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Abstract

We present two new tests for normality based on U–processes. These tests improve
on the Lilliefors tests. We obtain the consistency and asymptotic null distribution of
these tests. We present simulations of the power of these tests and of several classical
tests for some fixed alternatives. These simulations show that the presented tests are
competitive.

1 Introduction

Many statistical procedures assume that the observations are normally distributed. Hence,

testing for normality should be done before using many statistical analysis. A very complete

review of normality tests is in Thode (2002). The classical normality tests are the ones by

Lilliefors (1967) and Shapiro and Wilk (1965, 1968). Shapiro, Wilk and Chen (1968) show

that the Lilliefors test is not as powerful as the Shapiro–Wilk test. Several authors have

provided different approaches to test normality. Mardia (1980) reviews tests for normality

based on skewness and kurtosis. We present two modifications of Lilliefors test. The proposed

tests are based on the Lévy characterization of the normal distribution. Csörgő, Seshadri,

and Yalovsky (1973) and Nguyen and Dinh (2003) discuss several tests of normality based on

other characterizations of the normal distribution. We will estimate the Lévy characterization

of the normal distribution using the distribution function. Del Barrio, Cuesta–Albertos, and
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Matrán (2000) review goodness of fit tests using empirical processes. Our test statistics are U–

processes. Several authors have considered normality tests based on U–statistics (see Csörgő,

1986; Epps and Pulley, 1983; and Henze and Zirkler, 1990).

We study the testing problem

H0 : F has a normal distribution, versus H1 : F does not, (1.1)

based on a random sample X1, . . . , Xn of size n from F . Lilliefors (1968) proposed the test

which rejects the null hypothesis if Ln ≥ an,α, where

Ln := sup
t∈R
|Fn(t)− Φ(s−1

n (t− X̄n))|, (1.2)

where Fn is the empirical cdf, Φ is the cdf of the standard normal distribution, X̄n :=
1
n

∑n
=1 Xj, s2

n := 1
n−1

∑n
j=1(Xj − X̄n)2,

an,α = inf{λ ≥ 0 : PΦ{Ln < λ} ≥ 1− α}, (1.3)

and PΦ is the probability distribution for which the data follows a standard normal distribu-

tion. Since the distribution of Ln is a location and scale invariant, we have that for each µ

and each σ > 0, PΦµ,σ{Ln ≥ an,α} ≤ α, where Φµ,σ is the cdf of a normal r.v. with mean µ

and variance σ2. Hence, the type I error of the test is less or equal than α.

We present two normality tests which improve on the Lilliefors test. By the Lévy charac-

terization of the normal distribution (see e.g. Theorem 20.2.A in Loève, 1977), given m ≥ 1

and cdf F , m−1/2σ−1
F

∑m
j=1(Xj − µF ) has a standard normal distribution, where X1, . . . , Xm

are i.i.d.r.v.’s with cdf F , mean µF and variance σ2
F , if and only if F has a normal distribution.

Hence, F has a normal distribution if and only if for some m ≥ 1,

Dm(F ) := sup
t∈R
|PF{σ−1

F m−1/2

m∑
j=1

(Xj − µF ) ≤ t} − Φ(t)| = 0, (1.4)

where PF is the probability for which the i.i.d.r.v.’s X1, . . . , Xm have distribution F .

Let

Dn,m := sup
t∈R

∣∣∣∣∣∣(n−m)!

n!

∑
(i1,...,im)∈In

m

I(σ̂−1
n,mm−1/2

m∑
j=1

(Xij − X̄n) ≤ t)− Φ(t)

∣∣∣∣∣∣ , (1.5)

where In
m = {(i1, . . . , im) ∈ Nm : 1 ≤ ij ≤ n, ij 6= ik if j 6= k} and

σ̂2
n,m :=

(n−m)!

n!

∑
(i1,...,im)∈In

m

m−1(
m∑

j=1

(Xij − X̄n))2.
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Note that

σ̂2
n,m := (n−m)!

n!

∑
(i1,...,im)∈In

m
m−1(

∑m
j=1(Xij − X̄n))2 (1.6)

= (n−m)!
mn!

∑
(i1,...,im)∈In

m

(∑m
j=1(Xij − X̄n)2 +

∑
1≤j 6=k≤m(Xij − X̄n)(Xik − X̄n)

)
= 1

n

∑n
j=1(Xj − X̄n)2 + m−1

n(n−1)

∑
1≤j 6=k≤n(Xj − X̄n)(Xk − X̄n)

= 1
n

∑n
j=1(Xj − X̄n)2 + m−1

n(n−1)

∑n
j,k=1(Xj − X̄n)(Xk − X̄n)− m−1

n(n−1)

∑n
j=1(Xj − X̄n)2

= n−m
n(n−1)

∑n
j=1(Xj − X̄n)2.

When m = 1, the statistics Ln and Dn,m are very similar. The difference is that the

standardization is different: σ̂2
n,1 = 1

n

∑n
j=1(Xj − X̄n)2 6= s2

n. The empirical cdf used in the

Lilliefors test has jumps of size n−1. The empirical cdf in (1.5) has jumps of size (n−m)!/n!.

The proposed test statistic uses an empirical cdf which is smoother than the usual empirical

cdf.

Given 1 > α > 0, let

bn,m,α = inf{λ ≥ 0 : PΦ{Dn,m < λ} ≥ 1− α}.

Then, the proposed test rejects the null hypothesis if Dn ≥ bn,m,α. It is easy to see that the

distribution of Dn,m is invariant by changes of location and scale. So, the distribution of Dn,m

is the same for all normal distributions. Hence, the probability of type error I of the test is

less or equal than α. As noted by Henze and Zirkler (1990), the Kolmogorov–Smirnov test

is only invariant in the one dimensional situation. The same happens for the proposed tests.

Using the proposed method, it is not possible to use the multivariate cdf and get invariant

test statistics for multivariate data.

An alternative expression for the statistic in (1.5) is

max
1≤j≤kn

(
max(|k−1

n j − Φ(U(j))|, |k−1
n (j − 1)− Φ(U(j))|)

)
,

where kn =
(

n
m

)
and U(1) ≤ · · · ≤ U(kn) are the order values σ̂−1

n,mm−1/2
∑m

j=1(Xij − X̄n).

A variation in the previous characterization of the normal distribution is as follows. Given

m ≥ 2 and a nondegenerate cdf F , m−1/2
∑m

j=1(Xj − E[Xj]) and X1 − µ have the same

distribution, where X1, . . . , Xm are i.i.d.r.v.’s with cdf F , if and only if F has a normal

distribution. Hence, F has a normal distribution if and only if for some m ≥ 2,

D̃m(F ) := sup
t∈R
|PF{m−1/2

m∑
j=1

(Xj − µF ) ≤ t} − PF{X1 − µF ≤ t}| = 0. (1.7)

An estimator of the previous quantity is

D̃n,m := sup
t∈R

∣∣∣∣∣∣(n−m)!

n!

∑
(i1,...,im)∈In

m

I(m−1/2

m∑
j=1

(Xij − X̄n) ≤ t)− n−1

n∑
j=1

I(Xj − X̄n ≤ t)

∣∣∣∣∣∣
(1.8)

3



It is easy to see that the distribution of D̃n,m is invariant by changes of location and scale.

Given 1 > α > 0, let

cn,α = inf{λ ≥ 0 : PΦ{D̃n,m < λ} ≥ 1− α}.

Then, the test rejects the null hypothesis if D̃n,m ≥ cn,m,α.

Section 2 contains the main results. In Section 3, we present some simulations. Section 4

contains the proofs of the theorems in Section 2.

2 Main results

The statistics Dn,m and D̃n,m are based on a collection of U–statistics. Given r.v.’s X1, . . . , Xn

with values in a measurable space (S,S) and a measurable function h : (Sm,Sm) → R, the

U–statistic with kernel h is defined by

Un,m(h) :=
(n−m)!

n!

∑
(i1,...,im)∈In

m

h(Xi1 , . . . , Xim).

General references on U–statistics are Lee (1990) and de la Peña and Giné (1999). The main

property of U–statistics which we will use is the Hoeffding decomposition, which we describe

next. Suppose that X1, . . . , Xn are i.i.d.r.v.’s. We define

πk,mh(x1, . . . , xk) = (δx1 − P ) · · · (δxm − P )Pm−kh,

where Q1 · · ·Qmh =
∫
· · ·
∫

h(x1, . . . , xm) dQ1(x1) · · · dQm(xm) and δx denotes the Dirac mea-

sure at x. Then, it is known that

Un,m(h) =
m∑

k=0

(
m

k

)
Un,k(πk,mh).

Observe that πk,mf is a function of k variables. If E[(h(X1, . . . , Xm))2] <∞, then

n1/2|Un,m(h)− E[h(X1, . . . , Xm)]−mUn,1(π1,mh)| Pr→ 0.

This allows to reduce the asymptotics of a U–statistic to the asymptotics of a sum of i.i.d.r.v.’s.

We will need to work with a class of U–statistics. Given a class of functions F from Sm into

R, the U–process indexed by F is

Un,m(h) :=
(n−m)!

n!

∑
(i1,...,im)∈In

m

h(Xi1 , . . . , Xim), h ∈ F .

Limit theorems for U-processes were developed by Arcones and Giné (1993) and de la Peña

and Giné (1999). The statistics Dn,m and D̃n,m are the supremum of a U-process.
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Sometimes, we will take the expectation over some of the variables present. If X1, X2, . . . , Xm

are independent r.v.’s, then EXi1
,Xi2

,...,Xik
[h(X1, X2, . . . , Xm)] denotes the expectation with re-

spect to the variables Xi1 , Xi2 , . . . , Xik .

The first proposed test is consistent. Precisely, we have the following theorem:

Theorem 2.1. Suppose that {Xj}∞j=1 is a sequence of i.i.d.r.v.’s from a continuous cdf F with

finite second moment. Then, Dn,m
a.s.→ Dm(F ), as n→∞.

This implies that bn,m,α → 0, as n→∞, and that if F does not have a normal distribution,

then, for each 1 > α > 0, PF{Dn,m ≥ bn,m,α} → 1, as n→∞.

Next theorem gives the asymptotic null distribution of the first test.

Theorem 2.2. Suppose that {Xj}∞j=1 is a sequence of i.i.d.r.v.’s from a normal cdf with mean

µ and variance σ2 > 0. Then,

n1/2Dn,m − supt∈R |n−1/2
∑n

j=1(g(σ−1(Xj − µ), t)− E[g(σ−1(Xj − µ), t)])| Pr→ 0.

where

g(x, t) = mΦ((m− 1)−1/2(m1/2t− x)) + (m1/2x + 2−1(x2 − 1)t)φ(t),

and φ is the pdf of a standard normal distribution.

Consequently,

n1/2Dn,m
d→ sup

t∈R
|U(t)|,

where {U(t) : t ∈ R} is a Gaussian process with zero means and covariance given by

E[U(s)U(t)] = Cov(g(Z1, s), g(Z1, t)), s, t ∈ R,

and Z1 is a standard normal r.v.

For the second proposed test, we have asymptotics similar to those of the first test:

Theorem 2.3. Suppose that {Xj}∞j=1 is a sequence of i.i.d.r.v.’s from a continuous cdf F with

finite first moment. Then, D̃n,m
a.s.→ D̃m(F ), as n→∞.

Theorem 2.4. Suppose that {Xj}∞j=1 is a sequence of i.i.d.r.v.’s from a normal cdf with mean

µ and variance σ2 > 0. Then,

n1/2D̃n,m − supt∈R |n−1/2
∑n

j=1(h(σ−1(Xj − µ), t)− E[h(σ−1(Xj − µ), t)])| Pr→ 0.

where

h(x, t) = mΦ((m− 1)−1/2(m1/2t− x))− I(x ≤ t) + (m1/2 − 1)xφ(t).

Consequently, n1/2D̃n,m
w→ sups∈R |V (s)|, where {V (s) : s ∈ R} is a mean zero Gaussian

process with covariance given by

E[V (s)V (t)] = Cov(h(Z1, s), h(Z1, t)), s, t ∈ R.
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3 Simulations.

Table 1 shows the values of bn,m,α and cn,m,α, for some values of n and m. Table 1 was obtained

by doing 10000 simulations from a standard normal distribution.

TABLE 1

bn,2,α α = 0.10 α = 0.05 α = 0.01

n = 10 0.127767 0.146294 0.1881883

n = 15 0.09380524 0.10899795 0.14135184

n = 20 0.07639177 0.08738504 0.11396659

n = 30 0.05665779 0.06585072 0.08662073

n = 50 0.04040402 0.04640940 0.05884147

bn,3,α α = 0.10 α = 0.05 α = 0.01

n = 10 0.08116030 0.09628613 0.12998585

n = 15 0.05554883 0.06750267 0.09593262

n = 20 0.04399126 0.05336427 0.07580943

n = 30 0.03307612 0.04010797 0.05588256

n = 50 0.02454210 0.02908864 0.04048928

cn,2,α α = 0.10 α = 0.05 α = 0.01

n = 10 0.2333333 0.2444444 0.2777778

n = 15 0.1809524 0.2000000 0.2285714

n = 20 0.1578947 0.1710526 0.1973684

n = 30 0.1287356 0.1390805 0.1655172

n = 50 0.0983673 0.1065306 0.1240816

cn,3,α α = 0.10 α = 0.05 α = 0.01

n = 10 0.2500000 0.2750000 0.3250000

n = 15 0.1934066 0.2124542 0.2439560

n = 20 0.1649123 0.1789474 0.2070175

n = 30 0.1354680 0.1460591 0.1690476

n = 50 0.1034184 0.1116837 0.1287245

We will compare our tests with several other normality tests. Table 2 shows the power,

when α = 0.05, of the tests in Lilliefors (1967), Shapiro and Wilk (1965), Csörgő (1986), Epps-

Pulley (1983) (BHEP test), and the tests in (1.5) and in (1.8) for several alternatives. The

columns Dn,2, Dn,3, D̃n,2 and D̃n,3 in Table 2 were obtained by doing 10000 simulations from

the test statistics using the mentioned alternatives. These columns represent the proportions

of simulations which are bigger than the corresponding cutpoints from Table 1. To find the

column L, first we found an,0.05 in (1.3) using 10000 simulations from a standard normal
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distribution. Then, the proportion of times such that the statistic Ln is bigger than the

cutpoint was obtained. Let X(1), . . . , Xn) be the order statistics from a random sample with

a standard normal distribution. Let m = (m1, . . . ,mn)′ and let V = (vi,j)1≤i,j≤n, where

mi = E[X(j)] and vi,j = Cov(X(i), X(j)). The Shapiro-Wilks test is significative for small

values of

W := (
n∑

j=1

(Xj − X̄n)2)−1(
n∑

j=1

ajXj)
2, (3.1)

where

a′ = (a1, . . . , an) = (m′V −2M)−1/2m′V −1. (3.2)

To find the column SW , we found W using the vector a in Table 5 in Shapiro and Wilk

(1965). The column represents the proportions of simulations of W which are smaller than

the cutpoint from the Table 6 (level 0.05) in Shapiro and Wilk (1965). The test in Csörgő

(1986) is significative for nonnormality for large values of the statistic

sup
|t|≤T

||ϕn(t)|2 − |ϕ(t)|2| (3.3)

= sup
|t|≤T

∣∣∣∣∣∣
(

n−1

n∑
j=1

cos(tσ̂−1
n Xj)

)2

+

(
n−1

n∑
j=1

sin(tσ̂−1
n Xj)

)2

− exp(−t2)

∣∣∣∣∣∣
= sup

|t|≤T

∣∣∣∣∣n−2

n∑
j,k=1

(
cos(tσ̂−1

n Xj) sin(tσ̂−1
n Xk) + sin(tσ̂−1

n Xj) sin(tσ̂−1
n Xk)

)
− exp(−t2)

∣∣∣∣∣ ,
where ϕn(t) := n−1

∑n
j=1 exp(itσ̂−1

n (Xj − X̄n)) is an empirical ch.f., ϕ(t) = exp(−2−1t2) is the

ch.f. of a standard normal r.v., X̄n = n−1
∑n

j=1 Xn and σ̂2
n = n−1

∑n
j=1(Xj − X̄n)2. Since the

supremum over a continuous is incalculable, as recommended in Csörgő (1986), we use in the

simulations

sup
−102≤j≤102

|ϕn((1.47)10−2j)|2 − |ϕ((1.47)10−2j)|2|. (3.4)

The BHEP (Epps and Pulley, 1983; and Baringhaus and Henze, 1988) normality test is

significative for nonnormality for large values of the statistic∫
R |n

−1
∑n

j=1 exp(itσ̂−1
n (Xj − X̄n))− exp(−2−1t2)|2φ(t) dt, (3.5)

= n−2
∑n

j,k=1 exp(−2−1δ2σ̂−2
n (Xj −Xk)

2)

−21/2n−1
∑n

j=1 exp(−2−2σ̂−1
n (Xj − X̄n))2) + 3−1/2.

The column BHEP was found first estimating the cutpoint of the test by doing simulations.
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TABLE 2

L SW CS BHEP Dn,2 test Dn,3 test D̃n,2 test D̃n,3 test

n = 10 0.2990 0.4150 0.3183 0.4150 0.3688 0.3709 0.2166 0.1949

n = 15 0.4630 0.6834 0.4923 0.6289 0.5650 0.5477 0.2688 0.2973

n = 20 0.5818 0.8468 0.5778 0.7961 0.7088 0.6975 0.3430 0.3730

n = 30 0.7867 0.9646 0.7274 0.9536 0.8898 0.8753 0.4783 0.5452

n = 50 0.9644 0.9994 0.8920 0.9960 0.9897 0.9891 0.7580 0.7485

Alternative: exponential distribution

L SW CS BHEP Dn,2 test Dn,3 test D̃n,2 test D̃n,3 test

n = 10 0.1416 0.1478 0.1860 0.1627 0.1781 0.1766 0.0505 0.0579

n = 15 0.1884 0.2113 0.2849 0.2058 0.2284 0.2371 0.0367 0.0665

n = 20 0.2200 0.2665 0.3592 0.2855 0.3037 0.3030 0.0332 0.0808

n = 30 0.2861 0.3239 0.4729 0.3557 0.4027 0.3860 0.0401 0.1233

n = 50 0.4464 0.3925 0.6658 0.5152 0.5643 0.5313 0.0813 0.0823

Alternative: double exponential distribution

L SW CS BHEP Dn,2 test Dn,3 test D̃n,2 test D̃n,3 test

n = 10 0.5823 0.5870 0.6085 0.5956 0.6044 0.6100 0.3525 0.3617

n = 15 0.7408 0.7594 0.8032 0.7627 0.7846 0.7826 0.4330 0.5299

n = 20 0.8437 0.8703 0.9016 0.8894 0.8826 0.8787 0.4896 0.6326

n = 30 0.8437 0.9515 0.9724 0.9603 0.9666 0.9615 0.6138 0.7927

n = 50 0.9933 0.9925 0.9983 0.9964 0.9969 0.9970 0.8020 0.8060

Alternative: Cauchy distribution

L SW CS BHEP Dn,2 test Dn,3 test D̃n,2 test D̃n,3 test

n = 10 0.0935 0.1230 0.0589 0.1075 0.0906 0.0931 0.1375 0.1158

n = 15 0.1384 0.2038 0.0682 0.1785 0.1242 0.0982 0.1591 0.1560

n = 20 0.1748 0.3080 0.0665 0.2795 0.1756 0.1250 0.1912 0.1995

n = 30 0.2720 0.5218 0.0526 0.8514 0.2556 0.1746 0.2334 0.2465

n = 50 0.4526 0.8820 0.0647 0.7101 0.4707 0.3238 0.3521 0.3920

Alternative: Beta(2, 1) distribution

L SW CS BHEP Dn,2 test Dn,3 test D̃n,2 test D̃n,3 test

n = 10 0.0709 0.0759 0.0937 0.0825 0.0872 0.0935 0.0058 0.0446

n = 15 0.0726 0.1006 0.1328 0.0962 0.1016 0.1156 0.0453 0.0340

n = 20 0.0818 0.1170 0.1586 0.1383 0.1288 0.1396 0.0400 0.0475

n = 30 0.0956 0.1234 0.1953 0.1334 0.1548 0.1776 0.0355 0.0450

n = 50 0.1115 0.1305 0.2826 0.1589 0.2037 0.2243 0.0425 0.0404

Alternative: Logistic(1) distribution
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L SW CS BHEP Dn,2 test Dn,3 test D̃n,2 test D̃n,3 test

n = 10 0.0642 0.0809 0.0142 0.0480 0.0418 0.0413 0.1601 0.1131

n = 15 0.0813 0.1208 0.0073 0.0783 0.0395 0.0204 0.1801 0.1585

n = 20 0.0989 0.2052 0.0028 0.1546 0.0437 0.0160 0.2269 0.1841

n = 30 0.1444 0.4100 0.0018 0.2503 0.0419 0.0120 0.2650 0.2488

n = 50 0.2618 0.8580 0.3142 0.5410 0.0631 0.0078 0.4173 0.4050

Alternative: uniform distribution

We get from Table 2 that there is not too much difference between the tests Dn,2 and Dn,3.

This seems to indicate that there is not much gain by choosing a value of m, different from

m = 2. The Lilliefors test is the less powerful of all the considered tests. The Csörgő test is

very uneven. For some distributions, it is the most powerful test, but for other distributions

does not have too much power. The tests D̃n,2 and D̃n,3 often do not rank between the most

powerful tests. The three best tests are the Shapiro–Wilks test, the BHEP test and the Dn,2

tests. These tests are comparable. In the case of a uniform alternative, we get that the power

of Dn,2 and Dn,3 tests is less than 0.05. This means that these tests are not unbiased. The

test in Csörgő (1986) is not unbiased either.

4 Proofs

Proof of Theorem 2.1. Given t ∈ R, define ht(x1, . . . , xm) = t−m−1/2σ−1
F

∑m
j=1(Xj−µF ).

Since the class of functions {ht : t ∈ R} is a one dimensional affine space of functions, the

class of sets

{{(x1, . . . , xm) ∈ Rm : m−1/2σ−1
F

m∑
j=1

(xj − µF ) ≤ t} : t ∈ R}

is a VC class (see Theorem 4.2.1 in Dudley, 1999). By the LLN for U-processes indexed by a

VC class (see e.g. Corollary 3.3 in Arcones and Giné, 1993),

sups∈R

∣∣∣ (n−m)!
n!

∑
(i1,...,im)∈In

m
I(m−1/2σ−1

F

∑m
j=1(Xij − µF ) ≤ s)−HF,m(s)

∣∣∣ a.s.→ 0.

where

HF,m(s) := PF{m−1/2σ−1
F

m∑
j=1

(Xj − µF ) ≤ s}.

Taking s = σ−1
F m1/2(X̄n − µF ) + σ−1

F σ̂n,mt, we get that

supt∈R

∣∣∣ (n−m)!
n!

∑
(i1,...,im)∈In

m
I(m−1/2σ̂−1

n,m

∑m
j=1(Xij − X̄n) ≤ t) (4.1)

−HF,m(σ−1
F m1/2(X̄n − µF ) + σ−1

F σ̂n,mt)
∣∣ a.s.→ 0.
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Since HF,m(·), is a uniformly continuous function, we have that

sup
t∈R

∣∣HF,m(σ−1
F m1/2(X̄n − µF ) + σ−1

F σ̂n,mt)−HF,m(t)
∣∣ a.s.→ 0. (4.2)

Note that by the strong law of the large numbers, X̄n
a.s.→ µ and σ̂2

n,m
a.s.→ σ2. The claim follows

from (4.1) and (4.2). �
We will need the following lemma:

Lemma 4.1. Let {Xj} be a sequence of i.i.d.r.v.’s from a standard normal distribution. Then,

for each m ≥ 2,

supt∈R |n−1/2
∑n

j=1(Φ((m− 1)−1/2(m1/2(m1/2X̄n + σ̂n,mt)−Xj))

−Φ((m− 1)−1/2(m1/2t−Xj))− Φ(m1/2X̄n + σ̂n,mt) + Φ(t))| Pr→ 0.

Proof. Since Φ((m − 1)−1/2(m1/2t − x)) is increasing in t, the class of functions, {Φ((m −
1)−1/2(m1/2t − x)) : t ∈ R} is a VC subgraph class of functions. Hence, by the central limit

theorem for VC subgraph classes (see e.g. Corollary 6.3.16 in Dudley, 1999), {Un(t) : t ∈ R}
converges weakly, where

Un(t) := n−1/2

n∑
j=1

(
Φ((m− 1)−1/2(m1/2t−Xj))− Φ(t)

)
.

Observe that

E[Φ((m− 1)−1/2(m1/2t−X1))] = E[I(X2 + · · ·+ Xm ≤ m1/2t−X1)]

= E[I(m−1/2(X1 + · · ·+ Xm) ≤ t)] = Φ(t).

The weak convergence of the process {Un(t) : t ∈ R} implies that for each τ > 0,

lim
δ→0

lim sup
n→∞

P{ sup
d(t,s)≤δ

|Un(s)− Un(t)| ≥ τ} = 0,

where

d2(s, t) = Var(Φ((m− 1)−1/2(m1/2s−X1))− Φ((m− 1)−1/2(m1/2t−X1)))

(see Theorem 3.7.2 in Dudley, 1999). By the Cauchy-Schwartz inequality, for each s, t ∈ R,

d2(s, t) = Var(Φ((m− 1)−1/2(m1/2s−X1))− Φ((m− 1)−1/2(m1/2t−X1)))

≤ E[(Φ((m− 1)−1/2(m1/2s−X1))− Φ((m− 1)−1/2(m1/2t−X1)))
2]

= EX1 [(EX2,...,Xm [I(m−1/2
∑m

j=1 Xj ≤ s)− I(m−1/2
∑m

j=1 Xj ≤ t)])2]

≤ EX1 [EX2,...,Xm [(I(m−1/2
∑m

j=1 Xj ≤ s)− I(m−1/2
∑m

j=1 Xj ≤ t))2]] = |Φ(t)− Φ(s)|.

Using the previous estimation, we get that for each 0 < M <∞,

sup
t∈R

sup
|a|,|b|≤M

d2(an−1/2 + (1 + bn−1/2)t, t) ≤ sup
t∈R

sup
|a|,|b|≤M

|Φ(an−1/2 + (1 + bn−1/2)t)− Φ(t)| → 0,
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as n→∞. Hence, for each 0 < M <∞,

sup
t∈R

sup
|a|,|b|≤M

|Un(an−1/2 + (1 + bn−1/2)t)− Un(t)| Pr→ 0. (4.3)

Plugging (m1/2n1/2X̄n, n
1/2(σ̂n,m − 1)) as (a, b) in (4.3), the result follows.

Proof of Theorem 2.2. Since the distribution of the test is invariant by changes of

location and scale, we can assume that the r.v.’s are standard normal. By the central limit

theorem for U-processes indexed by a VC class (see Theorem 4.9 in Arcones and Giné, 1993),

{n1/2 (n−m)!

n!

∑
(i1,...,im)∈In

m

(I(m−1/2

m∑
j=1

Xij ≤ t)− Φ(t)) : t ∈ R}

converges weakly. By Corollary 4.2 in Arcones and Giné (1993), the U-process is asymptoti-

cally equivalent to the first term in its Hoeffding decomposition:

n1/2 sup
t∈R
|(n−m)!

n!

∑
(i1,...,im)∈In

m

(I(m−1/2

m∑
j=1

Xij ≤ t)− Φ(t)) (4.4)

−mn−1

n∑
j=1

(Φ((m− 1)−1/2(m1/2t−Xj))− Φ(t))| Pr→ 0.

Observe that

EX2,...,Xm [I(m−1/2
∑m

j=1 Xj ≤ t)] = EX2,...,Xm [I(
∑m

j=2 Xj ≤ m1/2t−X1)]

= Φ((m− 1)−1/2(m1/2t−X1)).

Plugging m1/2X̄n + σ̂n,mt into t in (4.4), we get that

n1/2 supt∈R |
(n−m)!

n!

∑
(i1,...,im)∈In

m
(I(m−1/2

∑m
j=1(Xij − X̄n) ≤ σ̂n,mt)− Φ(m1/2X̄n + σ̂n,mt))

−mn−1
∑n

j=1(Φ((m− 1)−1/2(m1/2(m1/2X̄n + σ̂n,mt)−Xj)− Φ(m1/2X̄n + σ̂n,mt))| Pr→ 0.

From the previous limit and Lemma 4.1, we get that

n1/2 supt∈R |
(n−m)!

n!

∑
(i1,...,im)∈In

m
(I(m−1/2

∑m
j=1(Xij − X̄n) ≤ σ̂n,mt)− Φ(m1/2X̄n + σ̂n,mt)) (4.5)

−mn−1
∑n

j=1(Φ((m− 1)−1/2(m1/2t−Xj))− Φ(t))| Pr→ 0.

Hence, we have that

0
Pr← n1/2Dn,m − supt∈R |mn−1/2

∑n
j=1 Φ((m− 1)−1/2(m1/2t−Xj))− Φ(t))

+ n1/2(Φ(m1/2X̄n + σ̂n,mt)− Φ(t))|
= n1/2Dn,m − supt∈R |mn−1/2

∑n
j=1 Φ((m− 1)−1/2(m1/2t−Xj))− Φ(t))

+ n1/2(m1/2X̄n + (σ̂n,m − 1)t)φ(t)|+ oP (1).
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Finally, the claim follows noticing that

n1/2(σ̂n,m − 1) = (σ̂n,m + 1)−1n1/2(σ̂2
n,m − 1) = (σ̂n,m + 1)−1n1/2( n−m

n(n−1)

∑n
j=1(Xj − X̄)2 − 1)

= (σ̂n,m + 1)−1n1/2
(
(n− 1)−1(n−m)

(
n−1

∑n
j=1 X2

j − (X̄n)2
)
− 1
)

= 2−1n−1/2
∑n

j=1(X
2
j − 1) + oP (1).

�
The proof of Theorem 2.3 is similar to that of Theorem 2.1 and it is omitted.

Lemma 4.2. Let {Xj} be a sequence of i.id.r.v.’s from a standard normal distribution. Then,

n1/2 supt∈R |n−1
∑n

j=1

(
I(Xj − X̄n ≤ t)− I(Xj ≤ t)− Φ(X̄n + t) + Φ(t)

)
| Pr→ 0. (4.6)

Proof. We proceed as in Lemma 4.1. By the Donsker theorem, {Yn(t) : t ∈ R} converges

weakly, where

Yn(t) := n−1/2

n∑
j=1

(I(Xj ≤ t)− Φ(t)) .

This implies that for each τ > 0,

lim
δ→0

lim sup
n→∞

P{ sup
d(t,s)≤δ

|Yn(s)− Yn(t)| ≥ τ} = 0,

where

d2(s, t) = Var(I(X1 ≤ s), I(X1 ≤ t)) ≤ |Φ(s)− Φ(t)|.

It is easy to see that for each 0 < M <∞,

sup
t∈R

sup
|s|≤M

d2(t + n−1/2s, t)→ 0,

as n→∞. Hence, for each 0 < M <∞,

sup
t∈R

sup
|s|≤M

|Yn(t + n−1/2s)− Yn(t)| Pr→ 0. (4.7)

The claim follows plugging n1/2X̄n as s in (4.7).

Proof of Theorem 2.4. As before, we may assume that the r.v.’s are standard normal.

The arguments leading to (4.5) but using σ̂m,n = 1 give that

n1/2 supt∈R |
(n−m)!

n!

∑
(i1,...,im)∈In

m
(I(m−1/2

∑m
j=1(Xij − X̄n) ≤ t)− Φ(m1/2X̄n + t)) (4.8)

−mn−1
∑n

j=1(Φ((m− 1)−1/2(m1/2t−Xj))− Φ(t))| Pr→ 0.
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By the previous limit and Lemma 4.2

0
Pr← n1/2D̃n,m − n1/2 supt∈R

∣∣∣mn−1
∑n

j=1(Φ((m− 1)−1/2(m1/2t−Xj))− Φ(t))

−n−1
∑n

j=1(I(Xj ≤ t)− Φ(t)) + Φ(m1/2X̄n + t)− Φ(X̄n + t)
∣∣∣

= n1/2D̃n,m − n1/2 supt∈R

∣∣∣mn−1
∑n

j=1(Φ((m− 1)−1/2(m1/2t−Xj))− Φ(t))

−n−1
∑n

j=1(I(Xj ≤ t)− Φ(t)) + (m1/2 − 1)X̄nφ(t)
∣∣∣+ oP (1).

�
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