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Slopes In Zp-Towers of Curves

Slopes of curves

C: a smooth projective geometrically irreducible curve of
genus g defined over a finite field Fq of characteristic p.

The zeta function of C is

Z(C, s) = exp(

∞∑
k=1

#C(Fqk)

k
sk) =

P (C, s)

(1− s)(1− qs)
.

The degree 2g zeta polynomial

P (C, s) =

2g∏
i=1

(1− αis) ∈ C[s]

is pure of weight 1 (Weil). That is,

|αi| =
√
q, αiᾱi = q, (1 ≤ i ≤ 2g).
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Slopes of curves

Write the zeta polynomial

P (C, s) =

2g∏
i=1

(1− αis) ∈ Cp[s],

0 ≤ vq(α1) ≤ · · · ≤ vq(α2g) ≤ 1, vq(q) = 1.

The set {vq(α1), · · · , vq(α2g)} ⊂ Q ∩ [0, 1] is called the
q-slope sequence of C.

The set of qk-slopes for C ⊗ Fqk is the set of q-slopes for C.
Thus, the q-slope sequence is a geometric invariant of C,
simply called the slope sequence of C.

The slope sequence can be computed from the q-adic Newton
polygon of P (C, s) if P (C, s) is given.
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Slopes of curves

Question I: Given curve C, what is the slope sequence of C?

(This is hard in general. Any polynomial time algorithm? )

Question II: How the slope sequence of C varies when C
varies in an algebraic family?

Question III: How the slope sequence of C varies when C
varies in a Zp-tower?
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Slopes of curves

Write the zeta polynomial

P (C, s) = 1 + c1s+ · · ·+ qgs2g, cg+i = qicg−i.

The q-adic Newton polygon NP(C) is the lower convex hull in
R2 of the points

(0, 0), (1, vq(c1)), · · · , (k, vq(ck)), · · · , (2g, g).

The slope sequence of C is simply the slope sequence of
NP(C), counting multiplicity.

Hodge polygon HP: Slopes: {0, 1} with multiplicity g.

Supersingular polygon SP: Slopes: 1/2 with multiplicity 2g.
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Slopes of curves

NP(C) is “symmetric” (by functional equation): s is a slope
if and only if 1− s is a slope with the same multiplicity.

One has the trivial inequalities:

HP ≤ NP(C) ≤ SP.
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Slopes of curves

Vertices of NP(C) are lattice points in R2.

(by Dieudonne-Manin).

If NP(C) = HP, C is called ordinary.

If NP(C) = SP, C is called supersingular.
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I. Slopes In Algebraic Families of Curves
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Slopes of curves

If f : X −→ Y is a family of curves of genus g over F̄p, the
generic (lowest) Newton polygon GNP(f) of f exists by the
Grothendieck specialization theorem.

If GNP(f) is equal to HP, f is called generically ordinary.

(a). The universal family Hg of genus g hyper-elliptic curves
over F̄p is generically ordinary for every prime p.

(b). Hence the larger family Mg of all genus g curves over F̄p
is also generically ordinary for every prime p.

Big families are more likely to be generically ordinary.
It is harder to decide if a small (one parameter) family of
curves of genus g is generically ordinary. In this case,
generically ordinary means ordinary at almost all fibers.
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Slopes of curves

Conjecture (Katz, 2018). For n = 2g + 1 or n = 2g + 2, the
one parameter family of hyper-elliptic curves over F̄p

y2 = xn − nx− λ, g ≥ 1

is generically ordinary if p > n2.

(For ` 6= p, big `-adic monodromy implies big p-adic
monodromy and generic ordinariness for large p).

Conjecture (Katz, 2018). For squarefree f(x) ∈ F̄p[x] of
degree n = 2g or n = 2g + 1, the one parameter family of
hyper-elliptic curves over F̄p

y2 = f(x)(x− λ)

is generically ordinary if p > n+ 1.
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For f(x) =
∑d

i=0 aix
i ∈ F̄p[x] of degree d not divisible by p,

the Newton polygon of the Artin-Schreier curve yp − y = f(x)
lies above the polygon with slopes

{1

d
,

2

d
, · · · , d− 1

d
}(p−1).

These two polygons coincide if and only if p ≡ 1 mod d.

Joe Kramer-Miller (2020, ANT etc) has extended this
improved lower bound to any cyclic cover of arbitrary base
curve ramified at several points, using ramification invariants.

Question. For f(x) ∈ F̄p[x] of degree d not divisible by p, the
Newton polygon of the one parameter family of Artin-Schreier
curves over F̄p

yp − y = λf(x)

is fibre by fibre independent of λ ∈ F̄∗p?
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Question (W, in Mirror Symmetry V, 2006). Is the one
parameter Dwork family of Calabi-Yau hypersurfaces over F̄p

xn1 + xn2 + · · ·+ xnn + nλx1 · · ·xn = 0, n ≥ 3

generically ordinary if p does not divide n?

By the star decomposition theorem, the mirror family over F̄p

x1 + x2 + · · ·+ xn−1 + nλ+ 1/x1 · · ·xn−1 = 0

is indeed generically ordinary if p does not divide n.

One can ask the same question for other “invertible” one
parameter family of CY hypersurfaces

n∑
i=1

n∏
j=1

x
aij
j + nλx1 · · ·xn = 0

and its mirror family. Or determine its GNP.
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Slopes in Zp-towers of curves

Consider

C = C0 ← C1 ← · · · ← Cn ← · · · ← C∞,

Gal(Cn/C) = Zp/pnZp, p = char(Fq),

a Zp-tower of curves with constant field Fq, ramified on a
finite non-empty set S of closed points on C.

Such towers can be constructed explicitly using Witt vectors.

gn = genus(Cn) grows at least quadratically in pn.

Question: How the slope sequence of Cn varies as n varies?

(Any stability for large n? )
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Note
Z(Cn, s)

Z(C, s)
=

∏
χpn=1,χ 6=1

L(χ, s),

where χ runs over all continuous p-adic characters of
Gal(C∞/C) = Zp of order dividing pn.

If ord(χ) = ord(χ′) = pk > 1, then

NP(L(χ, s)) = NP(L(χ′, s)).

Let χn be any fixed primitive character of order pn. Then

NP(
Z(Cn, s)

Z(C, s)
) =

n⊕
k=1

NP(L(χk, s))
pk−1(p−1).

It is enough to study NP(L(χn, s)), 1 ≤ n <∞.
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Artin-Schreier-Witt towers

Consider Zp-towers over C = P1, totally ramified at ∞ and
unramified on A1 = P1 − {∞}.

Any such Zp-tower can be uniquely constructed (up to twist)
from a primitive convergent power series

f(x) =
∑

(i,p)=1

cix
i ∈ Zq[[x]], ci ∈ Zq = W (Fq), lim

i
ci = 0,

where f(x) is called primitive if not all ci are divisible by p.

The construction is explicitly given by the following Witt
vector equation

C∞ : [yp1 , y
p
2 , · · · ]− [y1, y2, · · · ] =

∑
(i,p)=1

ci[x
i, 0, · · · ].

C1 : yp1 − y1 =
∑

(i,p)=1

c̄ix
i. (Artin− Schreier curve)
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where f(x) is called primitive if not all ci are divisible by p.

The construction is explicitly given by the following Witt
vector equation

C∞ : [yp1 , y
p
2 , · · · ]− [y1, y2, · · · ] =

∑
(i,p)=1

ci[x
i, 0, · · · ].

C1 : yp1 − y1 =
∑

(i,p)=1

c̄ix
i. (Artin− Schreier curve)



Slopes In Zp-Towers of Curves

Artin-Schreier-Witt towers

The genus gn of Cn is (Kosters-W, Proc. AMS, 2018):

2gn =

n∑
k=1

pk−1(p− 1)uk,

un = −1 + pn−1 max
vp(ci)<n

{ i

pvp(ci)
} = deg(L(χn, s)).

The genus sequence gn grows at least quadratically in pn.
It can grow as fast as one wishes!

Example. If f(x) = xd + ad−1x
d−1 + · · · ∈ Zq[x] is monic of

degree d not divisible by p, then the genus gn is given by

un = −1 + dpn−1, 2gn = (p− 1)(d
p2n − 1

p2 − 1
− pn − 1

p− 1
).
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Artin-Schreier-Witt towers

The Zp-tower C∞/C is called genus stable if

gn = αp2n + βpn + γ, n� 0.

C∞/C is genus stable if and only if

an := max
vp(ci)<n

{ i

pvp(ci)
} =

1

p− 1
(
a

pm
− b

pn−1
), n� 0

for m, a, b ∈ Z≥0, (b, p) = 1 if b > 0, a ≡ b mod (p− 1), i.e.,

deg(L(χn, s)) = un = −1 +
1

p− 1
(pn−1−ma− b), n� 0.

The Zp-tower C∞/C is called strongly genus stable if b = 0,
i.e., if δ := max(i,p)=1{ i

pvp(ci)
} exists. In this case,

deg(L(χn, s)) = un = pn−1δ − 1, n� 0.
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Stability of slopes in Zp-towers

Let f̄(x) =
∑d

i=1 āix
i ∈ Fq[x], deg(f̄) = d not divisible by p.

Let f(x) =
∑d

i=1 aix
i ∈ Zq[x] be its Teichmüller lifting.

C. Liu and W (2008, ANT) introduced the T -adic L-function

L(T, s) = L(χuniv, s) ∈ 1 + sZp[[T ]][[s]],

where

χuniv : Zp −→ Zp[[T ]]×, χuniv(b) = (1 + T )b

parameterizes all continuous Cp valued characters χ of
Gal(C∞/C) = Zp, possibly infinite order. The parameter
t = χ(1)− 1 varies in the open unit disc |t|p < 1.

Non-trivial characters are parameterized by the points in the
punctured unit disk 0 < |t|p < 1.
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Stability of slopes in Zp-towers

If χn(1) = ζpn , then tn = χn(1)− 1 = ζpn − 1 is a classical point
and L(χn, s) = L(tn, s). Note that vp(tn) = 1/pn−1(p− 1)→ 0.
For large n, tn is in the annulus ε < |t|p < 1.

0 1

tn

Figure: Pic 1

0 1

tn

ε

Figure: Pic 2
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Stability of slopes in Zp-towers

Over Gm, the T -adic Dwork trace formula gives

L∗(T, s) = (1− s)L(T, s) =
D(T, s)

D(T, qs)
,

L(T, s) =
D(T, s)

(1− s)D(T, qs)
,

where D(T, s) is a T -adic entire function in s.

Note L∗(T, s) is T -adic meromorphic in s, but neither rational
nor entire! (no cohomological formula here)

For q = pa, T a(p−1)-adic NP(D(T, s)) ≥ HP(D), where
HP(D) is the polygon with slopes

{0

d
,

1

d
,

2

d
, · · · , k

d
, · · · }.

Equality “ta(p−1)-adic NP(D(t, s)) = HP(D)” holds for all
0 < |t|p < 1 if and only if it holds if one single 0 < |t|p < 1.
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Stability of slopes in Zp-towers

If p ≡ 1 mod d, equality holds at classical point t1 = ζp − 1,
thus equality holds for all 0 < |t|p < 1.

At classical point tn = ζpn − 1, vq(t
a(p−1)
n ) = 1/pn−1, thus

the q-slope sequence for D(tn, s) is

{ 0

dpn−1
,

1

dpn−1
,

2

dpn−1
, · · · , }.

This is an arithmetic progression!

The slope sequence for the polynomial

L(χn, s) =
D(tn, s)

(1− s)D(tn, qs)
, n ≥ 1

is just the truncation

{ 1

dpn−1
,

2

dpn−1
, · · · , dp

n−1 − 1

dpn−1
}.
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Stability of slopes in Zp-towers

If p 6≡ 1 mod d, the slope sequence is much more
complicated, even for n = 1.

But we have

Davis-Xiao-Wan (Math Ann., 2016). For q = pa and all

n ≥ n0 := d1 + logp
(d− 1)2a

8d
e, (n0 = 2, if p ≥ da

8
)

the slope sequence for L(χn, s) is

pn−n0−1⋃
i=0

{ i

pn−n0
,
i+ s1
pn−n0

,
i+ s2
pn−n0

, · · · ,
i+ sdpn0−1−1

pn−n0
} − {0},

a truncation of dpn0−1 arithmetic progressions!

{s1, s2, · · · , sdpn0−1−1} is the slope sequence for L(χn0 , s).
Thus, knowing the slopes at level n0 gives the slopes at all
level n ≥ n0, a finiteness property called slope stability.
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Stability of slopes in Zp-towers

Outline of Proof.

For all 0 < |t|p < 1, ta(p−1)-adic NP(D(t, s)) touches HP(D),
at all points when x = dk and dk + 1 (k = 0, 1, · · · , ) by
considering its specialization at the classical point t1 = ζp − 1.
This gives a rather tight upper bound for Newton polygon.

Figure: The upper and lower bounds for the Newton polygon over the
interval [0, 8] for d = 4.
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Stability of slopes in Zp-towers

Lemma. This and dim(Zp) = 1 imply ta(p−1)-adic NP for
D(t, s) is independent of t in the annulus ε < |t|p < 1.

For any large n0, this common NP is the t
a(p−1)
n0 -adic NP of

D(tn0 , s) =
∞∏
i=0

L(χn0/Gm, q
is).

Its t
a(p−1)
n0 -adic slope sequence is (as vq(t

a(p−1)
n0 ) = 1/pn0):

∞⋃
i=0

{pn0i, pn0(i+ s1), · · · , pn0(i+ sdpn0−1−1)},

where {0, s1, · · · , sdpn0−1−1} is the q-adic slopes of the
polynomial L(χn0/Gm, s).
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Stability of slopes in Zp-towers

For all n ≥ n0, t
a(p−1)
n -adic slope sequence for D(tn, s) is

∞⋃
i=0

{pn0i, pn0(i+ s1), · · · , pn0(i+ sdpn0−1−1)}.

For all n ≥ n0, q-adic slope sequence for D(tn, s) is

∞⋃
i=0

{pn0−ni, pn0−n(i+ s1), · · · , pn0−n(i+ sdpn0−1−1)}.

For all n ≥ n0, the q-adic slope sequence for

L(χn, s) = D(tn, s)/(1− s)D(tn, qs)

is the truncation

pn−n0−1⋃
i=0

{pn0−ni, pn0−n(i+s1), · · · , pn0−n(i+sdpn0−1−1)}−{0}.
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Stability of slopes in Zp-towers

These ideas played a crucial role in later papers by
Wan-Xiao-Zhang (Math Ann., 2017)
R. Liu-Wan-Xiao (Duke Math., 2017)
on slopes of p-adic modular forms and the spectral halo
conjecture for eigencurves near the boundary.

What is the optimal condition to guarantee slope stability?

Slope stability ⇒ strong genus stability. Is the converse true?

Slope Question. Strong genus stablility ⇒ slope stability?

i.e., the slope sequence for L(χn, s) is given by a truncation of
a finite number of arithmetic progressions for all large n?
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Stability of slopes in Zp-towers

X. Li (JNT, 2017) extended the slope stability to any
polynomial f(x) using (p, T )-adic topology.

Kosters-Zhu (JNT, 2018) almost settled the slope question,
by working with (p, T1, T2, · · · )-adic topology in A and
deforming to polynomial f(x) case in B.

A . If strongly genus stable, approximate slope stability holds.

B. If strongly genus stable and for some explicit h > 0,

n

pvp(cn)
≤ max

(i,p)=1
{ i

pvp(ci)
} − h

pvp(cn)
, n� 0,

then full slope stability holds.

Can one take h = 0 in B and thus settle the slope question?
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Slopes In Zp-Towers of Curves

Related slope problems

Slopes for L(SymkρE , s), where ρE is the rank two F-crystal
from the universal elliptic curve over Fp.

(slopes of modular forms of weight k + 2).

There are many slope conjectures by Gouvea, Gouvea-Mazur,
Buzzard, Bergdall-Pollack.

A uniform quadratic lower bound for NP and a quadratic
upper bound for GM conjecture (W, Invent Math. 1998).
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Related slope problems

Slopes for L(SymkKl2, s), where Kl2 is the rank two
Kloosterman F-crystal over Fp.

Similar slope conjectures are expected.

A uniform quadratic lower bound for NP by Doug Haessig
(Math. Ann. 2017). Studied the first example of p-adic
cohomology of infinite symmetric power!

An improved quadratic lower bound by Fresán-Sabbah-Yu
(arXiv 2018) who also established the potential modularity of
the motive L(SymkKl2, s) for all k > 0, using different
method (exponential motives and irregular Hodge theory).
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