
Some Recent Progress on Diophantine Equations
In Two-Variables

Minhyong Kim
University of Warwick

Rochester, May, 2021



I. Background: Arithmetic of Algebraic Curves



Arithmetic of algebraic curves

X : a smooth algebraic curve of genus g defined over Q.

For example, given by a polynomial equation

f (x , y) = 0

of degree d with rational coefficients, where

g = (d − 1)(d − 2)/2.

Diophantine geometry studies the set X (Q) of rational solutions
from a geometric point of view.

Structure is quite different in the three cases:

g = 0, spherical geometry (positive curvature);
g = 1, flat geometry (zero curvature);
g ≥ 2, hyperbolic geometry (negative curvature).



Arithmetic of algebraic curves: g = 0, d = 2

Even now (after millennia of studying these problems), g = 0 is the
only case that is completely understood.

For g = 0, techniques reduce to class field theory and algebraic
geometry: local-to-global methods, generation of solutions via
sweeping lines, etc.

Idea is to study Q-solutions by considering the geometry of
solutions in various completions, the local fields

R,Q2,Q3, . . . ,Q691, . . . ,
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Arithmetic of algebraic curves: g = 0

Local-to-global methods sometimes allow us to ‘globalise’. For
example,

37x2 + 59y2 − 67 = 0

has a Q-solution if and only if it has a solution in each of
R,Q2,Q37,Q59,Q67, a criterion that can be effectively
implemented. This is called the Hasse principle.

If the existence of a solution is guaranteed, it can be found by an
exhaustive search. From one solution, there is a method for
parametrising all others: for example, from (0,−1), generate
solutions

(
t2 − 1
t2 + 1

,
2t

t2 + 1
)

to x2 + y2 = 1.



Arithmetic of algebraic curves: g = 0

Figure: Method of sweeping lines

Sweep through the circle with all lines with rational slope going
through the point (−1, 0).



Arithmetic of algebraic curves: g = 0

A key ingredient here is a successful study of the inclusion

X (Q) ⊂
∏

X (Qp)

coming from reciprocity laws (class field theory).



Arithmetic of algebraic curves: g = 1 (d = 3)

X (Q) = φ, non-empty finite, infinite, all are possible.

Hasse principle fails:

3x3 + 4y3 + 5 = 0

has points in Qv for all v , but no rational points.

Even when X (Q) 6= φ, difficult to describe the full set.

But fixing an origin O ∈ X (Q) gives X (Q) the structure of an
abelian group via the chord-and-tangent method.



Arithmetic of algebraic curves: g = 1 (d = 3)

(Mordell)
X (Q) ' X (Q)tor × Zr .

Here, r is called the rank of the curve and X (Q)tor is a finite
effectively computable abelian group.



Arithmetic of algebraic curves: g = 1

To compute X (Q)tor , write

X := {y2 = x3 + ax + b} ∪ {∞}

(a, b ∈ Z).

Then (x , y) ∈ X (Q)tor ⇒ x , y are integral and

y2|(4a3 + 27b2).



Arithmetic of algebraic curves: g = 1

However, the algorithmic computation of the rank and a full set of
generators for X (Q) is very difficult, and is the subject of the
conjecture of Birch and Swinnerton-Dyer.

In practice, it is often possible to compute these. For example, for

y2 = x3 − 2,

Sage will give you r = 1 and the point (3, 5) as generator.

The algorithm *uses* the BSD conjecture.



Arithmetic of algebraic curves: g = 1
Note that

2(3, 5) = (129/100,−383/1000)

3(3, 5) = (164323/29241,−66234835/5000211)

4(3, 5) = (2340922881/58675600, 113259286337279/449455096000)

Figure: Denominators of N(3, 5)



Arithmetic of algebraic curves: g ≥ 2 (d ≥ 4)
X (Q) is always finite (Mordell conjecture as proved by Faltings)

However, *very* difficult to compute: consider

xn + yn = 1

for n ≥ 4.

Sometime easy, such as

x4 + y4 = −1.

However, when there isn’t an obvious reason for non-existence, e.g.,
there already is one solution, then it’s hard to know when you have
the full list. For example,

y3 = x6 + 23x5 + 37x4 + 691x3 − 631204x2 + 5169373941

obviously has the solution (1, 1729), but are there any others?



Arithmetic of algebraic curves: g ≥ 2 (d ≥ 4)

Effective Mordell problem:

Find a terminating algorithm: X 7→ X (Q)

The Effective Mordell conjecture (Szpiro, Vojta, ABC, ...)
makes this precise using (archimedean) height inequalities. That is,
it proposes that you can give a priori bounds on the size of
numerators and denominators of solutions.

Will describe today an approach to this problem using the
(non-archimedean) arithmetic geometry of principal bundles.



Arithmetic of algebraic curves: g ≥ 2 (d ≥ 4)

Basic idea:
X (Q) -

∏
v

X (Qv )

M
? loc

-
∏
v

Mv

?

”X (Q) = [
∏
v

X (Qv )] ∩M”

The spacesM andMv are moduli spaces of arithmetic principal
bundles.



II. Arithmetic Principal Bundles



General principle:

Bundle on X/G ↔ G -equivariant bundle on X



Principal Bundles

Basic case:

R group, P set with simple transitive R-action

P × G - P

Thus, choice of any z ∈ P induces a bijection

R ' P

r 7→ zr .

All objects could have more structure, for example, a topology.



Principal Bundles

Could also have a family of such things over a space M:

f : P - M

a fibre bundle with right action of R such that locally over
sufficiently small open U ⊂ M,

PU = f −1(U)

is isomorphic to R × U.

That is, a choice of a section s : U - PU induces an
isomorphism

R × U ' PU

(r , u) 7→ s(u)r .



Arithmetic principal bundles: (GK ,R ,P)

K : field of characteristic zero.
GK = Gal(K̄/K ): absolute Galois group of K . Topological group
with open subgroups given by Gal(K̄/L) for finite field extensions
L/K in K̄ .

A group over K is a topological group R with a continuous action
of GK by group automorphisms:

GK × R - R.

In an abstract framework, one can view R as a family of groups

over the space Spec(K ).

Example:
R = A(K̄ ),

where A is an algebraic group defined over K , e.g., GLn or an
abelian variety. Here, R has the discrete topology.



Arithmetic principal bundles

Example:

R = Zp(1) := lim←−µpn ,

where µpn ⊂ K̄ is the group of pn-th roots of 1.

Thus,
Zp(1) = {(ζn)n},

where
ζp

n

n = 1; ζp
m

nm = ζn.

As a group,
Zp(1) ' Zp = lim←−

n

Z/pn,

but there is a continuous action of GK .



Arithmetic principal bundles: (GK ,R ,P)

A principal R-bundle over K is a topological space P with
compatible continuous actions of GK (left) and R (right, simply
transitive):

P × R - P;

GK × P - P;

g(zr) = g(z)g(r)

for g ∈ GK , z ∈ P , r ∈ R .

Note that P is trivial, i.e., ∼= R , exactly when there is a fixed point
z ∈ PGK :

R ∼= z × R ∼= P.



Arithmetic principal bundles

Example:

Given any x ∈ K ∗, get principal Zp(1)-bundle

P(x) := {(yn)n | yp
n

n = x , yp
m

nm = yn.}

over K .

P(x) is trivial iff x admits a pn-th root in K for all n.

For example, when K = C, P(x) is always trivial.

When K = Q, P(x) is trivial iff x = 1 or p is odd and x = −1.

For K = R, and p odd, P(x) is trivial for all x .

For K = R and p = 2, P(x) is trivial iff x > 0.



Arithmetic principal bundles: moduli spaces
Given a principal R-bundle P over K , choose z ∈ P . This
determines a continuous function cP : GK

- R via

g(z) = zcP(g).

It satisfies the ‘cocycle’ condition

cP(g1g2) = cP(g1)g1(cP(g2)),

defining the set Z 1(G ,R).

We get a well-defined class in non-abelian cohomology

[cP ] ∈ R\Z 1(GK ,R) =: H1(GK ,R) = H1(K ,R),

where the R-action is defined by

c r (g) = rc(g)g(r−1).



Arithmetic principal bundles: moduli spaces

This induces a bijection

{Isomorphism classes of principal R-bundles over K} ∼= H1(GK ,R).

Our main concern is the geometry of non-abelian
cohomology spaces in various forms.

We will endow (refinements of) H1(GK ,R) geometric structures
that have applications to Diophantine geometry.

Remark for number theorists:

When R is (the set of Qp points of) a reductive group with trivial
K -structure:

H1(GK ,R) = R\Hom(GK ,R).

These are analytic moduli spaces of Galois representations.



Arithmetic principal bundles: moduli spaces

When K = Q, there are completions Qv and injections

Gv = Gal(Q̄v/Qv ) ⊂ - G = Gal(Q̄/Q).

giving rise to the localisation map

loc : H1(Q,R) -
∏
v

H1(Qv ,R).

and an associated local-to-global problem.

In fact, a wide range of problems in number theory rely on the
study of its image. The general principle is that the local-to-global
problem is easier to study for principal bundles than for points.



III. Diophantine principal bundles



Diophantine principal bundles

The main principal bundles of interest are

π1(M, b)

π1(M; b, x)

M is a topological space and where π1(M, b) acts on Ptop via

(p, g) 7→ pg ,

precomposing paths with loops.

In usual topology, somewhat pedantic to distinguish R and P .



Diophantine principal bundles

More structure enters when we replace fundamental groups by
Qp-unipotent completions:

U(π1(M, b)) = ”π1(M, b)⊗Qp”

P(π1(M; b, x)) = [π1(M; b, x)× U(π1(M, b))]/π1(M, b).

U(π1(M, b)) is the universal Qp-pro-algebraic group together with
a map

π1(M, b) - U.



Diophantine principal bundles

U(Γ) can be defined for any group Γ.

Examples:

U(Z) = Z⊗Qp = Qp.

If Γ is a two-step nilpotent group, then U(Γ) is a ’Heisenberg’
group that fits into an exact sequence

0 - [Γ, Γ]⊗Qp
- U(Γ) - Γab ⊗Qp

- 0.



Diophantine principal bundles
Fundamental fact of arithmetic homotopy:

If X is a variety defined over Q and b, x ∈ X (Q), then

U(X , b) = U(π1(X , b)), P(X ; b, x) = P(π1(X ; b, x))

admit compatible actions of G = Gal(Q̄/Q).

The triples
(GQ,U(X , b),P(X ; b, x))

are important concrete examples of (GK ,R,P) from the general
definitions.

We get thereby moduli spaces of principal bundles:

H1(Q,U(X , b)),

that are limits of algebraic varieties.



Diophantine principal bundles

Using these constructions, we also get a map

j : X (Q) - H1(Q,U(X , b))

given by
x 7→ [P(X ; b, x)]

For each prime v , have local versions

jv : X (Qv ) - H1(Qv ,U(X , b))

given by
x 7→ [P(X ; b, x)]

which turn out to be computable. These are period maps and
involved non-Archimedean iterated integrals. Put per :=

∏
v jv .



Diophantine principal bundles

Localization diagram:

X (Q) -
∏
v

X (Qv )

H1(Q,U(X , b))

j

?
loc
-

∏
v

H1(Qv ,U(X , b))

per

?

The lower row of this diagram is an algebraic map. In particular,
the image

loc(H1(Q,U(X , b))) ⊂
∏
v

H1(Qv ,U(X , b))

is computable in principle.



Diophantine principal bundles

X (Q) ⊂ per−1(loc[H1(Q,U(X , b))]) ⊂
∏
v

X (Qv ).

We focus then on the p-adic component:

prp :
∏
v

X (Qv ) - X (Qp).

Non-Archimedean effective Mordell Conjecture:

I. prp[per−1(loc[H1(Q,U(X , b))])] = X (Q)

II. This set is effectively computable.



Diophantine principal bundles

X (Q) -
∏
v

X (Qv )

H1(Q,U(X , b))

j

?
-

∏
v

H1(Qv ,U(X , b))

∏
v jv

?
α
- Qp

If α is an algebraic function vanishing on the image, then

α ◦
∏
v

jv

gives a defining equation for X (Q) inside
∏

v X (Qv ).



Diophantine principal bundles

To make this concretely computable, we take the projection

prp :
∏
v

X (Qv ) - X (Qp)

and try to compute

∩αprp(Z (α ◦
∏
v

jv )) ⊂ X (Qp).

This turns out to be an intersection of zero sets of p-adic iterated
integrals.



IV. Computing Rational Points



Computing rational points

For X = P1 \ {0, 1,∞}. This is equivalent to the study of unit
equations, i.e., solutions to

a + b = 1

where a and b are both invertible elements in a ring like Z[1/N].

There is an S3-action on solutions a generated by z 7→ 1− z and
z 7→ 1/z .



Computing rational points
[Dan-Cohen, Wewers]

In Z[1/2], only solutions a are

{2,−1, 1/2} ⊂ {D2(z) = 0} ∩ {D4(z) = 0},

where
D2(z) = `2(z) + (1/2) log(z) log(1− z),

D4(z) = ζ(3)`4(z) + (8/7)[log3 2/24 + `4(1/2)/ log 2] log(z)`3(z)

+[(4/21)(log3 2/24 + `4(1/2)/ log 2) + ζ(3)/24] log3(z) log(1− z),

and

`k(z) =
∞∑
n=1

zn

nk
.

These equations all occur in the field of p-adic integers Zp for some
p. Numerically, the inclusion appears to be an equality.



Computing rational points

[Alex Betts]
If ` is a prime, then solutions in Z[1/`] are in the zero set of

log(z) = 0, L2(z) = 2

and S3 permutations.

If q, ` are primes different from 3 then the solutions in Z[1/q`]
consists of −1, at most one other point, and S3 permutations.



Computing rational points

Some qualitative results:

[Coates and Kim]

axn + byn = c

for n ≥ 4 has only finitely many rational points.

Standard structural conjectures on mixed motives (generalised
BSD)
⇒ There exist many non-zero α as above.

(⇒ Faltings’s theorem.)



Computing rational points

A recent result on modular curves by Balakrishnan, Dogra, Mueller,
Tuitmann, Vonk. [Explicit Chabauty-Kim for the split Cartan
modular curve of level 13. Annals of Math. 189]

X+
s (N) = X (N)/C+

s (N),

where X (N) the the compactification of the moduli space of pairs

(E , φ : E [N] ' (Z/N)2),

and C+
s (N) ⊂ GL2(Z/N) is the normaliser of a split Cartan

subgroup.

Bilu-Parent-Rebolledo had shown that X+
s (p)(Q) consists entirely

of cusps and CM points for all primes p > 7, p 6= 13. They called
p = 13 the ‘cursed level’.



Computing rational points

Theorem (BDMTV)
The modular curve

X+
s (13)

has exactly 7 rational points, consisting of the cusp and 6 CM
points.

This concludes an important chapter of a conjecture of Serre from
the 1970s:

There is an absolute constant A such that

GQ - Aut(E [p])

is surjective for all non-CM elliptic curves E/Q and primes p > A.



Computing rational points
[Burcu Baran]

y4 + 5x4 − 6x2y2 + 6x3z + 26x2yz + 10xy2z − 10y3z

−32x2z2 − 40xyz2 + 24y2z2 + 32xz3 − 16yz3 = 0

Figure: The cursed curve

{(1:1:1), (1:1:2), (0:0:1), (-3:3:2), (1:1:0), (0,2:1), (-1:1:0) }



V. Why Diophantine Equations?



Why Diophantine Equations?

In arithmetic geometry, the basic number systems are finitely
generated rings:

Z[1/N][α1, α2, α3, . . . , αn].

The αi could be algebraic numbers like
√
2,
√
691, e2πi/m, or

transcendental numbers like π, e, e
√

2.

These are number systems with intrinsic discreteness.

Given a finitely-generated ring A, arithmetic geometers associate to
it a geometric space called the spectrum of A:

Spec(A).

An arithmetic scheme is glued out of finitely many such spectra.
These are the main space of study in arithmetic geometry.



Why Diophantine Equations?

Ubiquity of arithmetic schemes:

All objects in algebraic geometry have an underlying arithmetic
scheme:

f (x1, x2, . . . , xn) = 0↔ Spec(R[x1, x2, . . . , xn]/(f )) =: X

where R is the ring generated by the coefficients of f .

So we can look for solutions in any ring T ⊃ R . Denote by X (T )
the solutions in T .

[In fact, Faltings’s theorem implies that when X is a curve of genus
at least two, X (T ) is finite for any finitely-generated T .]



Why Diophantine Equations?

Ubiquity of arithmetic schemes:

If M is compact manifold, then it is diffeomorphic to X (R), where
X is an arithmetic scheme. [Nash-Tognoli]

If Σ is a compact Riemann surface, then it is conformally equivalent
to X (C), where X is an arithmetic scheme.

Can consider X (A) ⊂ X (C) for finitely-generated A ⊂ C.

These are natural discrete subsets of world-sheets of strings.

Similarly for
X (A) ⊂ X (R) = M

and compact manifolds.



Why Diophantine Equations?

For either X (R) or X (C), have a sequence of natural discrete
approximations

X (A1) ⊂ X (A2) ⊂ X (A3) ⊂ · · · ⊂ X (R) (X (C))

as we run over finitely-generated number systems Ai .

Is this a ’practical’ approximation?

First need to know how to compute the X (Ai ). If the
computational problem were easy, we might consider applications
more freely.


