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Lefschetz theorem: topology

X sm q-proj var over C, πtop1 (X , x) top fund gr based at x ∈ X (C).

Theorem (Lefschetz)

∃ sm curve C → X, C 3 x, st πtop1 (C , x)� πtop1 (X , x).

given X ↪→ X̄ a good compactification, any ci of sm ample divisors in good position wrt X̄ \ X does it.

 same thm on πalg1 (X , x) pro-alg. completion: ∀V cplx loc syst, the
restriction V|C keeps the same monodromy.

C k alg. cl. of char. 0, πtop1 (X , x) π1(X , x) Grothendieck’s étale
fundamental gr  same thm (and tiny rmk).
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No Lefschetz /k of char. p > 0

No Lefschetz thm: eg X = A2, Artin-Schreier cover tp − t = f , f ∈ O(A2)
splits on curve C : f = 0. So @C with π1(C , x)� π1(X , x).
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Tameness: Kerz-Schmidt’s definition

Recall: R complete (or henselian) dvr, finite Galois ext R ⊂ S of such,
perfect res fields, Galois gr G , then G = ∃G0 ⊃ G1 ⊃ . . .G∃N≥1 = 0 with
G0/G1 ⊂ Frac(S)× cyclic of order prime to p, Gi/Gi+1 = fin pr of cyclic
gr of order p.

Definition

1) Sw (S/R) ≤ n iff N ≤ n + 1; Sw (S/R) = 0 iff S/R tame.
2) [Kerz-Schmidt] X/k sm, k perfect, Y → X fin étale is tame if ∀ sm
curve C → X , Y ×X C → C is tame .
3)  π1(X , x)� πt1(X , x) tame quotient.

• tame allows non-perfect res fields: res field ext should be sep and ram index prime to p

• if has good comp X ↪→ X̄ , defn agrees with Grothendieck’s defn: tame at the codim 1 points in X̄ \ X
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Tame Lefschetz /k of char. p > 0

Theorem (Drinfeld)

X/k sm quasi-proj, ∃C → X , x ∈ C sm curve st πt1(C , x)� πt1(X , x).

if X ↪→ X̄ good compactification, then any ci of sm ample divisors in good position wrt X̄ \ X does it (E-Kindler)
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Ramification in geometry: definition

Definition

Given X ↪→ X̄ normal comp /k perfect, D eff div supp in X̄ \ X , then
1) Y → X finite étale has ramification bounded by D if ∀C → X sm
curve, Sw (Y ×X C/C ) ≤ D ×X̄ C̄ ;
2) Q̄`- loc sys Vρ defined by ρ : π1(X , x)→ GLr (Z̄`) ⊂ GLr (Q̄`) has
ramification bounded by D iff Galois cover π : Xρ̄ → X defined by
ρ̄ : π1(X , x)→ GLr (F̄`) has ramification bounded by D (depends only on (ρ̄)ss).
3) π∗Vρ tame: say π tamifies ρ.
4) A sm curve C → X is a Lefschetz curve for a family S = {V} if V|C
keeps the same monodromy ∀V ∈ S.
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k = Fq finite field

Theorem (L. Lafforgue dim 1, Deligne in higher dim, cor Langlands corr)

X sm q-proj/k, then ∃ only finitely many Q̄`- simple loc sys V with (r ,D)
bounded, up to twist by a char. of k.

Analog of the Hermite-Minskowski thm: # field K , ∃ only fin many ext L/K of bounded deg and disc

Corollary

1) (r ,D) bounded, then ∃π : Y → X finite étale which tamifies all V with
(r ,D) bounded (‘covers’ from title).
2) Given (r ,D), ∃ Lefschetz curve for all V with bound (r ,D) (’curves’ from title).
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on Proof of Corollary

1) take cover π : X⊕finρ̄ → X

2)a) top gr th: π1(C , x)→ π1(X , x)� I ⊂ GLr (OE ) surj (E/Q` finite) iff
π1(C , x)→ π1(X , x)� Ī ⊂ GLr (OE/m

2
E ) surj (OE/m

4for ` = 2);

2)b) Hilbert irreducibility (or Bertini if we allow ext Fqm ⊃ Fq) ⇒ ∃C .
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How to bound the ramification if k = k̄?

The notion of ramification bounded by D is purely geometric, i.e. depends
only on cover (Y → X )k̄ or V|π1(Xk̄ ,x).

To 1) ‘covers’: /k = k̄, (r ,D) bounded, then @π : Y → X finite étale which
tamifies all simple V with (r ,D) bounded: given Sw, Witt-Artin-Schreier
covers with Galois gr Z/pn ∀n ≥ 1 with this Sw exist (Brylinski-Kato).

To 2) ‘curves’ (Deligne): /k = k̄, X , (r ,D), ∃ Lefschetz curve for all V with
bounded (r ,D)?
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To ’covers’: Tamifying up to codim 2

Definition (E-S)

π : Y → X finite connected tamifies V outside of codim 2 if there is a
normal compactification Y ↪→ Ȳ st π∗V is tame at codim 1 points of Ȳ .

Theorem (E-S)

X sm q-proj /k = k̄ , given (r ,D), ∃n ∈ N, ∀V with rank ≤ r and
ramification bounded by D, ∃πV : YV → X of deg ≤ n which tamifies V
up to codim 2.

For X  R, R complete dvr with res field k, (E-Kindler-S)
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On Proof of Thm

1) reduce to X affine; via X → Ad finite étale, reduce to

X = Ad ↪→ X̄ = Pd ;

2) prove local thm on k(Z )[[t]] using (E-K-S), Z = Pd \ Ad to produce a
finite étale extension of k(Z )((t)) tamifying V|k(Z)((t));
3) use Harbater-Katz-Gabber to extend to a finite étale cover of Gm/k(Z );
4) close it up to get the normal finite cover of Pd , then of X .
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To ‘curves’: rank 1 case

Theorem (Kerz-S.Saito if X ↪→ X̄ good compactification, E-S in general)

/k = k̄ , X ↪→ X̄ normal compactification, D, ∃ Lefschetz curve for (1,D).

On Proof.

1) reduce to Artin-Schreier;
2) {V} with (r ,D) ⊂ {W} with (r ,D ∩ X reg) (less curves to test).
3) use coh description (Kerz-S.Saito) on X reg and finiteness of Frobenius
invariant O-modules of local coh gr along X̄ \ X reg to prove: ∃N ≥ 1 so
{W} with (r ,D ∩ X reg) ⊂ {V} with (r ,ND).
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Application of classical Bertini theorem

Theorem (E-S)

∃K/k alg. cl. of purely tr. fin. gen. field /k, CK → X curve /K st
π1(CK , x)� π1(X , x).

It is an illustration of the fact that if C is not proper,
1) π1(C , x) does not satisfy base change;
2) there is no specialization map π1(C , x)→ π1(Ck , xk) for a
specialization K  k .
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