Conditions (i), (ii) and (iv) in

Theorem 3.1 are assumed. To get condition (iii) in Theorem 3.1 we apply Theorem 2.1. By

the Cauchy–Schwartz inequality, for each θ ∈ Θ,

Eθ0 [exp(2−1 ln(f(X, θ)/f(X, θ0))] =
∫

(f(x, θ)f(x, θ0))
1/2 µ(x)

≤ (
∫
f(x, θ)µ(x))1/2(

∫
(f(x, θ)µ(x))1/2 <∞.

Hence, ln(f(X, θ)/f(X, θ0)) ∈ LΦ
θ0

, i.e. condition (i) in Theorem 2.1 holds. Conditions (iii)

and (iv) imply conditions (ii) and (iii) in Theorem 2.1. �
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The proof of Corollaries 3.2 and 3.4 are omitted. Since they follow directy from Corollary

3.1.

Proof of Corollary 3.3. We apply Corollary 3.2. It is obvious that K(θ1, θ0),∞.

First, we consider the case p ≥ 1. By the Taylor theorem, there exists a constant c > 0 such

that for each x, θ ∈ Rd,

||x− θ|p − |x|p| ≤ c(|x|p−1|θ|+ |θ|p).

This implies that conditions (ii) and (iii) in Corollary 3.2 hold with d(θ) = 1 + |θ|p+1.

When 0 < p < 1, there exists a constant c > 0 such that for each x, θ ∈ Rd,

||x− θ|p − |x|p| ≤ c(|x|p−1|θ| ∧ |θ|p).

Conditions (ii) and (iii) in Corollary 3.2 hold with d(θ) = 1 + |θ|p+1. �

Proof of Theorem 3.2. As in the proof of Theorem 3.1, it suffices to prove (4.2). We

have that

Tn = supθ∈Θ(θ′X̄n − ψ(θ)− θ′0X̄n + ψ(θ0)) = Iθ0(X̄n)

Since θ0 ∈ Θo, there exists a δ > 0 such that Eθ0 [exp(λ′X)] < ∞, for each |λ| ≤ δ. This

implies that X̄n satisfies the LDP with speed and rate function

I(t) = supλ∈Rd(λ′t− lnEθ0 [exp(λ′X]]

= supλ∈Rd(λ′t− ψ(λ+ θ0)− ψ(θ0))

= Iθ0(t).

Hence,
lim supn→∞ n−1 lnHn(K(θ1, θ0)− τ)

= lim supn→∞ n−1 ln Pθ0{Iθ0(X̄n) ≥ K(θ1, θ0)− τ)

≤ − inf{Iθ0(a) : a ∈ {b ∈ Rd : Iθ0(b) ≥ K(θ1, θ0)− τ} }

and the claim follows. �

We will need the following lemma:

Lemma 4.1. Let {Xj}∞j=1 be a sequence of i.i.d.r.v.’s with values in a measurable space (S,S).

Let Θ be a Borel subset of Rd. Let g : S×Θ → R be a measurable function. Let b : S → (0,∞)

be a measurable function. Suppose that:

(i) For each θ ∈ Θ, E[|g(X, θ)|] <∞.

(ii) supθ∈ΘE[g(X, θ)] ≤ 0.

(iii) For each ε > 0, there exists a compact set K such that K ⊂ Int(Θ), infθ 6∈K b(θ) > 0

and

E[sup
θ 6∈K

(b(θ))−1g(X, θ)] ≤ ( inf
θ 6∈K

b(θ))−1

(
sup
θ∈Θ

E[g(X, θ)]− ε

)
.
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(iv) For each ε > 0 and each θ1 ∈ Int(Θ), there exists a δ > 0 such that

E[ sup
θ:|θ−θ1|≤δ

|g(X, θ1)− g(X, θ)|] ≤ ε.

Then,

sup
θ∈Θ

n−1

n∑
j=1

g(Xj, θ)
a.s.→ sup

θ∈Θ
E[g(X, θ)].

Proof. Given ε > 0, there exists a compact set K satisfying condition (iii). Then, for each

θ 6∈ K,

E[(b(θ))−1g(X, θ)] ≤ ( inf
θ 6∈K

b(θ))−1

(
sup
θ∈Θ

E[g(X, θ)]− ε

)
≤ (b(θ))−1

(
sup
θ∈Θ

E[g(X, θ)]− ε

)
.

Hence, for each θ 6∈ K,

E[g(X, θ)] ≤ sup
θ∈Θ

E[g(X, θ)]− ε.

So,

sup
θ 6∈K

E[g(X, θ)] ≤ sup
θ∈Θ

E[g(X, θ)]− ε. (4.9)

By the strong law of the large numbers, there exists a set Ω0 with probability one such that

for each ω ∈ Ω0,

n−1

n∑
j=1

sup
θ 6∈K

(b(θ))−1g(Xj(ω), θ) → E[sup
θ 6∈K

(b(θ))−1g(X, θ)].

Given η > 0 such that η infθ∈K b(θ) ≤ 2−1ε, and ω ∈ Ω0, for n large enough,

supθ 6∈K n
−1
∑n

j=1(b(θ))
−1g(Xj(ω), θ) ≤ n−1

∑n
j=1 supθ 6∈K(b(θ))−1g(Xj(ω), θ)

≤ E[supθ 6∈K(b(θ))−1g(X, θ)] + η ≤ (infθ 6∈K b(θ))
−1 (supθ∈ΘE[g(X, θ)]− ε) + η.

Hence, for each ω ∈ Ω0, each θ 6∈ K and each n large enough,

n−1
∑n

j=1 g(Xj(ω), θ) ≤ n−1
∑n

j=1(b(θ))
−1g(Xj(ω), θ)b(θ)

≤ ((infθ 6∈K b(θ))
−1 (supθ∈ΘE[g(X, θ)]− ε) + η) b(θ)

≤ ((infθ 6∈K b(θ))
−1 (supθ∈ΘE[g(X, θ)]− ε) + η) infθ 6∈K b(θ)

= supθ∈ΘE[g(X, θ)]− ε+ η infθ 6∈K b(θ)

≤ supθ∈ΘE[g(X, θ)]− 2−1ε,

where we have used that b(θ) > 0 and (infθ 6∈K b(θ))
−1 (supθ∈ΘE[g(X, θ)]− ε) + η < 0. Hence,

for each ω ∈ Ω0 and each n large enough,

sup
θ 6∈K

n−1

n∑
j=1

g(Xj(ω), θ) ≤ sup
θ∈Θ

E[g(X, θ)]− 2−1ε. (4.10)
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By condition (iv), the class of functions {g(X, θ) : θ ∈ K} is a Glivenko–Cantelli class (see

either Lemma 2 in Dehardt, 1971; or Section 7 in Dudley, 1999). So,

sup
θ∈K

|n−1

n∑
j=1

g(Xj, θ)− E[g(X, θ)]| → 0 a.s.

Therefore,

sup
θ∈K

n−1

n∑
j=1

g(Xj, θ)− sup
θ∈K

E[g(X, θ)] → 0 a.s. (4.11)

The claim follows from (4.9)–(4.11).

Proof of Theorem 3.3. By (1.2), it suffices to prove that

sup
θ0∈Θ0

n−1

n∑
j=1

ln(f(Xj, θ0))/f(Xj, θ1))
Pθ1−→ sup

θ∈Θ0

Eθ1 [ln(f(X, θ)/f(X, θ1))] a.s. (4.12)

limτ→0+ lim supn→∞ n−1 ln
(
supθ0∈Θ0

Pθ0{Tn ≥ L1 − τ}
)
≤ −L1 (4.13)

where

L1 := inf
θ0∈Θ0

K(θ1, θ0).

(4.12) follows from Lemma 4.1 with g(x, θ) = ln(f(x, θ)/f(x, θ1)). Hypothesis (i), (iii)-(iv)

in Lemma 4.1 follow from (iv)–(vi). By the concavity of the logarithmic function and the

Jensen inequality, for each θ ∈ Θ

Eθ1 [ln(f(X, θ)/f(X, θ1))] ≤ 0, (4.14)

which implies hypothesis (ii) in Lemma 4.1.

As to (4.13), we may assume that L1 > 0. Take 0 < τ < 2−1L1. For each θ0 ∈ Θ0, we

have that

Pθ0{Tn ≥ L1 − τ} (4.15)

≤ Pθ0{supθ∈Θ(Un(θ)− Un(θ0)) ≥ L1 − τ}
≤ Pθ0{supθ∈Θθ0,m

(Un(θ)− Un(θ0)) ≥ L1 − τ}+ Pθ0{supθ∈Θ Un(θ) > supθ∈Θθ0,m
Un(θ)}

≤ Pθ0{supθ∈Θθ0,m
(Un(θ)− Un(θ0)) ≥ L1 − τ}+ Pθ0{supθ∈Θ0−Θθ0,m

(Un(θ)− Un(θ0)) > 0}.

Given η > 0, since Θθ0,m is a compact set, there are tθ0,1, . . . , tθ0,kθ0
⊂ Θθ0,m such that the union

of the balls with centers tθ0,1, . . . , tθ0,kθ0
and radius η cover Θθ0,m. Although, tθ0,1, . . . , tθ0,kθ0

depend on m and η, we do not use the subscripts m and η to simplify notation. Since
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Θθ0,m ⊂ {θ : |θ− θ0| ≤ m}, kθ0 is bounded uniformly on θ0. Let k̄ = sup{kθ0 : θ0 ∈ Θ0}. Note

that k̄ depends on m and η. We have that

Pθ0{supθ∈Θθ0,m
(Un(θ)− Un(θ0)) ≥ L1 − τ} (4.16)

≤ Pθ0{max1≤j≤kθ0
(Un(tθ0,j)− Un(θ0)) ≥ L1 − 2τ}+ Pθ0{n−1

∑n
j=1G

(η)
m (Xj) ≥ τ}

≤ k̄max1≤j≤kθ0
Pθ0{Un(tθ0,j)− Un(θ0) ≥ L1 − 2τ}+ Pθ0{n−1

∑n
j=1G

(η)
m (Xj) ≥ τ}.

For each j and each θ0,

Pθ0{Un(tθ0,j)− Un(θ0) ≥ L1 − 2τ}
≤ e−n(L1−2τ)Eθ0 [exp

(∑n
j=1 ln(f(Xj, tθ0,j)/f(Xj, θ0))

)
] = e−n(L1−2τ).

So, for each j and each θ0,

k̄ max
1≤j≤kθ0

Pθ0{Un(tθ0,j)− Un(θ0) ≥ L1 − 2τ} ≤ k̄e−n(L1−2τ). (4.17)

We also have that

n−1 ln Pθ0{n−1
∑n

j=1G
(η)
m (Xj) ≥ τ} (4.18)

≤ supλ>0

(
λτ − lnEθ0 [exp(λG

(η)
m (X))]

)
and

n−1 ln(Pθ0{supθ∈Θ0−Θθ0,m
(Un(θ)− Un(θ0)) > 0}) (4.19)

≤ infλ>0Eθ0

[
exp

(
λ supθ∈θ∈Θ0−Θθ0,m

(dθ0(θ))
−1(ln f(X, θ)/f(X, θ0))

)]
We get from (4.15)–(4.19) that for each τ > 0,

lim sup
n→∞

n−1 ln sup
θ0∈Θ0

(Pθ0{Tn ≥ L1 − τ}) ≤ −(L1 − 2τ).

Therefore, (4.13) holds. �
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