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Moments of the Riemann Zeta Function

Let

ζ(s) =
∞∑
n=1

1

ns
=

∏
p prime

(
1− 1

ps

)−1
, <(s) > 1.

It was shown by Riemann that ζ(s) satisfies the functional equation

Λ(s) = Λ(1− s), where Λ(s) = π−s/2Γ(s/2)ζ(s),

and then has meromorphic continuation to the complex plane, with
a simple pole at s = 1.



Moments of the Riemann Zeta Function

Some of the deepest questions of analytic number theory are
concerned with the size and the zeroes of ζ(s) inside the critical
strip 0 < <(s) < 1.

Riemann Hypothesis:
If ζ(s) = 0 and 0 < <(s) < 1, then <(s) = 1

2 .

Moments of ζ(12 + it): There exists gk such that

lim
T→∞

1

(logT )k2

1

T

∫ T

0

∣∣∣∣ζ (1

2
+ it

)∣∣∣∣2k dt = akgk

• k = 1: Hardy and Littlewood with g1 = 1 (1918)

• k = 2: Ingham, with g2 = 1/12 (1928)
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Moments of the Riemann Zeta Function

Moments of ζ(12 + it): There exists gk such that∫ T

0

∣∣∣∣ζ (1

2
+ it

)∣∣∣∣2k dt ∼ akgk T (logT )k
2
.

What is the combinatorial constant gk?

• k = 3 Conrey and Ghosh (1992) conjectured that g3 = 42
9!

• k = 4 Conrey and Gonek (1998) conjectured that g4 = 24024
16!

Random Matrix Model: Following the work of Montgomery
(1973), and then Katz and Sarnak (1999), we believe that
statistics on the zeroes of L-functions match the statistics on the
eigenvalues of random matrices in certain symmetry groups
associated to the family.
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Moments of unitary matrices

Let Z (U, θ) = det(I − Ue−iθ) be the characteristic polynomial of a
of N × N unitary matrix U ∈ U(N). The set U(N) is a probability
space with respect to the Haar measure.

Keating and Snaith (2000) showed

lim
N→∞

1

Nk2

∫
U(N)

|Z (U, θ)|2k dU = gk , gk =
k−1∏
j=0

j!

(j + k)!
.

We have

g1 = 1, g2 =
1

12
, g3 =

42

9!
, g4 =

24024

16!
.

Keating and Snaith Conjecture:∫ T

−T

∣∣∣∣ζ (1

2
+ it

)∣∣∣∣2k dt ∼ akgk T (logT )k
2
, gk =

k−1∏
j=0

j!

(j + k)!
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Families of L-functions

From the work of Katz and Sarnak, we are lead to believe that
statistics for families of L-functions are similar to statistics for
ζ(12 + it), t ∈ [0,T ], and are also modelled by random matrix
theory. Each family has a symmetry type (unitary, symplectic or
orthogonal) which governs the statistics.

Let χ be a Dirichlet character of modulus q, i.e. a multiplicative
function

χ : (Z/qZ)∗ → C∗,

extended to the integers by periodicity and by setting χ(a) = 0 if
(a, q) 6= 1. The Dirichlet L-function associated to χ is

L(s, χ) =
∞∑
n=1

χ(n)

ns
=

∏
p prime

(
1− χ(p)

ps

)−1
<(s) > 1.
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Functional equation for Dirichlet L-functions

If χ is a primitive character of conductor q (and χ is even), then

Λ(s, χ) =
τ(χ)

q1/2
Λ(1− s, χ), Λ(s, χ) =

(
π

q

)−s/2
Γ(s/2)L(s, χ)

where the sign of the functional equation involves the Gauss sum

τ(χ) =

q∑
m=1

χ(m)e2πim/q.

It is easy to show that |τ(χ)| = q1/2 for all primitive characters.
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Quadratic Dirichlet L-functions

For quadratic characters χ2 = χ0, it was showed by Gauss that for

χ(·) =
(
·
q

)
, q prime, we have

τ(χ) =

{
q1/2 q ≡ 1mod 4

iq1/2 q ≡ 3mod 4,

and for any primitive quadratic character of conductor q

Λ(s, χ) = Λ(1− s, χ), Λ(s, χ) =

(
π

q

)−s/2
Γ(s/2)L(s, χ).

• Since χ = χ for quadratic characters, there would be forced
vanishing at s = 1

2 if the sign of the functional equation 6= 1.

• If L(12 , χ) = 0 for a quadratic character, then the zero has order
at least 2.
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Moments of quadratic Dirichlet L-functions

Using Random Matrix Theory, Keating and Snaith (2000)
conjectured that∑∗

χ2=χ0
cond(χ)≤X

L(12 , χ)
k ∼ a′kg

′
k X (logX )

k(k+1)
2

with an explicit formula for the combinatorial constant g ′k coming
from the random matrix model.

Comparing with the moments of ζ(12 + it),∫ T

−T

∣∣∣∣ζ (1

2
+ it

)∣∣∣∣2k dt ∼ akgk T (logT )k
2

we notice that the formula are different (symplectic versus unitary).
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Moments of quadratic Dirichlet L-functions

Conjecture: ∑∗

χ2=χ0
cond(χ)≤X

L(12 , χ)
k ∼ a′kg

′
k X (logX )

k(k+1)
2 .

• k = 1 Jutila (1981)

• k = 2 Jutila (1981), Soundararajan (secondary terms, 2000)

• k = 3 Soundararajan (2000), Diaconu, Goldfeld, Hoffstein
(2003)

• k = 4 Shen (2019, under GRH)



Non-vanishing of Dirichlet L-functions

It is conjectured by Chowla that L(12 , χ) 6= 0 for all L-functions
L(s, χ) attached to primitive Dirichlet characters.

The conjectures of Katz and Sarnak on the one-level density in
families of L-functions imply that L(12 , χ) 6= 0 for all L-functions in
a family F except a set of density 0.
The conjectures of Katz and Sarnak cover number fields and
function fields. Over function fields, we will see that Chowla’s
conjecture is not true (Li, 2018).

For a given family F , can we prove:

• Infinitely many χ ∈ F such that L(12 , χ) 6= 0?

• A positive density of χ ∈ F such that L(12 , χ) 6= 0?

• L(12 , χ) 6= 0 for all χ ∈ F except a set of density 0?

• L(12 , χ) 6= 0 for all χ ∈ F?
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Non-vanishing of quadratic Dirichlet L-functions

By Cauchy–Schwarz,

∑∗

χ2=χ0
cond(χ)≤X

L(12 , χ) ≤

 ∑∗

χ2=χ0
cond(χ)≤X

L
(
1
2 , χ
)2


1/2


∑∗

χ2=χ0
cond(χ)≤X
L( 1

2
,χ) 6=0

1



1/2

=⇒ N2(X ) ≥

 ∑∗

χ2=χ0
cond(χ)≤X

L
(
1
2 , χ
)


2

∑∗

χ2=χ0
cond(χ)≤X

L
(
1
2 , χ
)2

� (X logX )2

X log3 X
=

X

logX
.

using the first 2 moments.
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Non-vanishing of quadratic Dirichlet L-functions

Using the first 2 moments (an upper bound is sufficient for the
second moment), we get that

N2(X ) :=
∑∗

χ2=χ0
cond(χ)≤X
L( 1

2
,χ)6=0

1� X

logX
, where

∑∗

χ2=χ0
cond(χ)≤X

1 ∼ c2X

which is infinitely many, but not a positive density.
The moments grow too fast to get a positive density.

We need to use a mollifier to control the growth of the moments.
The idea of a mollifier goes back to Bohr and Landau (1914) to
study the zeroes of ζ(s). Selberg (1946) used it to show that a
positive proportion of the non-trivial zeroes of ζ(s) satisfy RH.
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Mollified moments and non-vanishing

For the moments, we want a mollifier M(χ) ≈ L(12 , χ)−1 such that∑∗

χ2=χ0
cond(χ)≤X

L(12 , χ)
k
M(χ)k ∼ ck X ,

compared to the non-mollified moments∑∗

χ2=χ0
cond(χ)≤X

L(12 , χ)
k ∼ a′kg

′
k X (logX )

k(k+1)
2 .

Soundararajan (2000) computed the first two mollified moments
and showed that L(12 , χ) 6= 0 for at least 87.5% of quadratic χ.

Under GRH, Ozluk and Snyder (1999) showed that L(12 , χ) 6= 0 for
at least 93.75% of quadratic χ, using the one-level density.
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Cubic Dirichlet characters
Let χ be a cubic character of modulus p

χ : (Z/pZ)∗ → {1, ω, ω2} ⊆ C∗, ω = e2πi/3,

with p ≡ 1mod 3.

For each prime p ≡ 1mod 3, we have the two cubic residue
symbols

χp(a) ≡ a(p−1)/3mod p, and the conjugate χp,

which extend by multiplicativity to all (primitive) cubic characters.

The functional equation for a primitive cubic character χ of
modulus q is

Λ(s, χ) =
τ(χ)
√
q

Λ(1− s, χ), where τ(χ) is the cubic Gauss sum.
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Moments for cubic characters

Conjecture:
∑∗

χ3=χ0
cond(χ)≤X

|L(12 , χ)|2k ∼ a′′k gk X (logX )k
2

∑∗

χ3=χ0
cond(χ)≤X

L(12 , χ)
` ∼ c`X .

The family of cubic characters has unitary symmetry.

• over Q (non-Kummer case): ` = 1 Baier & Young (2010)

• over Q(ω) (Kummer case, Hecke L-functions): ` = 1 Luo
(2004) and Diaconu (2004) for a thin subfamily of the cubic
characters (taking χπ and not χπ)

Moments and non-vanishing: Using Cauchy-Schwarz and bounding
the second moment, this gives infinitively many cubic χ such that
L(12 , χ) 6= 0 over Q and Q(ω).



Moments for cubic characters

Conjecture:
∑∗

χ3=χ0
cond(χ)≤X

|L(12 , χ)|2k ∼ a′′k gk X (logX )k
2

∑∗

χ3=χ0
cond(χ)≤X

L(12 , χ)
` ∼ c`X .

The family of cubic characters has unitary symmetry.

• over Q (non-Kummer case): ` = 1 Baier & Young (2010)

• over Q(ω) (Kummer case, Hecke L-functions): ` = 1 Luo
(2004) and Diaconu (2004) for a thin subfamily of the cubic
characters (taking χπ and not χπ)

Moments and non-vanishing: Using Cauchy-Schwarz and bounding
the second moment, this gives infinitively many cubic χ such that
L(12 , χ) 6= 0 over Q and Q(ω).



Moments for cubic characters

Conjecture:
∑∗

χ3=χ0
cond(χ)≤X

|L(12 , χ)|2k ∼ a′′k gk X (logX )k
2

∑∗

χ3=χ0
cond(χ)≤X

L(12 , χ)
` ∼ c`X .

The family of cubic characters has unitary symmetry.

• over Q (non-Kummer case): ` = 1 Baier & Young (2010)

• over Q(ω) (Kummer case, Hecke L-functions): ` = 1 Luo
(2004) and Diaconu (2004) for a thin subfamily of the cubic
characters (taking χπ and not χπ)

Moments and non-vanishing: Using Cauchy-Schwarz and bounding
the second moment, this gives infinitively many cubic χ such that
L(12 , χ) 6= 0 over Q and Q(ω).



Kummer, non-Kummer and the thin subfamily

The family of cubic characters is different depending if the ground
field contains the cube roots of unity (the Kummer case) or not
(the non-Kummer case).

#
{
χ/Q : χ3 = χ0, cond(χ) ≤ X

}
∼ aX

#
{
χ/Q[ω] : χ3 = χ0, N cond(χ) ≤ X

}
∼ bX logX

#
{
χ/Q[ω] : χ =

( ·
c

)
3
, c SF, N cond(χ) ≤ X

}
∼ cX

Over Q, there are 2 characters of conductor p for p ≡ 1mod 3.

Over Q[ω], there are 2 characters of conductor π for each prime π.

For the thin subfamily, there is 1 character of conductor π for each
prime π, picking χπ but not χπ.
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Number fields and Function fields

Let q power of a prime, Fq finite field with q elements.

Number Fields Function Fields

Q, Z ↔ Fq(T ), Fq[T ]

p positive prime ↔ P(T ) monic irreducible polynomial

|n| = |Z/nZ| = n ∈ N ↔ |F (T )| = |Fq[T ]/(F (T ))| = qdeg F

ζ(s) =
∞∑
n=1

1

ns
↔ ζq(s) =

∑
F∈Fq [T ]
F monic

1

|F |s

= (1− q1−s)−1

Riemann Hypothesis ??? ↔ Riemann Hypothesis !!!
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Moments of quadratic L-functions over function fields

Andrade and Keating (2014) conjectured∑∗

χ2=χ0
deg cond(χ)=d

L(12 , χ)
k ∼ ckg

′
k qd d

k(k+1)
2

and proved this for k = 1.

• Florea (2017, several papers): second order term for k = 1
and cases k = 2, 3, 4.

• Bui and Florea (2016): positive density of nonvanishing of
94% of the quadratic characters, using the one-level density.

• Li (2018): vanishing for � (qd)
1
3
−ε of the quadratic

characters with conductor of degree d .
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Cubic characters over Fq[T ]

• Kummer case q ≡ 1mod 3: There are 2 cubic characters of
conductor P for every prime P ∈ Fq[T ].

• Non-Kummer case q ≡ 2mod 3: There are 2 characters of
conductor P for every prime P of even degree P ∈ Fq[T ].

Then,

∑∗

χ3=χ0
deg cond(χ)=d

1 ∼

{
C1q

d q ≡ 2mod 3

C2dq
d q ≡ 1mod 3



First moments of cubic L-functions over function fields

Theorem (D., Florea, Lalin (2019))

Let q be an odd prime power such that q ≡ 2 (mod 3). Then∑∗

χ3=χ0
deg cond(χ)=d

L(12 , χ) = Cqd + O
(
qd( 7

8
+ε)
)
.

Theorem (D., Florea, Lalin (2019))

Let q be an odd prime power such that q ≡ 1 (mod 3). Then,∑∗

χ3=χ0
deg cond(χ)=d

L(12 , χ) = C1dq
d + C2q

d + O
(
qd(

1+
√
7

4
+ε)
)
.



Nonvanishing for cubic L-functions - Non Kummer case

• Bounding the second moment and using Cauchy-Schwartz
(DFL, 2019): nonvanishing for � (qd)1−ε.

• Ellenberg-Li-Shusterman (2020) using algebraic geometry
methods to prove nonvanishing for � qd/d1/2.

• The one-level density does not give a positive proportion of
non-vanishing in this case.

Theorem (D., Florea, Lalin (2020))

Let q be an odd prime power such that q ≡ 2 (mod 3).

#
{
χ3 = χ0, deg cond(χ) = d , L

(
1
2 , χ
)
6= 0
}∗≥ cqd ,

where c > 0 is an explicit constant.

This is the first result about a positive proportion for a cubic
family. It uses mollified moments.

The results would be the same over number fields, under GRH.



Nonvanishing for cubic L-functions - Non Kummer case

• Bounding the second moment and using Cauchy-Schwartz
(DFL, 2019): nonvanishing for � (qd)1−ε.

• Ellenberg-Li-Shusterman (2020) using algebraic geometry
methods to prove nonvanishing for � qd/d1/2.

• The one-level density does not give a positive proportion of
non-vanishing in this case.

Theorem (D., Florea, Lalin (2020))

Let q be an odd prime power such that q ≡ 2 (mod 3).

#
{
χ3 = χ0, deg cond(χ) = d , L

(
1
2 , χ
)
6= 0
}∗≥ cqd ,

where c > 0 is an explicit constant.

This is the first result about a positive proportion for a cubic
family. It uses mollified moments.

The results would be the same over number fields, under GRH.



Parenthesis: Nonvanishing for cubic (Kummer)

In the Kummer case, it is possible to find a a positive proportion of
non-vanishing inside inside the thin subfamily, using the one-level
density. This was done over number fields and then under GRH.

Theorem (D., Güloğlu (2020))

Assume GRH. Then

#
{
χ =

( ·
c

)
3
, c ∈ Q[ω], c SF,N (c) ≤ X , L

(
1
2 , χ
)
6= 0
}
≥ 2

13
X .

This is a positive proportion in the thin subfamily of cubic residue
symbols

( ·
c

)
3
, where c ∈ Z[ω] is square-free.



Technique of mollified moments (non-Kummer)
• We compute the first mollified moment, following the

techniques of DFL for the first moment:∑∗

χ3=χ0
deg cond(χ)=d

L(12 , χ)M(χ) ∼B1q
d ,

• We compute a sharp upper bound for the second mollified
moment, using the recent techniques of Soundararajan
(2000), Harper (2013) and Lester-Radziwill (2019):

∑∗

χ3=χ0
deg cond(χ)=d

|L(12 , χ)M(χ)|2 ≤B2q
d .

Then, by Cauchy–Schwarz,

#
{
χ3 = χ0, deg cond(χ) = d , L

(
1
2 , χ
)
6= 0
}∗ ≥ B2

1

B2
qd .
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The first mollified moment

M(χ) ≈
∑

deg h≤N

µ(h)w(h;N)χ(h)

|h|1/2
behaves “like L(12 , χ)−1”.

Reversing the sums, we first evaluate∑∗

χ3=χ0
deg cond(χ)=d

L(12 , χ) χ(h).

• Approximate functional equation for L(12 , χ) gives a principal
sum and a dual sum.
• The main term comes from the cubes in the principal sum.
• The non-cubes from the principal sum can be bounded by

Lindelöf.
• The dual sum contains Gauss sums, and averages of cubic

Gauss sums can be evaluated/bounded from the deep work of
Kubota and Patterson.
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Bounding the mollified second moment

We need to show that∑∗

χ3=χ0
deg cond(χ)=d

|L(12 , χ)M(χ)|2 ≤ B2q
d ,

which is a sharp bound for the second mollified moment.

• Soundararajan (2009): almost sharp bounds for all moments
of ζ(s), under RH: �k T (logT )k

2+ε.

• Harper (2013): sharp bounds for all moments of ζ(s), under
RH: �k T (logT )k

2
.

• Lester & Radziwi l l (2019): sharp bounds for all mollified
moments of quadratic twists of modular forms, under GRH.
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Bounding |L(1
2 , χ)|

Under GRH, we can bound log |L(12 , χ)| by an extremely short
Dirichlet polynomial. (Soundararajan (2009), adapted by Bui,
Florea, Keating, Roditty-Gershon (2019) to function fields):

log |L(12 , χ)| ≤
∑

deg(P)≤N

<(χ(P))a(P;N)

|P|
1
2

+
d

N
+ O(1),

where d = deg cond(χ).

Taking N ≈ θd for some θ small enough, we have

|L(12 , χ)|k ≤ ck exp

(
k

θ

)
exp

k
∑

degP≤θd

<(χ(P))a(P,N)

|P|
1
2

 .
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Bounding the exponential

We need to bound

exp

k
∑

degP≤N

<(χ(P))a(P,N)

|P|
1
2

 = exp (k<PN(χ)) ,

where

PN(χ) =
∑

degP≤N

χ(P)a(P,N)

|P|
1
2

.

Lester & Radziwi l l (2019): Use the bound

et ≤ (1 + e−`/2)
∑
s≤`

ts

s!

for t ≤ `/e2 and ` even.
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Bounding the mollified moment with the exponential

Using N = θd , we get the bound∑∗

χ3=χ0
deg cond(χ)=d

(<PN(χ))s |M(χ)|k � qddO(1)(C (log d)1/2θ)1/θ.

Taking N = d
log d , we get the bound

� qd

(log d)(log d)/2
� qd

d1000000000
.

But the short approximation is too short.

Following Lester & Radziwi l l (2019), we separate I = (0, θd ] in:

I0 = (0, dθ0], I1 = (dθ0, dθ1], . . . , IJ = (dθJ−1, dθJ ],

θj =
e j

(log d)1000
, θJ = θ, J ≈ log log d
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A positive proportion

Collecting the results from all the intervals, we get a sharp upper
bound of the type∑∗

χ3=χ0
deg cond(χ)=d

|L(12 , χ)M(χ)|2k ≤ ee
O(k)

qd .

Theorem (D., Florea, Lalin (2020))

Let q be an odd prime power such that q ≡ 2 (mod 3). Then

#
{
χ3 = χ0, deg cond(χ) = d , L(12 , χ) 6= 0

}∗
# {χ3 = χ0, deg cond(χ) = d}∗

≥ 0.47e−e
182
.
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