
Local-global principles over semi-global fields

David Harbater
University of Pennsylvania

joint with J. Hartmann and D. Krashen (HHK)
and with J.-L. Colliot-Thélène, R. Parimala, V. Suresh (CPS)

Upstate New York Online Number Theory Colloquium
March 22, 2021

1 / 26



Local-global principles: an overview

Given a property of an algebraic object over a field F , does it hold
globally if it holds locally? "Locally" = at each completion Fv of F .

Classically: consider objects over a global field F .
In this talk: semi-global fields, e.g. p-adic function fields.

Examples of LGP over global fields:
1) Object = central simple algebra; property = split (isomorphic to
a matrix algebra). LGP holds by the theorem of
Albert-Brauer-Hasse-Noether.
2) Object = quadratic form; property = isotropic (non-trivial 0).
LGP holds by the Hasse-Minkowski theorem.
3) Object = a variety; property = has a rational point. LGP can
fail, but often holds, esp. for many homogeneous spaces under
algebraic groups – in particular, for torsors (PHS).
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LGP for torsors over global fields

Given an algebraic group G over a field F :
G -torsors/F ↔ H1(F ,G )

the trivial torsor (G itself) ↔ the distinguished element

A G -torsor over F has an F -point iff it is the trivial torsor. So the
obstruction to LGP is (the Tate-Shafarevich set)

X(F ,G ) = ker
[
H1(F ,G )→

∏
v H

1(Fv ,G )
]
.

So LGP holds for all G -torsors/F ⇔X(F ,G ) is trivial.
For F global, & G a lin. alg. gp. (smooth subgp of GLn):
1) X(F ,G ) is finite (Borel-Serre; B. Conrad);
2) LGP holds if G is connected and rational as an F -variety
(Sansuc-Chernousov);
3) LGP holds if G is a semisimple simply connected group
(Kneser-Harder-Chernousov).
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Applications of LGP’s for torsors over global fields

Using LGP’s for torsors, can get other LGP’s:

Central simple algebras over F of degree n (i.e., dim n2 over F ) are
classified by H1(F ,PGLn), and PGLn is a rational connected group.
So LGP for torsors ⇒ LGP for central simple algebras
(Albert-Brauer-Hasse-Noether).

Quadratic forms over F of dimension n and discriminant 1 are
classified by H1(F , SOn), and SOn is a rational connected group.
Using LGP for torsors, can get LGP for isotropy of quadratic forms
(Hasse-Minkowski).

Can use these LGP’s to get structural information:
ABHN ⇒ ∀ csa A/F , period(A) = index(A).
HM ⇒ Every quadratic form/F of dimension > 4 (and indefinite, if
F has a real embedding) is isotropic.
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Semi-global fields

A semi-global field is a one-variable function field F over a complete
discretely valued field K ; i.e., the function field of a curve over K .

Examples: F = Qp(x), F = k((t))(x), any finite extension of these.

Let T = OK (e.g. Zp or k[[t]]), and t ∈ T a uniformizer. Then
there is a regular model X of F over T ; i.e., a flat projective
regular T -curve X → Spec(T ) with function field F .

F = K (x), X = P1
T

→ r
Spec(T )

Spec(k)
XX

Local in one direction, global in the other: “semi-global”.
Want to carry over LGPs and applications to this situation.
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LGP over semi-global fields

Several possible LGP’s and obstructions to consider here:

X(F ,G ) = ker
[
H1(F ,G )→

∏
v H

1(Fv ,G )
]
; v ranging over

discrete val’s on F corresp. to codim 1 points on models of F .

XX (F ,G ) = ker
[
H1(F ,G )→

∏
P H1(FP ,G )

]
; X the closed fiber

of a model X of F ; P the points of X ; FP = frac ÔX ,P .

Are these finite? trivial? related? Implications for alg. structures?

HHK (via patching methods): •XX (F ,G ) ⊆X(F ,G ).
• G a rational connected lin. alg. group /F ⇒XX (F ,G ) is trivial.
(Analog of Sansuc-Chernousov over global fields.)
•XX (F ,G ) trivial ⇒ LGP holds ∀ G -homogeneous spaces /F .
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Applications of LGP’s for torsors over semi-global fields

As for global fields, LGP for torsors implies other LGP’s over
semi-global fields:

Since csa’s are classified by H1(F ,PGLn), get: A is split over F iff
it is split over every FP (HHK); or if it is split over every Fv (CPS)
– – analog of Albert-Brauer-Hasse-Noether.

Since the projective quadric hypersurface defined by a quadratic
form q is a homogeneous space under SO(q) if dim(q) > 2, get: if
dim(q) > 2 then q is isotropic/F iff it is isotropic over every FP
(HHK); or every Fv (CPS) – analog of Hasse-Minkowski.

We then get structural information. E.g., say F = Qp(x). Then

• ∀ csa A/F , index(A) divides period(A)2. (HHK; also Lieblich)

• Every quadratic form/F of dimension > 8 is isotropic. (HHK,
also PS, for p odd; Leep)
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LGP via patching

To prove the above results (and other recent results by
HHK+CPS), we use another form of LGP, wrt another set of
overfields of F . This set is finite, making it easier to study.

Pick a finite subset P ⊂ X , including all points where irreducible
components of X meet. Let U be the set of connected components
U of X − P; these are affine curves. Each P ∈ P and each U ∈ U
is defined over a finite extension of k = res. field of T = OK .

For each P ∈ P, have the fraction field FP of R̂P := ÔX ,P . For
each U ∈ U , take the fraction field FU of R̂U , the completion of the
subring of F consisting of functions regular along U.

These fields FP ,FU provide a finite set of overfields of F .
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We can then consider a third LGP for G -torsors over F : if it is
trivial over each FP (P ∈ P) and each FU (U ∈ U), must it be
trivial over F? The obstruction:

XP(F ,G ) = ker

[
H1(F ,G )→

∏
P∈P

H1(FP ,G )×
∏
U∈U

H1(FU ,G )

]
.

Here XP(F ,G ) ⊆XX (F ,G ), and XX (F ,G ) =
⋃
PXP(F ,G ).

P1 example�
	���
��r	��


Spec(R̂U) Spec(R̂P)

U = X − P P → r
Spec(T )

Spec(k)

Example with reducible closed fiber

((((((hhhhhhhhhhhh((((((
ir irU1 P1

U2 P2 U3
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The closed fiber can have > 1 branch at a point P ∈ P.
Branches ↔ height 1 primes ℘ ∈ R̂P lying on X (i.e., containing
t ∈ T ). Let B be the set of branches at all P ∈ P.

Each branch ℘ at P lies on an irred. comp. of X , so on a U ∈ U .
The local ring of R̂P at ℘ is a dvr. Let R̂℘ be the completion, with
fraction field F℘. Then R̂P , R̂U ⊂ R̂℘, and we regard Spec(R̂℘) as
the overlap of Spec(R̂P) and Spec(R̂U).

For a G -torsor Z ∈XP(F ,G ), pick zU ∈ Z (FU), zP ∈ Z (FP)
(∀U ∈ U , P ∈ P). Then zP , zU ∈ Z (F℘) for ℘ a branch on U at P ,
so ∃!g℘ ∈ G (F℘) taking zU to zP . Get g =(g℘)∈

∏
℘∈PG (F℘).

New choices zU , zP multiply g℘ on the left by an element of
G (FU), and on the right by an element of G (FP). So

XP(F ,G )↔
∏

U∈U G (FU)\
∏

℘∈B G (F℘)/
∏

P∈P G (FP),
a double coset space. (Analogous to classical double coset space.)
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LGP via double cosets

To prove a LGP for G -torsors over a semi-global field F , we want
to show that XP(F ,G ) is trivial. Via double coset description this
is equivalent to proving simultaneous factorization of elements g℘:

∀(g℘) ∈
∏

℘∈P G (F℘) ∃(gU) ∈
∏

U∈U G (FU), (gP) ∈
∏

P∈P G (FP)

s.t. g℘ = gUg
−1
P whenever ℘ is a branch at P on U.

In the case that G is a rational connected linear algebraic group
over F , such a simult. factorization holds; so XP is trivial and so is
XX . (HHK ’09, ’15; a generalization of Cartan’s Lemma on GLn)

The proof finds elements in each G (R̂U),G (R̂P) by using that G is
rational to work locally in affine space near the origin, and finding
these elements modulo successive powers of t ∈ T .
This gives the asserted local-global principle for rational groups, and
the applications to quadratic forms (via SOn) and csa (via PGLn).
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What about other types of linear algebraic groups, e.g. On?
On is disconnected, but (each component) is rational.

1 → SOn → On → C2 → 1
rat’l conn disconn const.fin.

Want to relate XP(F ,On) to XP(F , SOn) and XP(F ,C2).
XP(F ,C2) classifies locally trivial degree 2 covers. This need not
be trivial; e.g. on the closed fiber can have:
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Reduction graph

This example suggests LGP can fail if ∃ loops in the closed fiber.

More precisely: Given a regular model X of a semi-global field F ,
and a choice of P ⊂ X (yielding U and B), the reduction graph is
the bipartite graph Γ whose vertices are P ∪ U and whose edges
between vertices P and U are branches ℘ ∈ B at P lying on U.
(If X is a normal crossings divisor on X , then Γ is homotopy
equivalent to the dual graph of Deligne-Mumford.)
Viewing Γ as a topological space, we can take π1(Γ) (which is
independent of P). If G is a constant finite group (e.g., C2), then:

X(F ,G ) = XX (F ,G ) = XP(F ,G ) ∼= Hom(π1(Γ),G )/∼ ∼= Gm/∼,

where Γ has m loops (i.e. π1(Γ) = Fm) and ∼ is conjugation by G .
(Here X(F ,G ) = XP(F ,G ) by Purity of Branch Locus.)

So LGP holds iff Γ is a tree or G is trivial.
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Disconnected rational groups

More generally, say G is a linear algebraic group over F that’s
rational but possibly disconnected (e.g., On). Then

1 → G 0 → G → Ḡ → 1
rat’l conn disconn const.fin.

with XX (F ,G 0) = 1 and XX (F , Ḡ ) ∼= Hom(π1(Γ), Ḡ )/∼. By a
factorization argument, it can then be shown (HHK’15) that in fact

XX (F ,G ) ∼= Hom(π1(Γ), Ḡ )/∼ ∼= Ḡm/∼.
So LGP holds iff Γ is a tree or G is connected (i.e. Ḡ is trivial).

This explains the exception to Hasse-Minkowski for binary
quadratic forms q over F : The quadric hypersurface Q defined by q
is a homogeneous space under O(q) but not SO(q) since it has two
geometric points; so LGP for q fails if Γ is not a tree (e.g. if F is the
function field of a Tate curve) but holds otherwise (e.g. F = K (x)).
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Non-rational groups

What if the group is connected but not rational? Must LGP hold?

In a 2016 paper of CPS, there is an example of a semi-global field
F and a non-rational torus G over F such that XX (F ,G ) is
non-trivial (and hence also X(F ,G )). In this example, the closed
fiber X consists of three copies of P1

k meeting at k-points, forming
a triangle (so the reduction graph has a loop).

This suggests that the reduction graph is relevant even for groups
that are connected, if they’re not rational.

Questions: (1) For non-rational groups G , under what
circumstances is there a LGP, and what is the obstruction?
(2) In analogy with the case of groups over global fields, must the
obstruction be finite, and must it be trivial for sssc groups?
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Non-rational groups over T

In ongoing work of HHK+CPS, we prove results related to these
questions for groups G that are defined over the cdvr T = OK . In
this situation, we have both positive and negative results
concerning these two questions, with answers in terms of the
reduction graph. Again, the tree condition is relevant.

Given a regular model X of a semi-global field over K , the closed
fiber X is a (possibly reducible) curve over k = T/m. If the
reduction graph Γ associated to Xk ′ is a tree for every algebraic
extension of k , we call it a geometric tree.

Under appropriate hypotheses, we show that LGP holds if Γ is a
geometric tree, but can fail if Γ has loops or is a non-geometric tree.
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LGP for reductive groups in characteristic 0

As above, let G be a linear algebraic group over the cdvr T , and X
a regular model of a semi-global field F over K = frac(T ).
For simplicity, we first assume T = k[[t]], where char(k)=0.

Theorem. (CHHKPS) Assume that the closed fiber X of X is
reduced, and that the reduction graph is a geometric tree. If G is
connected and reductive over T , then LGP holds (in all senses).

Here, recall that a connected group G over an algebraically closed
field is reductive if it has no non-trivial unipotent normal
subgroups. Equivalently, the unipotent radical (maximal unipotent
normal subgroup) is trivial. A group over a ring R is reductive if it
is so over every geometric point of Spec(R).
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Here X(F ,G ) = XX (F ,G ) via a result of Nisnevich (for G is
reductive over a cdvr A with E = frac(A), H1(A,G )→ H1(E ,G ) is
injective). So STS the theorem for XX ; or equivalently ∀XP .

That is, given P (and hence U), we want to show that a G -torsor
over F that’s trivial over each FP and FU is trivial over F .
By a recent theorem of Gille-Parimala-Suresh, a G -torsor over F is
trivial if it is the generic fiber of a G -torsor over X whose
restriction to X is trivial. So to prove the theorem it suffices to
show that a locally trivial torsor over F is of that form.

This is done in two steps, each involving a matrix factorization
result (extending Cartan’s Lemma).
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Step 1: Local factorization of G over FP :
Using the structure of reductive groups (Bruhat decomposition), we
find rational connected subgroups S ,U ⊆ G and w0 ∈ G s.t. every
element of G in a dense open subset can be written as suw0u

′ for
s ∈ S and u, u′ ∈ U . (S is a split torus Gn

m, and U is unipotent.)

Step 2: Global factorization of G over F :
By hypothesis, Γ is a geometric tree. In char 0, this is equivalent to
Γ being a monotonic tree: ∃ vertex v0 (the “root”) s.t. for any path
in Γ away from v0, the field of definition of each vertex (a P ∈ P or
a U ∈ U) contains the field of definition of the previous vertex.
Working inductively along Γ, starting at v0, Step 1 yields a
(simultaneous) factorization, yielding the desired globalization.
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LGP for linear algebraic groups in char 0

So we have the above theorem, that LGP holds for connected
reductive groups over T if the closed fiber is reduced and Γ is a
geometric tree, in equal char 0. Building on this, we get a result
about groups that need not be connected or reductive (CHHKPS):

Cor. Let G be a lin. alg. group over a field k of char 0, and let F
be a semi-global field / K := k((t)). Assume the closed fiber of a
regular model is reduced, and the reduction graph is a geometric
tree. Then XX (F ,G ) is trivial; so is X(F ,G ) if G is connected.

To prove this for connected groups, we let U be the unipotent
radical of G . So G/U is reductive (and connected), so
X(F ,G/U ) is trivial by the above theorem. But a unipotent
group in char 0 is built of successive extensions of Ga, so U -torsors
are trivial by Hilbert 90. So H1(F ,G )→ H1(F ,G/U ) is injective,
and X(F ,G ) is trivial.
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To handle the disconnected case, we combine the connected case
with the case of a finite group scheme G (not nec. constant):

Prop. Let G be a smooth finite group scheme over a s.g.f. F , and
F ′/F a finite Galois extension that splits G . Suppose the reduction
graph Γ′ associated to F ′ is a tree. Then LGP holds for G over F .

The proof of this proposition combines Galois cohomology with a
theorem of Serre about group actions on graphs: If no element of
the group interchanges two adjacent vertices, then some vertex is
fixed by every group element. That theorem is applied to the group
Gal(F ′/F ) acting on the graph Γ′, using that Γ′ is bipartite to
satisfy Serre’s hypothesis.

(In the conn. reductive and finite cases, XX (F ,G ) = X(F ,G ),
but in the general case we don’t know this.)
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Case of char(k)=p

The LGP for connected reductive groups G over a semi-global field
F carries over to the case where F is a function field over a cdvf K
whose residue field k has char p, and G is a reductive group defined
over T = OK , with extra hypotheses:

• We assume that p is not a “bad prime” for G – roughly, this
avoids inseparable homomorphisms H � G . This is needed to
invoke the theorem of Gille-Parimala-Suresh.

• We assume that the reduction graph Γ is a monotonic tree. This
is strictly stronger than being a geometric tree in char p, and it is
needed for the induction argument on the graph.

We can’t then pass from the reductive case to the general case,
because the unipotent radical might not be built from copies of Ga.
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Counterexamples to LGP for semi-global fields

What if we have a semi-global field F whose reduction graph is not
a geometric tree? As with finite groups, can LGP then fail for a
connected group defined over T (where T = OK and F is over K )?

Ex. 1. Suppose the closed fiber X of a model X of F consists of
copies of P1

k meeting at k-points. Let m be the number of loops in
Γ (i.e. π1(Γ) = Fm). Then using matrix factorization, it follows for
a reductive group G over T that

X(F ,G ) ∼= Hom(π1(Γ),G (k)/R)/∼ ∼= (G (k)/R)m/∼,

analogously to the case of (possibly disconnected) rational groups.
As before, ∼ denotes conjugation. Also, G (k)/R denotes the group
of R-equivalence classes in G (k), where g0, g1 ∈ G (k) are
R-equivalent they are connected by an open subset of A1

k contained
in Gk . (For rational groups, G (k)/R = G/G 0.)
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To use this to get a counterexample to LGP for a connected
reductive group G over a semi-global field:
Take a reductive group G over a field k of char 0 with non-trivial
G (k)/R. E.g. k = Q(

√
17)(u, v) and G = SL1(D), with D the

biquaternion algebra (−1, u)⊗k (2, v). Then G (k)/R = C2.
Next, take a semi-global field over K = k((t)) having a regular
model X whose closed fiber consists of copies of P1

k meeting at
k-points with m ≥ 1 loops in Γ. E.g. take T = k[[t]] and
X =ProjT [x , y , z ]/(xyz − t(x + y + z)3). Here X is a triangle of
P1
k ’s meeting at k-points.

With this choice of k ,G ,F , the graph Γ is not a tree, and
G (k)/R 6= 1; so X(F ,G ) is non-trivial, and LGP fails.
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In fact, by enlarging k we can enlarge G (k)/R, and even find
examples with X(F ,G ) infinite: replacing k by k(G ) enlarges
G (k)/R; repeat infinitely often, getting a field k of infinite
transcendence degree and infinite X(F ,G ).

Ex. 2. Suppose the closed fiber X of a model X of F consists of
two copies of P1

k meeting at a single closed point, where the residue
field is k ′ (with k , k ′ of char 0, and k ′ strictly containing k). So Γ
is a tree, but not a geometric tree.
If G (k)/R is trivial and G (k ′)/R is non-trivial, then a factorization
argument shows that X(F ,G ) is non-trivial.
For example, let k = Q(u, v) and k ′ = Q(

√
17)(u, v). Take

T = k[[t]] and X = ProjT [x , y , z ]/((y − x)(xy − 17z2) + tz3).
Then X is a union of two k-lines, meeting at a k ′-point. Moreover
with G as in the previous example, G (k)/R = 1 and
G (k ′)/R = C2. So X(F ,G ) 6= 1 and LGP fails there.
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The above examples are in particular counterexamples to LGP for
semi-simple simply connected groups — unlike the situation over
global fields.
Moreover they show that that X(F ,G ) can be infinite – again
unlike the situation over global fields.

Question. If one restricts to semi-global fields over a local field (e.g.
taking F to be a p-adic function field), then is X(F ,G ) finite for
all connected reductive groups G , and is it trivial for all sssc groups?

These have both been conjectured, and there is evidence (Y. Hu,
Preeti, Parimala, Suresh, Y. Tian).

In addition:

Question. In general, for groups G over semi-global fields F , what
is a description of X(F ,G ), and precisely when does LGP hold?
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