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|. Background: Arithmetic of Algebraic Curves



Arithmetic of algebraic curves

X: a smooth algebraic curve of genus g defined over Q.

For example, given by a polynomial equation
f(x,y)=0

of degree d with rational coefficients, where

g=(d—-1)(d-2)/2.
Diophantine geometry studies the set X(Q) of rational solutions
from a geometric point of view.
Structure is quite different in the three cases:

g = 0, spherical geometry (positive curvature);
g = 1, flat geometry (zero curvature);
g > 2, hyperbolic geometry (negative curvature).



Arithmetic of algebraic curves: g =0,d =2

Even now (after millennia of studying these problems), g = 0 is the
only case that is completely understood.

For g = 0, techniques reduce to class field theory and algebraic
geometry: local-to-global methods, generation of solutions via
sweeping lines, etc.

Idea is to study Q-solutions by considering the geometry of
solutions in various completions, the local fields

R,Q2,Q3,...,Q601, ...,



Local-to-global methods
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Arithmetic of algebraic curves: g =0

Local-to-global methods sometimes allow us to ‘globalise’. For
example,
37x% 4+ 59y% — 67 =0

has a Q-solution if and only if it has a solution in each of
R, Q>, Q37, Qs9, Qs7, a criterion that can be effectively
implemented. This is called the Hasse principle.

If the existence of a solution is guaranteed, it can be found by an
exhaustive search. From one solution, there is a method for
parametrising all others: for example, from (0, —1), generate
solutions
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Arithmetic of algebraic curves: g =0

Figure: Method of sweeping lines

Sweep through the circle with all lines with rational slope going
through the point (—1,0).



Arithmetic of algebraic curves: g =0

A key ingredient here is a successful study of the inclusion

X(@Q) c [[Xx(@p)

coming from reciprocity laws (class field theory).



Arithmetic of algebraic curves: g =1 (d = 3)

X(Q) = ¢, non-empty finite, infinite, all are possible.

Hasse principle fails:

3x3+4y3+5=0
has points in Q, for all v, but no rational points.
Even when X(Q) # ¢, difficult to describe the full set.

But fixing an origin O € X(Q) gives X(Q) the structure of an
abelian group via the chord-and-tangent method.



Arithmetic of algebraic curves: g =1 (d = 3)

A
\_/

(Mordell)
X(Q) =~ X(Q)tor x Z".

Here, r is called the rank of the curve and X(Q);or is a finite
effectively computable abelian group.



Arithmetic of algebraic curves: g =1

To compute X(Q)or, write
X :={y>=x>+ax+ b} U {oc}

(a, b e Z).
Then (x,y) € X(Q)tr = x,y are integral and

y?|(4a® 4 27b°).



Arithmetic of algebraic curves: g =1

However, the algorithmic computation of the rank and a full set of
generators for X(Q) is very difficult, and is the subject of the
conjecture of Birch and Swinnerton-Dyer.

In practice, it is often possible to compute these. For example, for
.y2 = X3 - 27

Sage will give you r = 1 and the point (3,5) as generator.

The algorithm *uses* the BSD conjecture.



Arithmetic of algebraic curves: g =1
Note that
2(3,5) = (129/100, —383/1000)
3(3,5) = (164323/29241, —66234835/5000211)
4(3,5) = (2340922881/58675600, 113259286337279,/449455096000)

Figure: Denominators of N(3,5)



Arithmetic of algebraic curves: g > 2 (d > 4)
X(Q) is always finite (Mordell conjecture as proved by Faltings)

However, *very* difficult to compute: consider
Xn + yn — 1
for n > 4.

Sometime easy, such as

x4yt =1

However, when there isn't an obvious reason for non-existence, e.g.,
there already is one solution, then it's hard to know when you have
the full list. For example,

y3 = x% 4+ 23x% 4+ 37x* 4+ 691x3 — 631204x2 + 5169373941

obviously has the solution (1,1729), but are there any others?



Arithmetic of algebraic curves: g > 2 (d > 4)

Effective Mordell problem:

Find a terminating algorithm: X — X(Q)‘

The Effective Mordell conjecture (Szpiro, Vojta, ABC, ...)
makes this precise using (archimedean) height inequalities. That is,
it proposes that you can give a priori bounds on the size of
numerators and denominators of solutions.

Will describe today an approach to this problem using the
(non-archimedean) arithmetic geometry of principal bundles.



Arithmetic of algebraic curves: g > 2 (d > 4)

Basic idea:

X@Q — [[X@)

loc

M——T[ M.
"X(@ = [[[x@)nm

The spaces M and M, are moduli spaces of arithmetic principal
bundles.



Il. Arithmetic Principal Bundles



General principle:

Bundle on X/G <+ G-equivariant bundle on X



Principal Bundles

Basic case:

R group, P set with simple transitive R-action

PxG—>P

Thus, choice of any z € P induces a bijection
R~P

rv— zr.

All objects could have more structure, for example, a topology.



Principal Bundles

Could also have a family of such things over a space M:

f:P— M

a fibre bundle with right action of R such that locally over
sufficiently small open U C M,

Py = f1(U)

is isomorphic to R x U.

That is, a choice of a section s : U — Py induces an
isomorphism
RxU~=~Py

(r,u) — s(u)r.



Arithmetic principal bundles: (Gk, R, P)

K: field of characteristic zero.

Gk = Gal(K/K): absolute Galois group of K. Topological group
with open subgroups given by Gal(K/L) for finite field extensions
L/K in K.

A group over K is a topological group R with a continuous action
of Gk by group automorphisms:

GKXRHR.

In an abstract framework, one can view R as a family of groups
over the space Spec(K).

Example:

where A is an algebraic group defined over K, e.g., GL,, or an
abelian variety. Here, R has the discrete topology.



Arithmetic principal bundles

Example:

R=17,(1) := mﬂpn’
where j1,n C K is the group of p™-th roots of 1.

Thus,
Zp(l) = {(Cn)n}a
where
=1 (= n
As a group,
Zo(1) = Z,, = imZ/p",

n

but there is a continuous action of Gk.



Arithmetic principal bundles: (Gk, R, P)

A principal R-bundle over K is a topological space P with
compatible continuous actions of Gk (left) and R (right, simply
transitive):

PxR— P;

GK X P — P;
g(zr) = g(z)g(r)
forge Gk, z€e P, reR.

Note that P is trivial, i.e., = R, exactly when there is a fixed point
z € PCk:
R~zx R=P.



Arithmetic principal bundles

Example:

Given any x € K*, get principal Zy(1)-bundle

P(x) = {(yn)n | Y& =X, Yim = yn'}
over K.
P(x) is trivial iff x admits a p"-th root in K for all n.
For example, when K = C, P(x) is always trivial.
When K = Q, P(x) is trivial iff x =1 or p is odd and x = —1.
For K =R, and p odd, P(x) is trivial for all x.
For K =R and p =2, P(x) is trivial iff x > 0.



Arithmetic principal bundles: moduli spaces

Given a principal R-bundle P over K, choose z € P. This
determines a continuous function cp : Gk —— R via

g(z) = zcp(g).
It satisfies the ‘cocycle’ condition
cr(8182) = cp(g1)g1(cp(82)),

defining the set Z1(G, R).

We get a well-defined class in non-abelian cohomology
[CP] € R\ZI(GK7 R) =: Hl(GKv R) = Hl(K7 R)7
where the R-action is defined by

c'(g) = re(g)e(r ™).



Arithmetic principal bundles: moduli spaces

This induces a bijection

{Isomorphism classes of principal R-bundles over K} = H'(G, R).

Our main concern is the geometry of non-abelian
cohomology spaces in various forms.

We will endow (refinements of) H(Gk, R) geometric structures
that have applications to Diophantine geometry.

Remark for number theorists:

When R is (the set of Q, points of) a reductive group with trivial
K-structure:

H'(Gk, R) = R\Hom(Gk, R).

These are analytic moduli spaces of Galois representations.



Arithmetic principal bundles: moduli spaces

When K = Q, there are completions Q, and injections

G, = Gal(Q,/Q,) — G = Gal(Q/Q).

giving rise to the localisation map
loc : H'(Q,R) — [ H*(Qv. R).

and an associated local-to-global problem.

In fact, a wide range of problems in number theory rely on the
study of its image. The general principle is that the local-to-global
problem is easier to study for principal bundles than for points.



I11. Diophantine principal bundles



Diophantine principal bundles

The main principal bundles of interest are
7Tl(l\/lu b)
m1(M; b, x)

M is a topological space and where 71(M, b) acts on Py via

(p,g) — pg,

precomposing paths with loops.

In usual topology, somewhat pedantic to distinguish R and P.



Diophantine principal bundles

More structure enters when we replace fundamental groups by
Qp-unipotent completions:

U(m(M, b)) ="m (M, b) ® Qp"
P(m1(M; b, x)) = [m1(M; b, x) x U(m1(M, b))]/m1(M, b).
U(m1(M, b)) is the universal Qp-pro-algebraic group together with

a map
m1(M,b) — U.



Diophantine principal bundles

U(T) can be defined for any group .

Examples:
U(Z)=7®Qp = Qp.

If T is a two-step nilpotent group, then U(I') is a 'Heisenberg’
group that fits into an exact sequence

0— [ M®Q, — UM — M2 Q, — 0.



Diophantine principal bundles

Fundamental fact of arithmetic homotopy:
If X is a variety defined over Q and b, x € X(Q), then
U(X,b) = U(mi(X, b)), P(X;b,x)= P(m(X;b,x))

admit compatible actions of G = Gal(Q/Q).

The triples
(Go, U(X, b), P(X; b, x))

are important concrete examples of (G, R, P) from the general
definitions.

We get thereby moduli spaces of principal bundles:
HY(Q, U(X, b)),

that are limits of algebraic varieties.



Diophantine principal bundles

Using these constructions, we also get a map

Jj: X(Q) — HY(Q, U(X, b))
given by
x — [P(X; b, x)]

For each prime v, have local versions

jv : X(Qv) - Hl(@w U(Xv b))

given by

x = [P(X; b, x)]
which turn out to be computable. These are period maps and
involved non-Archimedean iterated integrals. Put per :=[], ji.



Diophantine principal bundles

Localization diagram:

X(Q)

[[x@)

J per

loc

HY(Q, U(X, b)) — [ H*(@Qv. U(X, b))

The lower row of this diagram is an algebraic map. In particular,
the image

loc(H(Q, U(X, b)) < [ H*(Qv, U(X, b))

is computable in principle.



Diophantine principal bundles

X(Q) ¢ per*(loc[H}(Q, U( ) C HX Q).

We focus then on the p-adic component:

pro: [ X(@) — X(@p).

Non-Archimedean effective Mordell Conjecture:

L | prolper—*(loc[H(Q, U(X, b))])] = X(Q)

. ‘This set is effectively computable. ‘




Diophantine principal bundles

X(Q) [Ix@)
J [T, Jv
HY(@ U(X. b)) — [T HH(@u, U(X. b)) = @
If « is an algebraic function var‘:ishing on the image, then

ao i
v

gives a defining equation for X(Q) inside [, X(Q,).



Diophantine principal bundles

To make this concretely computable, we take the projection
pro: [ X(@) — X(@y)
v
and try to compute

Naprp(Z(a o [[4)) € X(Qp).

This turns out to be an intersection of zero sets of p-adic iterated
integrals.



IV. Computing Rational Points



Computing rational points

For X = P'\ {0,1,00}. This is equivalent to the study of unit
equations, i.e., solutions to

at+b=1

where a and b are both invertible elements in a ring like Z[1/N].

There is an Ss-action on solutions a generated by z +— 1 — z and
z—1/z.



Computing rational points
[Dan-Cohen, Wewers]

In Z[1/2], only solutions a are

{2,-1,1/2} € {Da(2) = 0} N {Da(2) = 0},

where
Da(z) = £2(z) + (1/2) log(z) log(1 — 2),
D4(z) = ¢(3)a(z) + (8/7)[log> 2/24 + £4(1/2)/ log 2] log(z)¢3(z)
+[(4/21)(log® 2/24 + £4(1/2)/ log 2) + ¢(3)/24] log®(z) log(1 — 2),

and
o n

l(z) = Z %
n=1

These equations all occur in the field of p-adic integers Z, for some
p. Numerically, the inclusion appears to be an equality.



Computing rational points

[Alex Betts]
If ¢ is a prime, then solutions in Z[1/¢] are in the zero set of

log(z) =0, La(z) =2
and S3 permutations.

If g, ¢ are primes different from 3 then the solutions in Z[1/qg/]
consists of —1, at most one other point, and S3 permutations.



Computing rational points

Some qualitative results:

[Coates and Kim]

ax"+ by" =c
for n > 4 has only finitely many rational points.
Standard structural conjectures on mixed motives (generalised

BSD)
= There exist many non-zero « as above.

(= Faltings's theorem.)



Computing rational points

A recent result on modular curves by Balakrishnan, Dogra, Mueller,
Tuitmann, Vonk. [Explicit Chabauty-Kim for the split Cartan
modular curve of level 13. Annals of Math. 189]

X;H(N) = X(N)/CH(N),
where X(N) the the compactification of the moduli space of pairs
(E.¢: E[N] =~ (Z/N)?),
and C;(N) C GLy(Z/N) is the normaliser of a split Cartan
subgroup.

Bilu-Parent-Rebolledo had shown that X" (p)(Q) consists entirely
of cusps and CM points for all primes p > 7, p # 13. They called
p = 13 the ‘cursed level'.



Computing rational points

Theorem (BDMTV)

The modular curve
X (13)

has exactly 7 rational points, consisting of the cusp and 6 CM
points.

This concludes an important chapter of a conjecture of Serre from
the 1970s:

There is an absolute constant A such that
Gy — Aut(E[p])

is surjective for all non-CM elliptic curves E/Q and primes p > A.



Computing rational points
[Burcu Baran]

y* +5x* — 6x%y? 4 6x3z + 26x%yz + 10xy?z — 10y>z

—32x22% — 40xyz® + 24y272° + 32xz° — 16yz° = 0

Figure: The cursed curve

{(1:1:1), (1:1:2), (0:0:1), (-3:3:2), (1:1:0), (0,2:1), (-1:1:0) }



V. Why Diophantine Equations?



Why Diophantine Equations?

In arithmetic geometry, the basic number systems are finitely
generated rings:

Z[1/N][a1, an, a3, ..., ap).

The «; could be algebraic numbers like /2, /691, €2™//™  or

transcendental numbers like 7, e, V2.

These are number systems with intrinsic discreteness.

Given a finitely-generated ring A, arithmetic geometers associate to
it a geometric space called the spectrum of A:

Spec(A).

An arithmetic scheme is glued out of finitely many such spectra.
These are the main space of study in arithmetic geometry.



Why Diophantine Equations?

Ubiquity of arithmetic schemes:

All objects in algebraic geometry have an underlying arithmetic
scheme:

f(x1,x2,...,xn) =0 <> Spec(R[x1,x2, ..., xn]/(f)) =: X

where R is the ring generated by the coefficients of f.

So we can look for solutions in any ring T O R. Denote by X(T)
the solutions in T.

[In fact, Faltings's theorem implies that when X is a curve of genus
at least two, X(T) is finite for any finitely-generated T ]



Why Diophantine Equations?

Ubiquity of arithmetic schemes:

If M is compact manifold, then it is diffeomorphic to X(R), where
X is an arithmetic scheme. [Nash-Tognoli]

If ¥ is a compact Riemann surface, then it is conformally equivalent
to X(C), where X is an arithmetic scheme.

Can consider X(A) C X(C) for finitely-generated A C C.
These are natural discrete subsets of world-sheets of strings.

Similarly for
X(A) € X(R) = M

and compact manifolds.



Why Diophantine Equations?

For either X(R) or X(C), have a sequence of natural discrete
approximations

X(A1) C X(A2) € X(A3) C --- € X(R) (X(C))

as we run over finitely-generated number systems A;.
Is this a 'practical’ approximation?

First need to know how to compute the X(A;). If the
computational problem were easy, we might consider applications
more freely.



