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Example. Let f(x) 2 Z[x], and suppose that for n 2 Z
with |n| su�ciently large, we have f(n) is a square. Then
f(x) = g(x)2 for some g(x) 2 Z[x].

Proof. Let F (x, y) = x2 � f(y). Hilbert’s Irreducibility
Theorem implies F (x, y) is reducible. This implies f(y) is
a square in Z[y]. ⌅

Example. Let f(x, y) = x4 + (y + 8)x � y2 � y. Then
f(x, y0) is irreducible in Z[x] for y0 2 Z if and only if
y0 62 {�96,�39,�3,�1, 0, 3, 7, 32, 105}.

Theorem (Hilbert, 1892). For each positive integer n,
there is a polynomial in Q[x] with associated Galois group
Sn, the symmetric group on n letters. For each positive
integer n, there is also a polynomial in Q[x] with associ-
ated Galois group An, the alternating group on n letters.

Idea: Find an irreducible polynomial F (x, y) � Q[x, y] for
which the Galois group of F (x, y) over Q[y] is Sn (or An).
Pick y = y0 � Q so that F (x, y0) is irreducible over Q.
Then f(x) = F (x, y0) will have Galois group Sn (or An)
over Q.

Theorem (Ibidem). If F (x, y) is irreducible in Q[x, y],
then there are infinitely many y0 � Q such that f(x) =
F (x, y0) is irreducible in Q[x].
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Comments and Improvements:

• Hilbert’s original proof was ine�ective (not providing
a method for finding y�

1, . . . , y�
s).

• One can find such y�
1, . . . , y�

s in Z.

• The “good” (y�
1, . . . , y�

s) ⇤ Zs have density 1 in Zs.

• There are arithmetic progressions P1, . . . , Ps such that
if each y�

j ⇤ Pj, then (y�
1, . . . , y�

s) is good.

• If r = s = 1 (and m arbitrary), an explicit upper bound
can be given for positive integers y�

1 in Z as above. Let

dx = max
1⇥j⇥m

{degx fj}, dy = max
1⇥j⇥m

{degy fj},

H = max{20, H(f1), . . . , H(fm)} (H(f)= height of f).

A result of Schinzel and Zannier (1995) gives
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�
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⇥
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�
2(6dy)

5
⇥
,

m9 exp
�
450(log H)5/6 + 11250d5

y

+ 45(dy + 1)2dx + 45dx(log H)2/5
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.

• Wiles used Hilbert’s Irreducibility Theorem in his proof
of Fermat’s Last Theorem; it is now known that one can
replace its use with an application of Faltings’ theorem.
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Hilbert’s Irreducibility Theorem (roughly): An irreducible

polynomial in several variables can find infinitely many

specializations of some preselected variables so that the

resulting polynomial remains irreducible in the remaining

variables.

Example. Let f(x) and g(x) be relatively prime polyno-

mials in Z[x] with f(x) g(x) non-constant. Then taking

F (x, y) = f(x) + y g(x), we deduce there are infinitely

many integers k such that

f(x) + k g(x)

is irreducible over Q.

F (x, y) 2 Z[x, y], irreducible in Q[x, y] and degx(F ) � 1

Known: For almost all y0 2 Z, the polynomial F (x, y0) is

irreducible in Q[x].

|{y0 2 Z : |y0|  Y, F (x, y0) is reducible in Q[x]}| = o(Y )

Comment: More can be said based on Siegel’s Lemma. (In

fact, this work was motivated by a desire to find a simple

explanation for the above asymptotic based on Siegel’s

Lemma.)
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su�ciently large, we have f(n) is a square. Then f(x) =
g(x)2 for some g(x) 2 Z[x].
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Definition: A universal Hilbert set is an infinite set S ✓
Z having the property that for every F (x, y) 2 Z[x, y]
which is irreducible in Q[x, y] and satisfies degx(F ) � 1, we

have that for all but finitely many y0 2 S, the polynomial

F (x, y0) is irreducible in Q[x].

Note:

• There are finitely many y0 2 S with F (x, y0) reducible.

• The set S is fixed - independent of F (x, y) 2 Z[x, y].

Examples:

{2n
+ n : n 2 N} (Dèbes and Zannier, 1998)

{2n
+ 3

n
: n 2 N} (Corvaja and Zannier, 1998)

{blog log |n|c + n
3
: n 2 Z, |n| � 3} (Bilu, 1996)

{pn

Y

pilog logn

pi : n 2 Z, n � 3} (Zannier, 1996)

Comment: The papers by Bilu and by Dèbes and Zannier

further show that there exist universal Hilbert sets with

asymptotic density 1 in the integers (without giving an

explicit example of such a set).
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further show that there exist universal Hilbert sets with

asymptotic density 1 in the integers (without giving an

explicit example of such a set).

Definition: A universal Hilbert set is an infinite set S ✓
Z having the property that for every F (x, y) 2 Z[x, y]
which is irreducible in Q[x, y] and satisfies degx(F ) � 1, we

have that for all but finitely many y0 2 S, the polynomial

F (x, y0) is irreducible in Q[x].

Note:

• There are finitely many y0 2 S with F (x, y0) reducible.

• The set S is fixed - independent of F (x, y) 2 Z[x, y].

Examples:

{2n
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University of South Carolina
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Historical SERMON Remark: Almost
exactly 10 years ago we saw the passing
of the founder of SERMON, a UNCG
faculty member, Theresa Vaughan. The
UNCG Math Department, through her,
hosted the first 3 SERMON meetings in
1988, 1989 and 1990.

Comment: The example F (x, y) = x
2 � y shows that Z

is not a universal Hilbert set. In fact, it shows that any
universal Hilbert set can contain at most finitely many
squares (and, similarly, kth powers).
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{2n + n : n 2 N} (Dèbes and Zannier, 1998)

{2n + 3n : n 2 N} (Corvaja and Zannier, 1998)

{blog log |n|c + n
3 : n 2 Z, |n| � 3} (Bilu, 1996)

{pn

Y

pilog logn

pi : n 2 Z, n � 3} (Zannier, 1996)

Comment: The papers by Bilu and by Dèbes and Zannier
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Comment: More can be said based on Siegel’s Lemma. (In

fact, this work was motivated by a desire to find a simple

explanation for the above asymptotic based on Siegel’s

Lemma.)

Definition: A universal Hilbert set is an infinite set S ✓
Z having the property that for every F (x, y) 2 Z[x, y]
which is irreducible in Q[x, y] and satisfies degx(F ) � 1, we

have that for all but finitely many y0 2 S, the polynomial

F (x, y0) is irreducible in Q[x].

Note:

• There are finitely many y0 2 S with F (x, y0) reducible.

• The set S is fixed - independent of F (x, y) 2 Z[x, y].

Examples:

{2n
+ n : n 2 N} (Dèbes and Zannier, 1998)

{2n
+ 3

n
: n 2 N} (Corvaja and Zannier, 1998)

{blog log |n|c + n
3
: n 2 Z, |n| � 3} (Bilu, 1996)

{pn

Y

pilog logn

pi : n 2 Z, n � 3} (Zannier, 1996)

Comment: The papers by Bilu and by Dèbes and Zannier

further show that there exist universal Hilbert sets with

asymptotic density 1 in the integers (without giving an

explicit example of such a set).

Definition: A universal Hilbert set is an infinite set S ✓
Z having the property that for every F (x, y) 2 Z[x, y]
which is irreducible in Q[x, y] and satisfies degx(F ) � 1, we
have that for all but finitely many y0 2 S, the polynomial
F (x, y0) is irreducible in Q[x].

Note:

• There are finitely many y0 2 S with F (x, y0) reducible.

• The set S is fixed - independent of F (x, y) 2 Z[x, y].

Other Examples of S:

{2n + n : n 2 N} (Dèbes and Zannier, 1998)

{2n + 3n : n 2 N} (Corvaja and Zannier, 1998)

{blog log |n|c + n
3 : n 2 Z, |n| � 3} (Bilu, 1996)

{pn

Y

pilog logn

pi : n 2 Z, n � 3} (Zannier, 1996)

Comment: The papers by Bilu and by Dèbes and Zannier
further show that there exist universal Hilbert sets with
asymptotic density 1 in the integers (without giving an
explicit example of such a set).

Main Result (with R. Wilcox): There exists an explicit
universal Hilbert set S ⇢ Z for which

|{m 2 Z : m 62 S, |m|  X}| ⌧
X

(logX)�

as X ! 1, where

� = 1 � (1 + log log 2)/(log 2) = 0.086071 . . . .

Comments: There are 461845 elements of S up to 106.
Although the expression X/(logX)� on the right of is
o(X) as X ! 1, it is > X/2 for 1 < X  101365.

What’s S ? (Warning: It is not aesthetically pleasing.)

Where is � coming from?

On a dense universal Hilbert set

Michael Filaseta

University of South Carolina

joint work with Robert Wilcox

Example. Let f(x) 2 Z[x], and suppose that for n 2 Z
su�ciently large, we have f(n) is a square. Then f(x) =
g(x)2 for some g(x) 2 Z[x].

Proof. Let F (x, y) = x2 � f(y). Hilbert’s Irreducibility
Theorem implies F (x, y) is reducible. This implies f(y) is
a square in Z[y]. ⌅

Example. Let f(x, y) = x4 + (y + 8)x � y2 � y. Then
f(x, y0) is irreducible in Z[x] for y0 2 Z if and only if
y0 62 {�96,�39,�3,�1, 0, 3, 7, 32, 105}.

Let g(x) 2 Z[x] be an irreducible factor of f(x, y0) of
smallest positive degree. We are interested in knowing
for what y0 2 Z, we have deg g 2 {1, 2}.

Let g(x) 2 Z[x] be an irreducible factor of f(x) of smallest

positive degree. We are interested in knowing for what

y 2 Z, we have deg g 2 {1, 2}.

Case 1. g(x) = x � a

Case 2. g(x) = x2
+ ax + b

Let g(x) 2 Z[x] be an irreducible factor of f(x) of smallest

positive degree. We are interested in knowing for what

y 2 Z, we have deg g 2 {1, 2}.

Case 1. g(x) = x � a

Case 2. g(x) = x2
+ ax + b

Hilbert’s Irreducibility Theorem. Let

f1(x1, . . . , xr, y1, . . . , ys), . . . , fm(x1, . . . , xr, y1, . . . , ys)

be irreducible polynomials in Q[x1, . . . , xr, y1, . . . , ys] with

r � 1 and s � 1. Then there exists infinitely choices of

rational numbers y⇤
1
, . . . , y⇤

s for which

f1(x1, . . . , xr, y
⇤
1
, . . . , y⇤

s), . . . , fm(x1, . . . , xr, y
⇤
1
, . . . , y⇤

s)

are irreducible in Q[x1, . . . , xr].

Theorem. Let f(x, y) 2 Z[x, y] be irreducible in Q[x, y].
Then for almost all t 2 Z, the polynomial f(x, t) is irre-

ducible in Q[x].

Siegel’s Theorem. Let f(x, y) 2 Q[x, y] be irreducible. If

the genus of the plane curve f(x, y) = 0 is at least 1,

then f(x, y) = 0 has at most finitely many solutions in

x, y 2 Z.

Today’s Goal: Let f(x, y) = x4
+ (y + 8)x� y2 � y. Then

f(x, y0) is irreducible in Z[x] for y0 2 Z if and only if

y0 62 {�96,�39,�3,�1, 0, 3, 7, 32, 105}.

Let g(x) 2 Z[x] be an irreducible factor of f(x) of smallest

positive degree. We are interested in knowing for what

y 2 Z, we have deg g 2 {1, 2}.

Case 1. g(x) = x � a

Case 2. g(x) = x2
+ ax + b

Hilbert’s Irreducibility Theorem. Let

f1(x1, . . . , xr, y1, . . . , ys), . . . , fm(x1, . . . , xr, y1, . . . , ys)

be irreducible polynomials in Q[x1, . . . , xr, y1, . . . , ys] with

r � 1 and s � 1. Then there exists infinitely choices of

rational numbers y⇤
1
, . . . , y⇤

s for which

f1(x1, . . . , xr, y
⇤
1
, . . . , y⇤

s), . . . , fm(x1, . . . , xr, y
⇤
1
, . . . , y⇤

s)

are irreducible in Q[x1, . . . , xr].

Theorem. Let f(x, y) 2 Z[x, y] be irreducible in Q[x, y].
Then for almost all t 2 Z, the polynomial f(x, t) is irre-

ducible in Q[x].

Siegel’s Theorem. Let f(x, y) 2 Q[x, y] be irreducible. If

the genus of the plane curve f(x, y) = 0 is at least 1,

then f(x, y) = 0 has at most finitely many solutions in

x, y 2 Z.

Today’s Goal: Let f(x, y) = x4
+ (y + 8)x� y2 � y. Then

f(x, y0) is irreducible in Z[x] for y0 2 Z if and only if

y0 62 {�96,�39,�3,�1, 0, 3, 7, 32, 105}.

y2
+ (1 � a)y � a4 � 8a = 0

(1 � a)2 + 4a4
+ 32a = 4a4

+ a2
+ 30a + 1

w2
= 4a4

+ a2
+ 30a + 1

v2
= �d3

+
49 d

3
+

96914

27

d = �
a2

+ 90 a � 6w + 6

3a2

v = �
2
�
a2 � 15 aw + 45 a � 2w + 2

�

a3

y2
+ (1 � a)y � a4 � 8a = 0

(1 � a)2 + 4a4
+ 32a = 4a4

+ a2
+ 30a + 1

w2
= 4a4

+ a2
+ 30a + 1

v2
= �d3

+
49 d

3
+

96914

27

d = �
a2

+ 90 a � 6w + 6

3a2

v = �
2
�
a2 � 15 aw + 45 a � 2w + 2

�

a3

y2
+ (1 � a)y � a4 � 8a = 0

(1 � a)2 + 4a4
+ 32a = 4a4

+ a2
+ 30a + 1

w2
= 4a4

+ a2
+ 30a + 1

v2
= �d3

+
49 d

3
+

96914

27

d = �
a2

+ 90 a � 6w + 6

3a2

v = �
2
�
a2 � 15 aw + 45 a � 2w + 2

�

a3

Let g(x) 2 Z[x] be an irreducible factor of f(x, y0) of
smallest positive degree. We are interested in knowing
for what y0 2 Z, we have deg g 2 {1, 2}.

Comment. The above is an equation for an elliptic curve
and will have finitely many integer points on it. Software
packages can be used to find the integer points, but some
caution is needed. For example, Sage currently provides
a method for one to find the integer points on an elliptic
curve given in Weierstrass form, so we can express the
elliptic curve in Weierstrass form. But integer points on
the curve above may now correspond to rational points on
the elliptic curve in Weierstrass form.

Let g(x) 2 Z[x] be an irreducible factor of f(x) of smallest

positive degree. We are interested in knowing for what

y 2 Z, we have deg g 2 {1, 2}.

Case 1. g(x) = x � a

Case 2. g(x) = x2
+ ax + b

Hilbert’s Irreducibility Theorem. Let

f1(x1, . . . , xr, y1, . . . , ys), . . . , fm(x1, . . . , xr, y1, . . . , ys)

be irreducible polynomials in Q[x1, . . . , xr, y1, . . . , ys] with

r � 1 and s � 1. Then there exists infinitely choices of

rational numbers y⇤
1
, . . . , y⇤

s for which

f1(x1, . . . , xr, y
⇤
1
, . . . , y⇤

s), . . . , fm(x1, . . . , xr, y
⇤
1
, . . . , y⇤

s)

are irreducible in Q[x1, . . . , xr].

Theorem. Let f(x, y) 2 Z[x, y] be irreducible in Q[x, y].
Then for almost all t 2 Z, the polynomial f(x, t) is irre-

ducible in Q[x].

Siegel’s Theorem. Let f(x, y) 2 Q[x, y] be irreducible. If

the genus of the plane curve f(x, y) = 0 is at least 1,

then f(x, y) = 0 has at most finitely many solutions in

x, y 2 Z.

Today’s Goal: Let f(x, y) = x4
+ (y + 8)x� y2 � y. Then

f(x, y0) is irreducible in Z[x] for y0 2 Z if and only if

y0 62 {�96,�39,�3,�1, 0, 3, 7, 32, 105}.
y2

+ (1 � a)y � a4 � 8a = 0

(1 � a)2 + 4a4
+ 32a = 4a4

+ a2
+ 30a + 1

w2
= 4a4

+ a2
+ 30a + 1

v2
= �d3

+
49 d

3
+

96914

27

d = �
a2

+ 90 a � 6w + 6

3a2

v = �
2
�
a2 � 15 aw + 45 a � 2w + 2

�

a3

y2
+ (1 � a)y � a4 � 8a = 0

(1 � a)2 + 4a4
+ 32a = 4a4

+ a2
+ 30a + 1

w2
= 4a4

+ a2
+ 30a + 1

v2
= �d3

+
49 d

3
+

96914

27

d = �
a2

+ 90 a � 6w + 6

3a2

v = �
2
�
a2 � 15 aw + 45 a � 2w + 2

�

a3

(4w)2 = 64a4 + 16a2 + 480a+16 = (8a2 + 1)2 + 480a+15

a 2 Z =) 480a + 15 6= 0

If 480a + 15 > 0, then

64a4 + 16a2 + 480a + 16 = (4w)2 � 64a4 + 64a2 + 16,

so 0  a  10.

If 480a + 15 < 0, then

64a4+16a2+480a+16 = (4w)2  (8a2�4)2 = 64a4�64a2+16,

so �6  a < 0.

(4w)2 = 64a4 + 16a2 + 480a+16 = (8a2 + 1)2 + 480a+15

a 2 Z =) 480a + 15 6= 0

If 480a + 15 > 0, then

64a4 + 16a2 + 480a + 16 = (4w)2 � 64a4 + 64a2 + 16,

so 0  a  10.

If 480a + 15 < 0, then

64a4+16a2+480a+16 = (4w)2  (8a2�4)2 = 64a4�64a2+16,

so �6  a < 0.

(4w)2 = 64a4 + 16a2 + 480a+16 = (8a2 + 1)2 + 480a+15

a 2 Z =) 480a + 15 6= 0

If 480a + 15 > 0, then

64a4 + 16a2 + 480a + 16 = (4w)2 � 64a4 + 64a2 + 16,

so 0  a  10.

If 480a + 15 < 0, then

64a4+16a2+480a+16 = (4w)2  (8a2�4)2 = 64a4�64a2+16,

so �6  a < 0.

(4w)2 = 64a4 + 16a2 + 480a+16 = (8a2 + 1)2 + 480a+15

a 2 Z =) 480a + 15 6= 0

If 480a + 15 > 0, then

64a4 + 16a2 + 480a + 16 = (4w)2 � 64a4 + 64a2 + 16,

so 0  a  10.

If 480a + 15 < 0, then

64a4+16a2+480a+16 = (4w)2  (8a2�4)2 = 64a4�64a2+16,

so �6  a < 0.

(4w)2 = 64a4 + 16a2 + 480a+16 = (8a2 + 1)2 + 480a+15

a 2 Z =) 480a + 15 6= 0

If 480a + 15 > 0, then

64a4 + 16a2 + 480a + 16 = (4w)2 � 64a4 + 64a2 + 16,

so 0  a  10.

If 480a + 15 < 0, then

64a4+16a2+480a+16 = (4w)2  (8a2�4)2 = 64a4�64a2+16,

so �6  a < 0.

�6  a  10

(4w)2 = 64a4 + 16a2 + 480a+16 = (8a2 + 1)2 + 480a+15

a 2 Z =) 480a + 15 6= 0

If 480a + 15 > 0, then

64a4 + 16a2 + 480a + 16 = (4w)2 � 64a4 + 64a2 + 16,

so 0  a  10.

If 480a + 15 < 0, then

64a4+16a2+480a+16 = (4w)2  (8a2�4)2 = 64a4�64a2+16,

so �6  a < 0.

�6  a  10

y 2 {�96,�39,�3,�1, 0, 3, 32, 105}

For y = 105, the quartic x4 + (y + 8)x � y2 � y becomes

x4 + (105 + 8)x � 1052 � 105 = x4 + 113x � 11130

= (x � 10)
�
x3 + 10x2 + 100x + 1113

�
.

(4w)2 = 64a4 + 16a2 + 480a+16 = (8a2 + 1)2 + 480a+15

a 2 Z =) 480a + 15 6= 0

If 480a + 15 > 0, then

64a4 + 16a2 + 480a + 16 = (4w)2 � 64a4 + 64a2 + 16,

so 0  a  10.

If 480a + 15 < 0, then

64a4+16a2+480a+16 = (4w)2  (8a2�4)2 = 64a4�64a2+16,

so �6  a < 0.

�6  a  10

y 2 {�96,�39,�3,�1, 0, 3, 32, 105}

For y = 105, the quartic x4 + (y + 8)x � y2 � y becomes

x4 + (105 + 8)x � 1052 � 105 = x4 + 113x � 11130

= (x � 10)
�
x3 + 10x2 + 100x + 1113

�
.



Let g(x) 2 Z[x] be an irreducible factor of f(x) of smallest

positive degree. We are interested in knowing for what

y 2 Z, we have deg g 2 {1, 2}.

Case 1. g(x) = x � a

Case 2. g(x) = x2
+ ax + b

Hilbert’s Irreducibility Theorem. Let

f1(x1, . . . , xr, y1, . . . , ys), . . . , fm(x1, . . . , xr, y1, . . . , ys)

be irreducible polynomials in Q[x1, . . . , xr, y1, . . . , ys] with

r � 1 and s � 1. Then there exists infinitely choices of

rational numbers y⇤
1
, . . . , y⇤

s for which

f1(x1, . . . , xr, y
⇤
1
, . . . , y⇤

s), . . . , fm(x1, . . . , xr, y
⇤
1
, . . . , y⇤

s)

are irreducible in Q[x1, . . . , xr].

Theorem. Let f(x, y) 2 Z[x, y] be irreducible in Q[x, y].
Then for almost all t 2 Z, the polynomial f(x, t) is irre-

ducible in Q[x].

Siegel’s Theorem. Let f(x, y) 2 Q[x, y] be irreducible. If

the genus of the plane curve f(x, y) = 0 is at least 1,

then f(x, y) = 0 has at most finitely many solutions in

x, y 2 Z.

Today’s Goal: Let f(x, y) = x4
+ (y + 8)x� y2 � y. Then

f(x, y0) is irreducible in Z[x] for y0 2 Z if and only if

y0 62 {�96,�39,�3,�1, 0, 3, 7, 32, 105}.

(4w)2 = 64a4 + 16a2 + 480a+16 = (8a2 + 1)2 + 480a+15

a 2 Z =) 480a + 15 6= 0

If 480a + 15 > 0, then

64a4 + 16a2 + 480a + 16 = (4w)2 � 64a4 + 64a2 + 16,

so 0  a  10.

If 480a + 15 < 0, then

64a4+16a2+480a+16 = (4w)2  (8a2�4)2 = 64a4�64a2+16,

so �6  a < 0.
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(4w)2 = 64a4 + 16a2 + 480a+16 = (8a2 + 1)2 + 480a+15

a 2 Z =) 480a + 15 6= 0

If 480a + 15 > 0, then

64a4 + 16a2 + 480a + 16 = (4w)2 � 64a4 + 64a2 + 16,

so 0  a  10.

If 480a + 15 < 0, then

64a4+16a2+480a+16 = (4w)2  (8a2�4)2 = 64a4�64a2+16,
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(4w)2 = 64a4 + 16a2 + 480a+16 = (8a2 + 1)2 + 480a+15

a 2 Z =) 480a + 15 6= 0

If 480a + 15 > 0, then

64a4 + 16a2 + 480a + 16 = (4w)2 � 64a4 + 64a2 + 16,

so 0  a  10.

If 480a + 15 < 0, then

64a4+16a2+480a+16 = (4w)2  (8a2�4)2 = 64a4�64a2+16,

so �6  a < 0.

�6  a  10

y 2 {�96,�39,�3,�1, 0, 3, 32, 105}

For y = 105, the quartic x4 + (y + 8)x � y2 � y becomes

x4 + (105 + 8)x � 1052 � 105 = x4 + 113x � 11130

= (x � 10)
�
x3 + 10x2 + 100x + 1113

�
.

(4w)2 = 64a4 + 16a2 + 480a+16 = (8a2 + 1)2 + 480a+15

a 2 Z =) 480a + 15 6= 0

If 480a + 15 > 0, then

64a4 + 16a2 + 480a + 16 = (4w)2 � 64a4 + 64a2 + 16,

so 0  a  10.

If 480a + 15 < 0, then

64a4+16a2+480a+16 = (4w)2  (8a2�4)2 = 64a4�64a2+16,

so �6  a < 0.

�6  a  10

y 2 {�96,�39,�3,�1, 0, 3, 32, 105}

For y = 105, the quartic x4 + (y + 8)x � y2 � y becomes

x4 + (105 + 8)x � 1052 � 105 = x4 + 113x � 11130

= (x � 10)
�
x3 + 10x2 + 100x + 1113

�
.

Hilbert’s Irreducibility Theorem. Let

f1(x1, . . . , xr, y1, . . . , ys), . . . , fm(x1, . . . , xr, y1, . . . , ys)

be irreducible polynomials in Q[x1, . . . , xr, y1, . . . , ys] with

r � 1 and s � 1. Then there exists infinitely choices of

rational numbers y⇤
1
, . . . , y⇤

s for which

f1(x1, . . . , xr, y
⇤
1
, . . . , y⇤

s), . . . , fm(x1, . . . , xr, y
⇤
1
, . . . , y⇤

s)

are irreducible in Q[x1, . . . , xr].

Theorem. Let f(x, y) 2 Z[x, y] be irreducible in Q[x, y].
Then for almost all t 2 Z, the polynomial f(x, t) is irre-

ducible in Q[x].

Siegel’s Theorem. Let f(x, y) 2 Q[x, y] be irreducible. If

the genus of the plane curve f(x, y) = 0 is at least 1,

then f(x, y) = 0 has at most finitely many solutions in

x, y 2 Z.

Today’s Goal: Let f(x, y) = x4
+ (y + 8)x� y2 � y. Then

f(x, y0) is irreducible in Z[x] for y0 2 Z if and only if

y0 62 {�96,�39,�3,�1, 0, 3, 7, 32, 105}.

Let g(x) 2 Z[x] be an irreducible factor of f(x) of smallest

positive degree. We are interested in knowing for what

y 2 Z, we have deg g 2 {1, 2}.

Case 1. g(x) = x � a

Case 2. g(x) = x2
+ ax + b

y = 105 7�! x4
+ (105 + 8)x � 105

2 � 105

x4
+ (105 + 8)x � 105

2 � 105 = x4
+ 113x � 11130

= (x � 10)
�
x3

+ 10x2
+ 100x + 1113

�

“f(x)” divided g(x) gives a remainder of

�
�a3

+ 2 ab + y + 8
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Theorem. Let f(x, y) 2 Z[x, y] be irreducible in Q[x, y].
Then for almost all t 2 Z, the polynomial f(x, t) is irre-

ducible in Q[x].

Siegel’s Theorem. Let f(x, y) 2 Q[x, y] be irreducible. If

the genus of the plane curve f(x, y) = 0 is at least 1,

then f(x, y) = 0 has at most finitely many solutions in

x, y 2 Z.

Today’s Goal: Let f(x, y) = x4
+ (y + 8)x� y2 � y. Then

f(x, y0) is irreducible in Z[x] for y0 2 Z if and only if

y0 62 {�96,�39,�3,�1, 0, 3, 7, 32, 105}.Let g(x) 2 Z[x] be an irreducible factor of f(x) of smallest

positive degree. We are interested in knowing for what

y 2 Z, we have deg g 2 {1, 2}.

Case 1. g(x) = x � a

Case 2. g(x) = x2
+ ax + b
a 2 {�2,�1, 0, 1, 2}

y 2 {�3, 0, 7}

Let g(x) 2 Z[x] be an irreducible factor of f(x) of smallest

positive degree. We are interested in knowing for what

y 2 Z, we have deg g 2 {1, 2}.

Case 1. g(x) = x � a

Case 2. g(x) = x2
+ ax + b

Multiply (⇤) by 4 · 64
. Substitute w1 = 72w, a1 = 12a.

w2

1
= a4

1
+ 36a2

1
+ 12960a1 + 5184

Substitute w1 = w2 + a2

1
+ 6.

(2w2 � 24)a2

1
� 12960a1 + w2

2
+ 12w2 � 5148 = 0

w2

3
= �8w3

2
+ 42336w2 + 167467392

Substitute w4 = �2w2.

w2

3
= w3

4
� 21168w4 + 167467392

(a,w) 2 Z2 7�! (a1, w1) 2 Z2 7�! (w2, w3) 2 Z2 7�! w4 2 Z

w4 7�! w2 7�! w1 in terms of a1 7�! a1 7�! a 7�! y

w4 2 {�564, �548, �456, �308, �132, �24, 156, 561,

732, 1164, 1596, 3081, 5212, 8076, 20604, 57756}

a 2 {�6,�2, 0, 1, 10}

y 2 {�96,�39,�3,�1, 0, 3, 32, 105}

On a dense universal Hilbert set

Michael Filaseta

University of South Carolina

joint work with Robert Wilcox

Example. Let f(x) 2 Z[x], and suppose that for n 2 Z
su�ciently large, we have f(n) is a square. Then f(x) =
g(x)2 for some g(x) 2 Z[x].

Proof. Let F (x, y) = x2 � f(y). Hilbert’s Irreducibility
Theorem implies F (x, y) is reducible. This implies f(y) is
a square in Z[y]. ⌅

Example. Let f(x, y) = x4 + (y + 8)x � y2 � y. Then
f(x, y0) is irreducible in Z[x] for y0 2 Z if and only if
y0 62 {�96,�39,�3,�1, 0, 3, 7, 32, 105}.
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Although the expression X/(logX)� on the right of is
o(X) as X ! 1, it is > X/2 for 1 < X  101365.
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Main Result (with R. Wilcox): There exists an explicit
universal Hilbert set S ⇢ Z for which

|{m 2 Z : m 62 S, |m|  X}| ⌧
X

(logX)�

as X ! 1, where

� = 1 � (1 + log log 2)/(log 2) = 0.086071 . . . .

Comments: There are 461845 elements of S up to 106.
Although the expression X/(logX)� on the right of is
o(X) as X ! 1, it is > X/2 for 1 < X  101365.

What’s S ? (Warning: It is not aesthetically pleasing.)

Where is � coming from?

Theorem (Ford, 2008). Let x, y and z be real numbers

with x � 105
, 100  y  p

x, 2y  z  y
2
and z  x.

Set H(x, y, z) to be the number of positive integers n  x

for which some divisor d of n satisfies d 2 (y, z]. Set

u =
log z

log y
� 1,

and let � = 1�(1+log log 2)/(log 2) = 0.086071 . . .. Then

H(x, y, z)

x
⇣ u

�
�
log(2/u)

��3/2
.

|{m 2 Z : m 62 S, |m|  X}| ⌧
X

(logX)�

Main Result (with R. Wilcox): There exists an explicit
universal Hilbert set S ⇢ Z for which

|{m 2 Z : m 62 S, |m|  X}| ⌧
X

(logX)�

as X ! 1, where

� = 1 � (1 + log log 2)/(log 2) = 0.086071 . . . .

Comments: There are 461845 elements of S up to 106.
Although the expression X/(logX)� on the right of is
o(X) as X ! 1, it is > X/2 for 1 < X  101365.

What’s S ? (Warning: It is not aesthetically pleasing.)

Where is � coming from?

Theorem (Ford, 2008). Let x, y and z be real numbers

with x � 105
, 100  y  p

x, 2y  z  y
2
and z  x.

Set H(x, y, z) to be the number of positive integers n  x

for which some divisor d of n satisfies d 2 (y, z]. Set

u =
log z

log y
� 1,

and let � = 1�(1+log log 2)/(log 2) = 0.086071 . . .. Then

H(x, y, z)

x
⇣ u

�
�
log(2/u)

��3/2
.

|{m 2 Z : m 62 S, |m|  X}| ⌧
X

(logX)�

Theorem (Ford, 2008). Let x, y and z be real numbers

with x � 105
, 100  y  p

x, 2y  z  y
2
and z  x.

Set H(x, y, z) to be the number of positive integers n  x

for which some divisor d of n satisfies d 2 (y, z]. Set

u =
log z

log y
� 1,

and let � = 1�(1+log log 2)/(log 2) = 0.086071 . . .. Then

H(x, y, z)

x
⇣ u

�
�
log(2/u)

��3/2
.

|{m 2 Z : m 62 S, |m|  X}| ⌧
X

(logX)�

Main Result (with R. Wilcox): There exists an explicit
universal Hilbert set S ⇢ Z for which

|{m 2 Z : m 62 S, |m|  X}| ⌧
X

(logX)�

as X ! 1, where

� = 1 � (1 + log log 2)/(log 2) = 0.086071 . . . .

Comments: There are 461845 elements of S up to 106.
Although the expression X/(logX)� on the right of is
o(X) as X ! 1, it is > X/2 for 1 < X  101365.

What’s S ? (Warning: It is not aesthetically pleasing.)

Where is � coming from?

Theorem (Ford, 2008). Let x, y and z be real numbers

with x � 105
, 100  y  p

x, 2y  z  y
2
and z  x.

Set H(x, y, z) to be the number of positive integers n  x

for which some divisor d of n satisfies d 2 (y, z]. Set

u =
log z

log y
� 1,

and let � = 1�(1+log log 2)/(log 2) = 0.086071 . . .. Then

H(x, y, z)

x
⇣ u

�
�
log(2/u)

��3/2
.

|{m 2 Z : m 62 S, |m|  X}| ⌧
X

(logX)�

Theorem (Ford, 2008). Let x, y and z be real numbers

with x � 105
, 100  y  p

x, 2y  z  y
2
and z  x.

Set H(x, y, z) to be the number of positive integers n  x

for which some divisor d of n satisfies d 2 (y, z]. Set

u =
log z

log y
� 1,

and let � = 1�(1+log log 2)/(log 2) = 0.086071 . . .. Then

H(x, y, z)

x
⇣ u

�
�
log(2/u)

��3/2
.

|{m 2 Z : m 62 S, |m|  X}| ⌧
X

(logX)�

Another important ingredient we use is Siegel’s Lemma.

Siegel’s Lemma (Siegel, 1929). Let f(x, y) be in Z[x, y]
with f(x, y) irreducible in C[x, y]. If there are infinitely

many points (x0, y0) 2 Z2
such that f(x0, y0) = 0, then

there exist polynomials uj(t) and vj(t) in Z[t] for j 2
{1, 2} satisfying both of the following:

(i) For all but finitely many (x0
, y

0) 2 C2
with f(x0

, y
0) =

0, the equations x
0 = u1(t)/v1(t) and y

0 = u2(t)/v2(t)
hold for some t 2 C.

(ii) For all but finitely many (x0
, y

0) 2 Q2
and t 2 C such

that x
0 = u1(t)/v1(t) and y

0 = u2(t)/v2(t), we have

t 2 Q.

Comment: A point (x0, y0) 2 Z2 for which f(x0, y0) = 0
corresponds to a y0 2 Z for which f(x, y0) has the linear
factor x � x0 in Z[x]. Hilbert’s Irreducibility Theorem is
an assertion about y0 2 Z for which f(x, y0) is irreducible
over Q, seemingly quite a bit stronger.

What does Siegel’s Lemma have to do with irreducibility?



F (x, y) 2 Z[x, y] irreducible in Q[x, y], deg Fx = n � 2

Idea: For k 2 [1, n/2] \ Z, show there are only finitely
many y0 2 S for which the polynomial F (x, y0) has a
factor of degree k in Z[x]. We assume F (x, y) is monic as
a polynomial in x here. Suppose y0 2 Z such that F (x, y0)
is divisible by

H(x) = x
k + hk�1x

k�1 + · · · + h2x
2 + h1x + h0,

for some hj 2 Z. Divide F (x, y) by H(x) as a polynomial
in x to obtain a remainder

R(x) = rk�1x
k�1 + rk�2x

k�2 + · · · + r1x + r0.

rj = rj(h0, . . . , hk�1, y) 2 Z[h0, . . . , hk�1, y], 0  j  k� 1

We deduce that for y0 2 Z, the following are equivalent:

• F (x, y0) has a factor of degree k in Z[x].
• 9 k-tuple (h⇤

0, . . . , h
⇤
k�1) 2 Zk with rj(h⇤

0, . . . , h
⇤
k�1, y0) =

0 for every j 2 {0, 1, . . . , k � 1}.
We want the latter holds for only finitely many y0 2 S.
To do this, we show that the variety

V (r0, r1, . . . , rk�1)

over C intersected with Zk+1 has finitely many elements
with y component in S.
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Idea: If this were a linear system of k equations in k + 1
unknowns, then typically we would expect to be able to
solve for each variable hj in say y. For non-linear systems,
using resultants, one can instead reduce our problem, for
each j, to a polynomial in hj and y equal to 0. This is a
curve then in hj and y and we can hope to apply Siegel’s
Lemma. The main problem is to show that when Siegel’s
Lemma does not apply directly, with some other ideas,
one can still get what one wants.

The Genus 0 Case

Lemma. Let f(x) and g(x) be in Z[x] with

gcd(f, g) = 1 and max{deg f, deg g} � 2.

Let S be the same mess as before. Let Y be the set of

y 2 Z for which f(x) + yg(x) has a linear factor in Z[x].
Then Y \ S is finite. Furthermore, if deg f > deg g � 1,
then Y is finite.

Lemma. Let f(x, y) be in Z[x, y] with f(x, y) irreducible

in C[x, y]. Let S be the same mess as before. Let Y 0
be

the set of y0 2 Z such that f(x0, y0) = 0 for some x0 2 Z.
Then there is a rational function ĥ(y) 2 Q(y) such that

for all but finitely many y0 2 Y 0 \ S, the only integer x0

satisfying f(x0, y0) = 0 is x0 = ĥ(y0). Furthermore, in

the case that Y 0 \ S is an infinite set, for all but finitely

many y0 2 C, if f(x0, y0) = 0 for some x0 2 C, then

x0 = ĥ(y0).
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for all but finitely many y0 2 Y 0 \ S, the only integer x0

satisfying f(x0, y0) = 0 is x0 = ĥ(y0). Furthermore, in
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Res
�
� a3 + 2 ab + y + 8,�a2b + b2 � y2 � y, b

�
= 0

Theorem (R. Wilcox, F.) Let S be as before. Let the
variety

V = V (r0, r1, . . . , rk�1),

with

rj = rj(h0, . . . , hk�1, y) 2 Z[h0, . . . , hk�1, y],

over the complex numbers have the property that for each
y0 2 C, there are finitely many points (h⇤

0, . . . , h
⇤
k�1) 2

Ck such that (h⇤
0, . . . , h

⇤
k�1, y0) 2 V . Suppose that there

are infinitely many points (h⇤
0, . . . , h

⇤
k�1, y0) in V \ Zk+1

with y0 2 S. Then there exist ĥt(y) 2 Q(y) for t 2
{0, 1, . . . , k � 1} such that the set of

(ĥ0(y0), . . . , ĥk�1(y0), y0) 2 V \
�
Zk ⇥ S

�

is an infinite set.

The End


