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e C: a smooth projective geometrically irreducible curve of
genus g defined over a finite field I, of characteristic p.

@ The zeta function of C is

oS OER) 4y P(Cs)
Z(C,s)—exp(; S ) = A=) =g
@ The degree 2g zeta polynomial
29
P(C,s) =[] - cus) € C[s]
i=1

is pure of weight 1 (Weil). That is,

il = /4, aia; =g, (1 <i<2g).
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@ Write the zeta polynomial

29
P(C,s) = H(l —ay5) € Cpls],
i=1
0 < vg(ar) < -+ <vglagg) <1, vy(g) = 1.

The set {vg(a1), -+ ,v4(29)} C QN 0, 1] is called the
g-slope sequence of C.

@ The set of ¢¥-slopes for C' ® Fx is the set of g-slopes for C.
Thus, the g-slope sequence is a geometric invariant of C,
simply called the slope sequence of C'.

@ The slope sequence can be computed from the g-adic Newton
polygon of P(C,s) if P(C, s) is given.
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@ Question I: Given curve C, what is the slope sequence of C?

(This is hard in general. Any polynomial time algorithm? )

@ Question Il: How the slope sequence of C' varies when C
varies in an algebraic family?

@ Question Ill: How the slope sequence of C' varies when C
varies in a Zj,-tower?
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@ Write the zeta polynomial

P(C,s) =1+ c1s+---+¢9s%9, i = qicg_i.

The g-adic Newton polygon NP(C) is the lower convex hull in
R? of the points

(07 0)7 (17 le(Cl))? Ty <k7 vl](ck))7 R (2979)

@ The slope sequence of C' is simply the slope sequence of
NP(C), counting multiplicity.

e Hodge polygon HP: Slopes: {0,1} with multiplicity g.

@ Supersingular polygon SP: Slopes: 1/2 with multiplicity 2g.
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e NP(C) is “symmetric” (by functional equation): s is a slope
if and only if 1 — s is a slope with the same multiplicity.

@ One has the trivial inequalities:

HP < NP(C) < SP.
(29,9)
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@ Vertices of NP(C) are lattice points in R.

(by Dieudonne-Manin).

e If NP(C) = HP, C is called ordinary.

If NP(C') = SP, C'is called supersingular.



Slopes In Zp,-Towers of Curves
LSlopes of curves

I. Slopes In Algebraic Families of Curves
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o If f: X — Y is a family of curves of genus ¢ over F,, the
generic (lowest) Newton polygon GNP(f) of f exists by the
Grothendieck specialization theorem.

If GNP(f) is equal to HP, f is called generically ordinary.

@ (a). The universal family #H, of genus g hyper-elliptic curves
over IF, is generically ordinary for every prime p.

(b). Hence the larger family M, of all genus g curves over F,
is also generically ordinary for every prime p.

o Big families are more likely to be generically ordinary.
It is harder to decide if a small (one parameter) family of
curves of genus g is generically ordinary. In this case,
generically ordinary means ordinary at almost all fibers.
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e Conjecture (Katz, 2018). For n =2g + 1 or n = 2g + 2, the
one parameter family of hyper-elliptic curves over [,
V=z"—nz—\ g>1
is generically ordinary if p > n2.

(For ¢ # p, big ¢-adic monodromy implies big p-adic
monodromy and generic ordinariness for large p).

o Conjecture (Katz, 2018). For squarefree f(x) € Fp[x] of
degree n = 2g or n = 2g + 1, the one parameter family of
hyper-elliptic curves over [,

y? = f(@)(z = A)

is generically ordinary if p > n + 1.
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lies above the polygon with slopes
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a’d d
These two polygons coincide if and only if p =1 mod d.

1),
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improved lower bound to any cyclic cover of arbitrary base
curve ramified at several points, using ramification invariants.
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e For f(x) = Z?:o a;z’ € Fy[z] of degree d not divisible by p,
the Newton polygon of the Artin-Schreier curve y? —y = f(z)
lies above the polygon with slopes

{1 2 d—1
a’d d
These two polygons coincide if and only if p =1 mod d.

1),

e Joe Kramer-Miller (2020, ANT etc) has extended this
improved lower bound to any cyclic cover of arbitrary base
curve ramified at several points, using ramification invariants.

o Question. For f(x) € Fp[x] of degree d not divisible by p, the
Newton polygon of the one parameter family of Artin-Schreier
curves over I,

Yy —y=\f(x)

is fibre by fibre independent of \ € I_F;‘,?
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@ Question (W, in Mirror Symmetry V, 2006). Is the one )
parameter Dwork family of Calabi-Yau hypersurfaces over ),

xr+xy5+--+xy+niry-x, =0, n >3
generically ordinary if p does not divide n?
o By the star decomposition theorem, the mirror family over F,
x1+xo+ -+ rpg+nA+1/z a1 =0

is indeed generically ordinary if p does not divide n.

@ One can ask the same question for other “invertible” one
parameter family of CY hypersurfaces

n n

o
Zij” +nie1---x, =0
i=1 j=1

and its mirror family. Or determine its GNP.
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o Consider
C=Cop+Cr1+ -+ Cp+ -+ Cq,

Gal(C,,/C) = Zy/p"Zy, p = char(Fy),

a Zy-tower of curves with constant field IF;, ramified on a
finite non-empty set S of closed points on C.
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o Consider
C=Cop+Cr1+ -+ Cp+ -+ Cq,

Gal(C,,/C) = Zy/p"Zy, p = char(Fy),

a Zy-tower of curves with constant field IF;, ramified on a
finite non-empty set S of closed points on C.

@ Such towers can be constructed explicitly using Witt vectors.
@ g, = genus(C),) grows at least quadratically in p".

@ Question: How the slope sequence of (), varies as n varies?

(Any stability for large n? )
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o Note

Z(Ch, s)

NI | | L

Z(C, S) pn_ (X’ S))
xP"=1,x#1

where x runs over all continuous p-adic characters of
Gal(Cw/C) = Zy, of order dividing p™.
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o Note

Z(Ch, s)

NI | | L

Z(C, S) pn_ (X’ S))
xP"=1,x#1

where x runs over all continuous p-adic characters of
Gal(Cw/C) = Zy, of order dividing p™.

o If ord(x) = ord(x’) = p* > 1, then

NP(L(x, s)) = NP(L(x, 5))-
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@ Note 2(Co.5)
Z(Tn,’s) = H L(Xa S))

xP" =1,x#1
where x runs over all continuous p-adic characters of
Gal(Cw/C) = Zy, of order dividing p™.
o If ord(x) = ord(x’) = p* > 1, then
NP(L(x, s)) = NP(L(x', ).

@ Let x,, be any fixed primitive character of order p™. Then
NP @NP (xp, 8))P" D),

@ It is enough to study NP(L(xn,s)), 1 <n < oo.
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L Artin-Schreier-Witt towers

o Consider Z,-towers over C' = P!, totally ramified at oo and
unramified on A! = P! — {o0}.

@ Any such Z,-tower can be uniquely constructed (up to twist)
from a primitive convergent power series

fl@)= D ca’ € Zy[z]], ¢; € Zyg=W(F,), lime; =0,
(i,p)=1 ’

where f(x) is called primitive if not all ¢; are divisible by p.

@ The construction is explicitly given by the following Witt
vector equation

Coo : [y:i)vyga] - [y17y27"'] = Z Ci[l'iaoa"']'
(i,p)=1

C: y]f — Y = Z Gt (Artin — Schreier curve)
(i,p)=1
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L Artin-Schreier-Witt towers

@ The genus g, of C), is (Kosters-W, Proc. AMS, 2018):
n
20, = > "M (p— D,
k=1

Up = —1+p"~ L' max {—— } deg(L(xn,S))-

vp(ci)<n pvP ¢i)

@ The genus sequence g, grows at least quadratically in p".
It can grow as fast as one wishes!

o Example. If f(z) = 2% + ag_12¢~1 + - -+ € Zy[x] is monic of
degree d not divisible by p, then the genus g, is given by

_ -1 p”—l
— 1 +dp™ Y, 29, = dp

).
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L Artin-Schreier-Witt towers

@ The Z,-tower C/C is called genus stable if
gn = ap®™ + Bp" 4+, n> 0.
o C/C is genus stable if and only if

7 1 a b
= a. — 22
o %I(%i)}in{p“f’(ci)} p—1 ( ™ pnfl)

n>0

for m,a,b € Z>o, (b,p) =1ifb>0,a=b mod (p—1), i.e,

1
deg(L(xn,s)) =u, = -1+ 2i(p"_l_ma —b), n>0.
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L Artin-Schreier-Witt towers

@ The Z,-tower C/C is called genus stable if
gn = ap™ + Bp" +7, n > 0.

o C/C is genus stable if and only if

} 1
ap := max { Z‘}: (i— b
vp(ci)<n ple) " p—1"pm

), n>0

pnfl
for m,a,b € Z>o, (b,p) =1ifb>0,a=b mod (p—1), i.e,

1
deg(L(xn,s)) =un = -1+ j(p"_l_ma —b), n>0.

@ The Z,-tower C,/C'is called strongly genus stable if b = 0,

ie., if 5 = max(; p)—11{ vp(c — =} exists. In this case,

deg(L(Xn7 S)) = Up = pnilé - 1, n > 0.
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o Let f(z) = 25:1 a;x' € Fylz], deg(f) = d not divisible by p.
Let f(z) = 2.4 | @iz’ € Zy[z] be its Teichmiiller lifting.

e C. Liu and W (2008, ANT) introduced the T-adic L-function
L(T,s) = L(xuniv; s) € 1+ sZp|[T]][[s]];
where
Xuniv * Zp — Zp[[T]]*, Xuniv(b) = (1 +T)°

parameterizes all continuous C, valued characters x of
Gal(Coo/C) = Zy, possibly infinite order. The parameter
t = x(1) — 1 varies in the open unit disc |t[, < 1.
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LStability of slopes in Zp-towers

o Let f(z) = 25:1 a;x' € Fylz], deg(f) = d not divisible by p.
Let f(z) = 2.4 | @iz’ € Zy[z] be its Teichmiiller lifting.

e C. Liu and W (2008, ANT) introduced the T-adic L-function
L(T,s) = L(xuniv; s) € 1+ sZp|[T]][[s]];
where
Xuniv * Zp — Zp[[T]]*, Xuniv(b) = (1 +T)°

parameterizes all continuous C, valued characters x of
Gal(Coo/C) = Zy, possibly infinite order. The parameter
t = x(1) — 1 varies in the open unit disc |t[, < 1.

@ Non-trivial characters are parameterized by the points in the
punctured unit disk 0 < |t], < 1.
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L Stability of slopes in Z,-towers

If xn(1) = Gpn, then t,, = xn(1) — 1 = (» — 1 is a classical point
and L(xn,s) = L(tn,s). Note that v,(t,) = 1/p"1(p—1) — 0.
For large n, t, is in the annulus € < ||, < 1.

Figure: Pic 1 Figure: Pic 2
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e Over G,,, the T-adic Dwork trace formula gives
D(T,s)
(T, s) =(1— T s)= ——1—+~
£H(T8) = (1= 9)L(T8) = Fars,
D(T,s)
(1—s)D(T,qs)’

where D(T, s) is a T-adic entire function in s.

L(T,s) =
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LStability of slopes in Zp-towers

e Over G,,, the T-adic Dwork trace formula gives
D(T,s)
LNT,s) = (1 — 8)L(T, s) = —nt
(T,5) = (1= )£(T.5) = Ty,
D(T, s)

(1-5)D(T,gs)’

where D(T, s) is a T-adic entire function in s.

Note £*(T, s) is T-adic meromorphic in s, but neither rational
nor entire! (no cohomological formula here)

L(T,s) =
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e Over G,,, the T-adic Dwork trace formula gives

N D(T, s)
LT, s)=(1—s)L(T,s) = DT.q5)’
D(T,s)
(1—s)D(T,qs)’
where D(T, s) is a T-adic entire function in s.
Note £*(T, s) is T-adic meromorphic in s, but neither rational
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LStability of slopes in Zp-towers

e Over G,,, the T-adic Dwork trace formula gives

N D(T, s)

LT, s)=(1—s)L(T,s) = DT.q5)’
D(T,s)

(1—s)D(T,qs)’

where D(T, s) is a T-adic entire function in s.

Note £*(T, s) is T-adic meromorphic in s, but neither rational

nor entire! (no cohomological formula here)

L(T,s) =

o For g = p®, T*P=V_adic NP(D(T,s)) > HP(D), where
HP(D) is the polygon with slopes

012 k
{gvg’g"“’g""}-

o Equality “t%°~D_adic NP(D(t,s)) = HP(D)" holds for all
0 < |t|, < 1 if and only if it holds if one single 0 < |t|, < 1.
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o If p=1 mod d, equality holds at classical point t; = ¢, — 1,
thus equality holds for all 0 < [t|, < 1.

o At classical point ¢, = (pn — 1, vg( Z(pfl)) =1/p" 1, thus

the g-slope sequence for D(ty, s) is
0 1 2
{dpn—l 2 dpn—l ) dpn—l )

This is an arithmetic progression!

.7}.

@ The slope sequence for the polynomial

D(ty, s)
(1= 5)D(tngs) "= 1

L(xn,5) =

is just the truncation

1 2 dpn1 —1
{dpn—l 2 dpn—l 1T dpn—l

.
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LStability of slopes in Zp-towers

o If p#£ 1 mod d, the slope sequence is much more
complicated, even for n = 1. But we have

e Davis-Xiao-Wan (Math Ann., 2016). For ¢ = p® and all

(d—1)%a da

n > ng = [1 +log, = 1 (n0—21fp>§)

the slope sequence for L(xy, s) is

‘VL ’VLO 1 .
1 t+s1 t+ s 1+ Sgpyno—1_1
U { . + = {0},

n ng’ pn—no ) pn—no ) ) pn—no

a truncation of dp™~! arithmetic progressions!
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o If p#£ 1 mod d, the slope sequence is much more
complicated, even for n = 1. But we have

e Davis-Xiao-Wan (Math Ann., 2016). For ¢ = p® and all

d—1)? d
n>ng = H_’_Ing(Sd)aL (no =2, 1fp>§a)

the slope sequence for L(xy, s) is

‘VL TLO_ .
) i‘l‘Sl i+52 Z+5d no—1_1
U { o - }_{0}7

n ng’ pn no’ pn ng’ ) pn—no

a truncation of dp™~! arithmetic progressions!

© {s1,82, " ,84,m0-1_1} is the slope sequence for L(xn,,s).
Thus, knowing the slopes at level ng gives the slopes at all
level n > ng, a finiteness property called slope stability.
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Outline of Proof.

e For all 0 < |t|, < 1, t*P~D.adic NP(D(t, s)) touches HP(D),
at all points when z =dk and dk +1 (k=0,1,---,) by
considering its specialization at the classical point ¢; = ¢, — 1.
This gives a rather tight upper bound for Newton polygon.

6

5

1 2 3 4 5 6 7 B

Figure: The upper and lower bounds for the Newton polygon over the
interval [0, 8] for d = 4.
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o Lemma. This and dim(Z,) = 1 imply t*®~Y-adic NP for
D(t,s) is independent of t in the annulus € < |t], < 1.

o For any large ng, this common NP is the t27~"_adic NP of

[e.o]
D(tyny,s) = HL(XnO/Gm, q's).
i=0
Its ta(pfl)—adic slo i a(p—=1)y _ no\.
no pe sequence is (as vy(tn, ') =1/p™):

oo
U{p™4, 0™ (i + 51), -+ ™ (6 + sgpmo-1-1)},
=0

where {0, s1, -+, Sg,mo-1_1} is the g-adic slopes of the
polynomial L(xpn,/Gm, $).
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(»-1)

e For all n > ng, t, -adic slope sequence for D(t,, s) is

0
LJ{pnOZupnO(Z + 81)7 e 7pn0(7: + Sdp"Oflfl)}'
=0

e For all n > ng, g-adic slope sequence for D(t,,s) is

)
U{pno—ni7pn()—n(i i 51)7 e 7pn0_n(i + Sdpnoil_l)}'
=0

@ For all n > ng, the g-adic slope sequence for
L(xn,s) = D(tn,s)/(1 — s)D(tn, qs)
is the truncation

pnfno -1

U {pnoiniypn()in(i‘i‘sl)v T 7pn()in(i—i_sdpnoil_l)}_{o}'
=0
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@ These ideas played a crucial role in later papers by
Wan-Xiao-Zhang (Math Ann., 2017)
R. Liu-Wan-Xiao (Duke Math., 2017)
on slopes of p-adic modular forms and the spectral halo
conjecture for eigencurves near the boundary.
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@ These ideas played a crucial role in later papers by
Wan-Xiao-Zhang (Math Ann., 2017)
R. Liu-Wan-Xiao (Duke Math., 2017)
on slopes of p-adic modular forms and the spectral halo
conjecture for eigencurves near the boundary.

@ What is the optimal condition to guarantee slope stability?

Slope stability = strong genus stability. Is the converse true?

@ Slope Question. Strong genus stablility = slope stability?

i.e., the slope sequence for L(xn,s) is given by a truncation of
a finite number of arithmetic progressions for all large n?
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o X. Li (JNT, 2017) extended the slope stability to any
polynomial f(z) using (p,T')-adic topology.
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o X. Li (JNT, 2017) extended the slope stability to any
polynomial f(z) using (p,T')-adic topology.

o Kosters-Zhu (JNT, 2018) almost settled the slope question,
by working with (p,T7, T3, - - - )-adic topology in A and
deforming to polynomial f(z) case in B.

A . If strongly genus stable, approximate slope stability holds.

B. If strongly genus stable and for some explicit h > 0,

i h
< —
pvp(en) = (%?fl{pvp(q)} pvp(en)’ n> 0,

then full slope stability holds.
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o X. Li (JNT, 2017) extended the slope stability to any
polynomial f(z) using (p,T')-adic topology.

o Kosters-Zhu (JNT, 2018) almost settled the slope question,
by working with (p,T7, T3, - - - )-adic topology in A and
deforming to polynomial f(z) case in B.

A . If strongly genus stable, approximate slope stability holds.

B. If strongly genus stable and for some explicit h > 0,

7

< max {

pvp(cn) " (i,p)=1 p”p(cz‘)} B pvp(cn)’ n >0,

then full slope stability holds.

@ Can one take h = 0 in B and thus settle the slope question?
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@ Slopes for L(Sym*pg, s), where pg is the rank two F-crystal
from the universal elliptic curve over [F),.

(slopes of modular forms of weight k + 2).

@ There are many slope conjectures by Gouvea, Gouvea-Mazur,
Buzzard, Bergdall-Pollack.

@ A uniform quadratic lower bound for NP and a quadratic
upper bound for GM conjecture (W, Invent Math. 1998).
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o Slopes for L(Sym*Kly, s), where Kl; is the rank two
Kloosterman F-crystal over [f),.

@ Similar slope conjectures are expected.

@ A uniform quadratic lower bound for NP by Doug Haessig
(Math. Ann. 2017). Studied the first example of p-adic
cohomology of infinite symmetric power!

@ An improved quadratic lower bound by Fresdn-Sabbah-Yu
(arXiv 2018) who also established the potential modularity of
the motive L(Sym*Kly, s) for all k > 0, using different
method (exponential motives and irregular Hodge theory).
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Thank Youl
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