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DESCARTES’ RULE OF SIGNS
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Let be a polynomial
with real coefficients.

Descartes’ Rule: The number of positive real roots
of P(x) is at most the number of sigh changes in
the sequence of coefficients ap,aj,...,an.

It follows (replacing x by -x) that the number of
negative real roots of P(x) is at most the number

of sign changes in the sequence




SUPPLEMENT TO THE RULE
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Although we won’t focus on this aspect of Descartes’
rule, it's worth mentioning that the difference
between the number of positive roots and the
number of sign changes is in fact always EVEN.







OUR SECOND PROTAGONIST
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Sir Isaac Newton
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VALUATIONS
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Let K be a field.

A valuation on K is a map such that:




EXAMPLES OF VALUATIONS
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¢ The order of vanishing of a Laurent series f(T) at T=0

¢ The p-adic valuation of a rational number (for some
prime p), e.g.
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THE NEWTON POLYGON
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The Newton polygon of P(x)=ap+a|x+...+a.x" with
coefficients in a field K equipped with a valuation is
the lower convex hull of the points (i,v(a))).

P(z) = p° + p’z + p?2? + p*2® — z* + p2®




NEWTON'’S POLYGON RULE

Let P(x)=ao+a|x+...+a,x" be a polynomial with
coefficients in a field K equipped with a valuation v.

Newton’s Polygon Rule: The number of roots of P(x)
in K with valuation equal to s is at most the
multiplicity of -s in the Newton polygon of P.




REVISITING OUR EXAMPLE
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OUR THIRD PROTAGONIST
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HYPERFIELDS
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¢ Roughly speaking, a hyperfield is an algebraic
structure similar to a field, but where addition is
allowed to be multi-valued.

¢ Hyperfields were introduced by Marc Krasner in the
mid-1950’s.

¢ Like fields, hyperfields come equipped with a
multiplicative identity element |, an additive identity
element 0, and a negation map




HYPERFIELDS (CON'T)
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¢ However, one does not require that the hypersum of
x and -x is equal to zero, only that zero is
contained in the hypersum

¢ There seems to be a reappraisal of sorts going on in

the math community of the “bias™ against multi-valued
operations.




OLEG VIRO ON
MULTIVALUED OPERATIONS
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“Krasner, Marshall, Connes and Consani and the author came to
hyperfields for different reasons, motivated by different mathematical
problems, but we came to the same conclusion: the hyperrings and
hyperfields are great, very useful and very underdeveloped in the
mathematical literature... Probably, the main obstacle for hyperfields to
become a mainstream notion 1s that a multivalued operation does not fit to
the tradition of set-theoretic terminology, which forces to avoid
multivalued maps at any cost. I believe the taboo on multivalued maps
has no real ground, and eventually will be removed. Hyperfields are
legitimate algebraic objects related in many ways to the classical core of
mathematics...”




THE KRASNER HYPERFIELD
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with the usual multiplication and the
following hyperaddition rules:




THE SIGN HYPERFIELD

IR TIN CRTTRIN - La ) e -t e, I X0 Sl ? o b s :
I A T R g £ T Kb P 501 T, D o o G R W U TR :
. " - 2 v Aot - o cm b.itrhopﬂ - SR T o S "}-w&‘/ -‘:::'.} ﬂS';« ,A_:»:»}&nfa.'v!s_‘,:.;..w AP ".’\m"-r'.WCG"f('S . ’“1.’".",?-!.0‘;;; % AP e é«"."‘?':v"

with the usual multiplication and the

following hyperaddition rules:




THE TROPICAL HYPERFIELD
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with the following rules:




HOMOMORPHISMS
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A map between hyperfields is called a
homomorphism if:




EXAMPLES OF
__ HOMOMORPHISMS
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¢ |f Fis a hyperfield, the map with

and is a homomorphism. (“Forget
everything except whether x is zero or non-zero.”)

¢ The map is a homomorphism. (“Forget
everything except the sign of x.”)

® |f K is a field and v is a valuation on K,

homomorphism. (“Forget everything except the
valuation of x.”)




QUOTIENTS OF FIELDS

B> - ...‘;‘p.(\..,,r ~0‘; " /a A LIPS ARG RN N it 0"y (Se AR e i :
oo s o A e v B W A T S e SO R3St S D B T e gl s W & .
v TR "’saf O N W SR . i) bl \U.:ﬁ"r&i.’ﬂ o UL R SR o G TR AT 3R G A s A in T A T N GHE™ AN T - L e e R

Here is a very general construction: let K be a field

and let G be a subgroup of the multiplicative group of
K. Then is naturally a
hyperfield.

Examples:




POLYNOMIALS OVER
HYPERFIELDS
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Let F be a hyperfield. A polynomial with

coefficients in F is a formal expression of the form

with all




ROOTS OF POLYNOMIALS
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WVe say that is a root of the polynomial P(x)
over F if:




EXAMPLES
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¢ When F is the sign hyperfield, | is a root of a nonzero

polynomial P(x) iff some aj = | and some a; = -1.

¢ When F is the tropical hyperfield, s is a root of a
nonzero polynomial P(x) iff min(ais’) is achieved at
least twice.




DIVISION THEOREM
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WWe say divides
if there exists
such that

l.e.

is a root of P(x) iff divides P(x).




MULTIPLICITIES OF ROOTS
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If is not a root of P(x), we set

Otherwise, we define




THE MULTIPLICITY
INEQUALITY
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Theorem (B-Lorscheid): Let be a
homomorphism from a field K to a hyperfield F and
let P(x) be a polynomial with coefficients in K.Then

for every we have




MULTIPLICITIES OVER
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When we show that is equal to the

number of sign changes in the coefficients of P(x).

This, together with the multiplicity inequality (applied
to the homomorphism ) implies
Descartes Rule of Signs.




MULTIPLICITIES OVER
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When we show that is equal to the

multiplicity of  in the Newton Polygon of P(x).

This, together with the multiplicity inequality (applied
to the homomorphism ), implies Newton’s
Polygon Rule.




MULTIVARIATE
_ MULTIPLICITIES
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It is straightforward to generalize the notion of roots

to multivariate polynomials in several variables over a
hyperfield F.

Open problem: Can we generalize the notion of
multiplicities of roots to the case of n polynomials

in n variables (or, more generally, to “zero-dimensional
ideals™)?

Motivation: Multivariate Descartes’ Rule of Signs




OUR NEXT PROTAGONISTS
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Hassler Whitney Takeo Nakasawa




MATROIDS
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A matroid M is a finite set E together with a non-
empty collection of subsets of E, called the bases
of M, such that for every and

there exists such that

The rank of M is the cardinality of any basis B.




GIAN-CARLO ROTA ON
MATROIDS
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“Like many another great idea, matroid theory was invented by one of the
great American pioneers, Hassler Whitney. His paper, which 1s still today the

best entry to the subject, flagrantly reveals the unique peculiarity of this
field, namely, the exceptional variety of cryptomorphic definitions for a
matroid, embarrassingly unrelated to each other and exhibiting wholly
different mathematical pedigrees. It 1s as if one were to condense all trends
of present day mathematics onto a single finite structure, a feat that anyone
would a priori deem 1impossible, were 1t not for the fact that matroids do
exist.”




THE FANO MATROID
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GRASSMANNIANS
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Let K be a field. If W is a 2-dimensional subspace of
the four-dimensional vector space K4, we can
represent WV as the row space of a 2x4 matrix A with

entries in K.

Let a;; be the determinant of the 2x2 submatrix given
by the ith and jth columns of A.

These quantities satisfy the Plucker equation




GRASSMANNIANS (CON'T)
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Moreover, as a point of projective space the

vector does not
depend on the choice of the matrix A, and is thus an
invariant of the subspace WV.

Additionally, any point of the projective space

satisfying the Plucker relation corresponds uniquely
to a 2-dimensional subspace W.




GRASSMANNIANS (CON'T)
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More generally, one can parametrize the r-
dimensional subspaces of the n-dimensional vector

space Kn by the points of a projective algebraic
variety , called the Grassmannian, defined

by a set of equations called the Plucker relations.




PLUCKER RELATIONS
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In general, the Plucker relations are as follows. Let

with

Then we have




THE PLUCKER EQUATIONS
_OVERA HYPERFIELD |
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If F is a hyperfield, we can look at solutions in

to the Plucker “equations”

Theorem: When is the Krasner hyperfi eld,
there is a canonical one-to-one correspondence
between solutions to the Plucker equations in
and matroids of rank r on E={l,...,n}.




OTHER SOLUTIONS TO THE
PLUCKER EQUATIONS
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¢ When F is the hyperfield of signs, solutions to the
Plucker equations are the same thing as oriented
matroids.

¢ When F is the tropical hyperfield, solutions to the
Plucker equations are the same thing as tropical linear
spaces (or valuated matroids).




