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Theorem (Hilbert, 1892). For each positive integer n,
there is a polynomial in Q[x] with associated Galois group
Sn, the symmetric group on n letters. For each positive
integer n, there is also a polynomial in Q[x] with associ-
ated Galois group A,,, the alternating group on n letters.

Idea: Find an irreducible polynomial F(z,y) € Q[z, y] for
which the Galois group of F(z,y) over Q(y) is S, (or A,).
Pick y = y* € Q so that F(z,y*) is irreducible over Q.
Then f(x) = F(z,y*) will have Galois group S,, (or A,)
over Q.

Theorem (Ibidem). If F(x,y) is irreducible in Q[z,y],
then there are infinitely many y* € Q such that f(x) =
F(z,y*) is irreducible in Q[z].

Hilbert’s Irreducibility Theorem. Let
SoUiIGROIN] fl(wla“- ,wraylv'”7ys),-"’fm(m1a‘- . 7$r’y17"‘7ys)
be irreducible polynomials in Q[x1,. .., Tr, Y1,...,Ys]. Then
there exists infinitely choices of rational numbers yj,...,y:
for which
.fl(mla-"amray’{""7y:)a""fm(ml’-"7:1:r’y;""ay:)
are irreducible in Q[x1,...,x,].

Hilbert’s Irreducibility Theorem. Let

fl(wla“-,wraylv'”7ys),-"’fm(wla'--7$r’y17"'7ys)
be irreducible polynomials in Q[xz1, ..., Tr, Y1,...,Ys]. Then
there exists infinitely choices of rational numbers yj,...,y:
for which
.fl(mla-"amray’{""7y:)a""fm(ml’-"7:1:r’y;""ay:)

are irreducible in Q[x1,

Comments and Improvements:

e Hilbert’s original proof was ineffective (not providing

a method for finding yj,...,y}).
® One can find such yj, ...,y in Z.
e The “good” (y},...,y%) € Z° have density 1 in Z°.
o There are arithmetic progressions P, ..., P; such that

if each y; € Pj, then (yj,...,y}) is good.

I A. Schinzel and U. Zannier, 1995

e If r = s = 1 (and m arbitrary), an explicit upper bound
can be given for positive integers y; in Z as above. With

d: = max {deg. f;}, dy= max. {deg, f;} and
H = max{20, H(f1),...,H(fm)} (H(f)= height of f),
y; <max { exp (36°), exp (2(6d,)*), m? exp (450(log H)*/¢
+ 11250d, + 45(d, + 1)*d, + 45d,(log H)*/)}.

Hilbert’s Irreducibility Theorem. Let
fl(wla“-,wraylv'”7ys),-"’fm(wla'--7$r’y17"'7ys)

be irreducible polynomials in Q[x1, ..., Zr, Y1,...,Ys]. Then

there exists infinitely choices of rational numbers yj,...,y:

for which
.fl(mla-"amray’{""7y:)a""fm(ml’-"7:1:r’y;""ay:)

are irreducible in Q[z1,...,x,].

o Wiles used Hilbert’s Irreducibility Theorem in his proof
of Fermat’s Last Theorem; it is now known that one can
replace its use with an application of Faltings’ theorem.
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Hilbert’s Irreducibility Theorem (roughly): An irreducible
polynomial in several variables can find infinitely many
specializations of some preselected variables so that the
resulting polynomial remains irreducible in the remaining
variables.

F(z,y) € Z[z,y], irreducible in Q[z, y] and deg,(F) > 1

Example. Let f(x) and g(xz) be relatively prime polyno-
mials in Z[z] with f(x)g(x) non-constant. Then taking
F(z,y) = f(x) + yg(x), we deduce there are infinitely
many integers k such that

f(@) + kg(z)

is irreducible over Q.
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Hilbert’s Irreducibility Theorem (roughly): An irreducible
polynomial in several variables can find infinitely many
specializations of some preselected variables so that the
resulting polynomial remains irreducible in the remaining
variables.

F(z,y) € Z[z,y], irreducible in Q[z, y] and deg,(F) > 1

Example. Let f(x) € Z[x], and suppose that for n € Z
with |n| sufficiently large, we have f(n) is a square. Then
f(z) = g(x)? for some g(x) € Z[x].

Proof. Let F(z,y) = 2 — f(y). Hilbert’s Irreducibility
Theorem implies F(z,y) is reducible. This implies f(y) is
a square in Z[y]. &
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F(z,y) € Z[z,y], irreducible in Q[z, y] and deg,(F) > 1

@%3}%%

Known: For almost all yo € Z, the polynomial F(x,yo) is
irreducible in Q[x].

Hyo € Z: |yo| <Y, F(w,yo) is reducible in Q[z]}| = o(Y)
Comment: More can be said based on Siegel’s Lemma. (In
fact, this work was motivated by a desire to find a simple
explanation for the above asymptotic based on Siegel’s
Lemma.)
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F(z,y) € Z[z,y], irreducible in Q[z, y] and deg,(F) > 1

Known: For almost all yo € Z, the polynomial F(x,yo) is
irreducible in Q[x].

Definition: A wuniversal Hilbert set is an infinite set S C
Z having the property that for every F(x,y) € Z[z,y]
which is irreducible in Q[x, y] and satisfies deg, (F) > 1, we
have that for all but finitely many yo € S, the polynomial
F(z,yo) is irreducible in Q[x].

e There are finitely many yo € S with F(z, yo) reducible.

e The set S is fixed - independent of F(x,y) € Z[z, y].

K
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F(z,y) € Z[z,y], irreducible in Q[z,y] and deg,(F) > 1

Definition: A wuniversal Hilbert set is an infinite set S C
Z having the property that for every F(xz,y) € Z[z,y]
which is irreducible in Q[z, y] and satisfies deg, (F) > 1, we
have that for all but finitely many yo € S, the polynomial
F(z,yo) is irreducible in Q[z].

e There are finitely many yo € S with F(x, yo) reducible.
e The set S is fixed - independent of F(z,y) € Z[z, y].

Comment: The example F(x,y) = z? — y shows that Z
is not a universal Hilbert set. In fact, it shows that any
universal Hilbert set can contain at most finitely many
squares (and, similarly, k" powers).

(e

F(z,y) € Z[z,y], irreducible in Q[z,y] and deg,(F) > 1

Definition: A wniversal Hilbert set is an infinite set S C
Z having the property that for every F(x,y) € Z[z,y]
which is irreducible in Q[x, y] and satisfies deg,(F) > 1, we
have that for all but finitely many yy, € S, the polynomial
F(z,yo) is irreducible in Q[x].

The existence of universal Hilbert sets was first shown in

P. C. Gilmore and A. Robinson, Metamathematical
considerations on the relative irreducibility of poly-
nomials, Canad. J. Math., 7 (1955), 483—-489.

(e

F(z,y) € Z[z,y], irreducible in Q[z,y] and deg,(F) > 1

Definition: A wniversal Hilbert set is an infinite set S C
Z having the property that for every F(x,y) € Z[z,y]
which is irreducible in Q[x, y] and satisfies deg, (F) > 1, we
have that for all but finitely many yo, € S, the polynomial
F(z,yo) is irreducible in Q[x].

First example given was

5 = {| exp (/ioglogn )| +nt 2

V. G. Sprindzuk, Diophantine equations involving
unknown prime numbers, Trudy Math. Inst. Steklov
158 (1981), 180-196; English transl. in Proc. Steklov
Inst. Math. 1983, Issue 4, 197-214.

:nEZ,nZS}.




F(z,y) € Z[z,y], irreducible in Q[z,y] and deg,(F) > 1

Definition: A wuniversal Hilbert set is an infinite set & C
Z having the property that for every F(xz,y) € Z[z,y]
which is irreducible in Q[z, y] and satisfies deg, (F) > 1, we
have that for all but finitely many yo € S, the polynomial
F(z,yo) is irreducible in Q[x].

8 = {| exp (/loglogn)]| +nl2”ine Z,n > 3}.
Other Examples of S:

{2" + 3" : n € N} (Corvaja and Zannier, 1998)
{2" +n:n € N} (Débes and Zannier, 1998)

{lloglog |n|| +n3:n € Z,|n| > 3} (Bilu, 1996)

{p= H pi:n € Zyn > 3} (Zannier, 1996)
p;<loglogn

F(z,y) € Z[z,y], irreducible in Q[z,y] and deg,(F) > 1

Definition: A wniversal Hilbert set is an infinite set & C
Z having the property that for every F(xz,y) € Z[z,y]
which is irreducible in Q[z, y] and satisfies deg, (F) > 1, we
have that for all but finitely many yo € S, the polynomial
F(x,yo) is irreducible in Q[z].

{2" +3":n € N} (Corvaja and Zannier, 1998)
{2" + n:n € N} (Débes and Zannier, 1998)

{lloglog |n|| +n®:n € Z,|n| > 3} (Bilu, 1996)

{rn I

p;<loglogn

pi:n € Z,n > 3} (Zannier, 1996)

Comment: The papers by Bilu and by Débes and Zannier
further show that there exist universal Hilbert sets with
asymptotic density 1 in the integers (without giving an
explicit example of such a set).

F(z,y) € Z[z,y], irreducible in Q[z, y] and deg,(F) > 1

Definition: A wniversal Hilbert set is an infinite set S C
Z having the property that for every F(xz,y) € Z[z,y]
which is irreducible in Q[z, y] and satisfies deg, (F) > 1, we
have that for all but finitely many yo € S, the polynomial
F(x,yo) is irreducible in Q[x].

Comment: The papers by Bilu and by Débes and Zannier
further show that there exist universal Hilbert sets with
asymptotic density 1 in the integers (without giving an
explicit example of such a set).

Main Result (with R. Wilcox): There exists an explicit
universal Hilbert set S C Z for which

X
Z: S <X —_—
[m €2 :m & 8, ml < X} < oo

as X — oo, where

d=1-—(1+loglog2)/(log2) = 0.086071....
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Example. Let f(z,y) =z*+ (y+8)r—y*—y. Then
f(z,yo) is irreducible in Z[z] for yo € Z if and only if
yo & {—96,—39,—3,—1,0,3,7,32,105}.

Let g(xz) € Z[z] be an irreducible factor of f(xz,yo) of
smallest positive degree. We are interested in knowing
for what yo € Z, we have degg € {1, 2}.

Case 1. g(z) =z —a

Case 2. g(z) =x*+azx + b

[f(z,y) =2+ (y+8)z—y*—y

Case 1. g(z) =z —a
y¥+(1—a)y—a*—8a=0
(1 —a)®>+4a* +32a = 4a* + a* + 30a + 1
w? = 4a*+ a* +30a + 1

Comment. The above is an equation for an elliptic curve
and will have finitely many integer points on it. Software
packages can be used to find the integer points, but some
caution is needed. For example, Sage currently provides
a method for one to find the integer points on an elliptic
curve given in Weierstrass form, so we can express the
elliptic curve in Weierstrass form. But integer points on
the curve above may now correspond to rational points on
the elliptic curve in Weierstrass form.

[f(z,y) =2+ (y+8)z—y*—y

Case 1. g(z) =z —a
¥+(1—-a)y—a*—8a=0
(1 — a)® + 4a* + 32a = 4a* + a®> 4+ 30a + 1
(4w)? = 64a” + 16a* 4+ 480a + 16 = (8a® 4 1)> 4 480a + 15
a€Z = 480a+15#0
If 480a + 15 > 0, then
64a* + 16a* + 480a + 16 = (4w)? > 64a* + 64a® + 16,

so 0 < a < 10.
—-6<a<10

If 480a + 15 < 0, then
64a"4+16a?4+480a+16 = (4w)? < (8a’—4)? = 64a'—64a+16,
so —6 <a<0.




[f(z,y) =2+ (y+8)z—y*—y

Case l. g(z) =z —a
¥+(1—-a)y—a*—8a=0
(1 — a)® + 4a* + 32a = 4a* + a®> 4+ 30a + 1
(4w)? = 64a” + 16a* 4+ 480a + 16 = (8a® 4 1)> 4 480a + 15
a €7 = 480a+15#0

—6<a<10

y € {—96,—39,—3,—1,0,3,32,105}

For y = 105, the quartic z* + (y + 8) ¢ — y? — y becomes
z* + (105 + 8) x — 1052 — 105 = z* 4+ 113z — 11130
= (z — 10) (* + 102* 4+ 100z + 1113).

45 SOUTH(AROLINA.

[f(z,y) = '+ (y + 8)z — y* — y|

Case 2. g(z) = 2+ ax+b
“f(x)” divided by g(x) gives a remainder of
(—a3+2ab+y+8)x—a2b+b2—y2—y
—a3+2ab+y+8=0 and —a2b+b2—y2—y=0

Viewing a and y as fixed,

the two equations have a common root in b.

Res(—a3+2ab+y+8,—a2b+b2—yz—y,b) =0

45 SOUTH(AROLINA.

[f(z,y) = '+ (y + 8) — y* — y|

Case 2. g(z) =z +ax +b
(—a®+2ab+y+8)z—a®b+b—y*—y
—a®+2ab4+y+8=0 and —a’b4+b>—y> —y=0
Res(—a® +2ab+y +8,—a*b+b* — 3> —y,b) = 0
—a%—4a*y* —4a’y +y*+16y+64=0

Siegel’s Theorem

[f(z,y) =a'+ (y+8)z -y’ —y

Case 2. g(z) =z +azx+b
—a®4+2ab+y+8=0 and —a’b+b -y —y=0
Res(—a3+2ab+y+8,—a2b+b2—yg—y,b) =0
—a® —4a%y? —4a’y+y>  +16y+64=0
w? = —16a® + 4a® + 16 a* + 896 a®
= —4 (a—2) (a+2) (4a* + 15a® + 56) a?
a€{-2,-1,0,1,2}
y € {-3,0,7}

y=7+— z*+ 152 —56= (2 +x —7) (z* —xz +8)

[f(z,y) =a'+ (y+8)z -y’ —y

Case l. g(x) =z —a

y € {—96,—39,—3,—1,0,3,32,105}

Case 2. g(x) = 2+ ax+b

y € {-3,0,7}

Example. Let f(z,y) = z* + (y + 8)z — y> — y. Then
f(z,yo) is irreducible in Z[z] for yo € Z if and only if
yo & {—96,—39,—3,—1,0,3,7,32,105}.

Main Result (with R. Wilcox): There exists an explicit
universal Hilbert set S C Z for which

{meZ:mg8,ml <X} <
m :m ,Im| < (log X)?

as X — oo, where

d=1-—(1+loglog2)/(log2) = 0.086071....

Comments: There are 461845 elements of S up to 10°.
Although the expression X/(log X)® on the right of is
o(X) as X — oo, it is > X/2 for 1 < X < 10'3%,

What’s §? (Warning: It is not aesthetically pleasing.)

Where is 6 coming from?




Main Result (with R. Wilcox): There exists an explicit
universal Hilbert set S C Z for which

{meZ:mg8,ml <X} <
m :m ,Im| < (log X7

as X — oo, where

d=1-—(1+loglog2)/(log2) = 0.086071....

What’s §? (Warning: It is not aesthetically pleasing.)

For integers j > 3, k > 2, £ and ¢ with £ # 0, set
Y (4, k, £, £) = {m €7Z: |m| € (27,2 and |[fm + £

2i/k )
has no divisor in { ———, 2i/k loglogj| ¢-
loglog j

What’s §? (Warning: It is not aesthetically pleasing.)

For integers j > 3, k > 2, £ and ¢ with £ # 0, set

Y (j,k,£,€) = {m €Z: |m| € (2¢,297"] and |fm + £

2i/k .
-, 207k loglogj} }

has no divisor in <7
log log j

For j > 3, let
M (j) = max{2,logloglogj}.

s=U N N

=3 2Sk<SM(j) —M(G)<SLSM(G) —M(G)<E<M(5)
£#0

Y,k 6, 2).

<.

Y (4, k. £, £) = {m €Z: |m| € (29,271 ] and |[ém + ¢/|

2i/k

has no divisor in ( ,2//%log log ]:| }

log log j
M (j) = max{2,logloglogj}

s={ N N

J=3 2<k<M(j) —M()<ESM(j) —M(§)<U<M(G)
£#£0

Y (4,k, ¢, )

Main Result (with R. Wilcox): There exists an explicit
universal Hilbert set S C Z for which

{meZ:mg8,ml <X} <
m tm ,m| < (log X)?

as X — oo, where

d=1—(1+loglog2)/(log2) = 0.086071....

Where is 6 coming from?

Theorem (Ford, 2008). Let x, y and z be real numbers
with z > 10%, 100 < y < vz, 2y < 2 < y? and z < =.
Set H(z,y, z) to be the number of positive integers n < x
for which some divisor d of n satisfies d € (y, z]. Set

log z
u = -1,
logy
and let § = 1—(1+1loglog2)/(log2) = 0.086071.... Then
H(z,y,z2) —3/2

- = u‘;(log(Z/u))

X
Z: S <X —
[m € 2:m & 8,ml < X)| < o

Where is 6 coming from?

Theorem (Ford, 2008). Let x, y and z be real numbers
with z > 10%, 100 < y < vz, 2y < 2 < y? and z < =x.
Set H(z,y, z) to be the number of positive integers n < x
for which some divisor d of n satisfies d € (y, z]. Set

log z
u = -1,
logy
and let § = 1—(1+1loglog2)/(log2) = 0.086071.... Then
H(z,y,z2) —3/2

- = u‘;(log(Z/u))

Another important ingredient we use is Siegel’s Lemma.

Siegel’s Lemma (Siegel, 1929). Let f(z,y) be in Z[z,y]
with f(x,y) irreducible in Clz,y]. If there are infinitely
many points (xo,yo) € Z2 such that f(xo,yo) = 0, then
there exist polynomials u;(t) and v;(t) in Z[t] for j €
{1, 2} satisfying both of the following:

(i) For all but finitely many (z',y’) € C? with f(z',y’) =
0, the equations ' = uy(t)/vi(t) and y' = ua(t)/va(t)
hold for some t € C.

(ii) For all but finitely many (x',y’) € Q? and t € C such
that ' = uy(t)/vi(t) and y' = wua(t)/v2(t), we have
t e Q.




| F(z,y) € Z[z,y] irreducible in Q[z,y], deg F, =n > 2 |

Idea: For k € [1,n/2] N Z, show there are only finitely
many yo € S for which the polynomial F(z,y,) has a
factor of degree k in Z[z]. We assume F(z,y) is monic as
a polynomial in  here. Suppose yp € Z such that F(z, yo)
is divisible by
H(x) = a4+ hy_12* 1 4+ -« + hox? + hyz + hy,
for some h; € Z. Divide F(x,y) by H(x) as a polynomial
in  to obtain a remainder
R(z) = R L e, e R P Ty e

rj = 7j(hos. ., hi—1,y) € Z[ho, .. ., hr—1,y], 0 < j < k—1
‘We deduce that for yo € Z, the following are equivalent:

e F(x,yo) has a factor of degree k in Z[z].

e Jk-tuple (h},...,h;_;) € ZF with ri(hgy ...

0 for every j € {0,1,...,k —1}.

) h]:,p yO) =

| F(z,y) € Z[z,y] irreducible in Q[z,y], deg F, =n > 2

H(z) = a4+ hy_12* 1 4 - -« 4 haz® + hyz + hy,
for some h; € Z. Divide F(z,y) by H(x) as a polynomial
in x to obtain a remainder
R(z) = 12 P b rp oz 2 oo x4 .
T = Tj(hOa'-"hk—hy) € Z[hoa'-'ahk—l,yL 0<j<k-1
‘We deduce that for yo € Z, the following are equivalent:
e F'(x,yo) has a factor of degree k in Z[z].

e I k-tuple (hy,...,h;_;) € 7ZF with ri(hgy. .-
0 for every j € {0,1,...,k —1}.
We want the latter holds for only finitely many yo € S.
To do this, we show that the variety

9 h;é—l, yﬂ) =

V(T‘Q, Tlgeeey rk_l)

over C intersected with ZF*! has finitely many elements
with y component in S.

| F(z,y) € Z[z,y] irreducible in Q[z,y], deg F, =n > 2 |

e Jk-tuple (h,...,h}_,) € Z* with r;(hg,. ..
0 for every j € {0,1,...,k — 1}.
We want the latter holds for only finitely many yo € S.
To do this, we show that the variety

9 h;;_l’ yO) =

V(T‘Q, Tlyeeoos T'k,l)
over C intersected with Z*t! has finitely many elements
with y component in S.

Idea: If this were a linear system of k equations in k + 1
unknowns, then typically we would expect to be able to
solve for each variable h; in say y. For non-linear systems,
using resultants, one can instead reduce our problem, for
each j, to a polynomial in h; and y equal to 0. This is a
curve then in h; and y and we can hope to apply Siegel’s
Lemma. The main problem is to show that when Siegel’s
Lemma does not apply directly, with some other ideas,
one can still get what one wants.

(e

The Genus 0 Case
Lemma 1. Let f(x) and g(x) be in Z[x] with

ged(f,g) =1 max{deg f,deg g} > 2.

Let S be the same mess as before. Let Y be the set of
y € Z for which f(x)+ yg(x) has a linear factor in Z[x].
Then Y NS is finite. Furthermore, if deg f > degg > 1,
then Y is finite.

and

Lemma 2. Let f(x,y) be in Z[x, y] with f(x,y) irreducible
in Clz,y|. Let S be the same mess as before. Let )’ be
the set of yo € Z such that f(xzo,yo) = 0 for some x, € Z.
Then there is a rational function h(y) € Q(y) such that
for all but finitely many yo € Y’ NS, the only integer x,
satisfying f(xo,yo) = 0 is o = h(yo). Furthermore, in
the case that Y' NS is an infinite set, for all but finitely
many yo € C, if f(zo,y0) = 0 for some xy € C, then
g = h(yo)

(e

Theorem (R. Wilcox, F.) Let S be as before.
variety

Let the
V=V (ro,T1,...yTk—1),
with
T = rj(h(h ey hk—h y) € Z[h07 ey hk—la y]7

over the complex numbers have the property that for each

yo € C, there are finitely many points (hy,...,h;_|) €
Ck such that (hg,...,h}_,,y0) € V. Suppose that there
are infinitely many points (h%,...,h}_,,yo) in V N ZFH

with yo € S. Then there exist ﬁt(y) € Qy) fort €
{0,1,...,k — 1} such that the set of

(ilo(yo), cee flk—1(yo), Yo) EV N (Zk X S)

is an infinite set.

(e

[%e End




