Tate conjectures in function field arithmetic

 $\mathsf{M}. \ \mathsf{Mornev}^*$

ETH Zürich

Upstate New York Online Number Theory Colloquium 2020

* Supported by ETH Zürich Postdoctoral Fellowship Program, Marie Skłodowska-Curie Actions COFUND program

- \mathbb{F}_q , a field of finite cardinality q.
- $A = \mathbb{F}_q[t]$, the ring of coefficients. $F = \mathbb{F}_q(t)$, the fraction field of A.
- K, a field over \mathbb{F}_q .

• \mathbb{F}_q , a field of finite cardinality q.

- $A = \mathbb{F}_q[t]$, the ring of coefficients. $F = \mathbb{F}_q(t)$, the fraction field of A.
- K, a field over \mathbb{F}_q .

- \mathbb{F}_q , a field of finite cardinality q.
- $A = \mathbb{F}_q[t]$, the ring of coefficients. $F = \mathbb{F}_q(t)$, the fraction field of A.
- K, a field over \mathbb{F}_q .

- \mathbb{F}_q , a field of finite cardinality q.
- $A = \mathbb{F}_q[t]$, the ring of coefficients. $F = \mathbb{F}_q(t)$, the fraction field of A.
- K, a field over \mathbb{F}_q .

- \mathbb{F}_q , a field of finite cardinality q.
- $A = \mathbb{F}_q[t]$, the ring of coefficients. $F = \mathbb{F}_q(t)$, the fraction field of A.
- K, a field over \mathbb{F}_q .

- \mathbb{F}_q , a field of finite cardinality q.
- $A = \mathbb{F}_q[t]$, the ring of coefficients. $F = \mathbb{F}_q(t)$, the fraction field of A.
- K, a field over \mathbb{F}_q .

Usual motives have coefficient ring $\mathbb{Z}:$ the category is $\mathbb{Z}\text{-linear}.$ E.g. abelian varieties, algebraic tori.

An A-module scheme E is

- an abelian group scheme *E* over Spec *K*,
- equipped with an action of the ring $A = \mathbb{F}_q[t]$.

An A-module scheme E is

- an abelian group scheme E over Spec K,
- equipped with an action of the ring $A = \mathbb{F}_q[t]$.

An *A-module scheme E* is

- an abelian group scheme E over Spec K,
- equipped with an action of the ring $A = \mathbb{F}_q[t]$.

An A-module scheme E is

- an abelian group scheme E over Spec K,
- equipped with an action of the ring $A = \mathbb{F}_q[t]$.

Anderson's motive of E

$$M(E) = \operatorname{Hom}_{\mathbb{F}_q}(E, \mathbb{G}_{a,K}).$$

 $E \mapsto M(E)$ is a *contravariant* functor.

An *A-module scheme E* is

- an abelian group scheme E over Spec K,
- equipped with an action of the ring $A = \mathbb{F}_q[t]$.

Anderson's motive of E

$$M(E) = \operatorname{Hom}_{\mathbb{F}_q}(E, \mathbb{G}_{a,K}).$$

An *A-module scheme E* is

- an abelian group scheme E over Spec K,
- equipped with an action of the ring $A = \mathbb{F}_q[t]$.

Anderson's motive of E

 $M(E) = \operatorname{Hom}_{\mathbb{F}_q}(E, \mathbb{G}_{a,K}).$

M(E) carries a left action of the ring $K[t]{\tau}$:

 $K[t] = K \otimes_{\mathbb{F}_q} A, \quad \sigma \colon x \otimes a \mapsto x^q \otimes a$

An *A-module scheme E* is

- an abelian group scheme E over Spec K,
- equipped with an action of the ring $A = \mathbb{F}_q[t]$.

Anderson's motive of E

 $M(E) = \operatorname{Hom}_{\mathbb{F}_q}(E, \mathbb{G}_{a,K}).$

$$\begin{aligned} &\mathcal{K}[t] = \mathcal{K} \otimes_{\mathbb{F}_q} \mathcal{A}, \quad \sigma : \times \otimes a \mapsto \times^q \otimes a \\ &\mathcal{K}[t]\{\tau\} = \{ y_0 + y_1\tau + \ldots + y_n\tau^n \mid y_i \in \mathcal{K}[t] \} \end{aligned}$$

An A-module scheme E is

- an abelian group scheme E over Spec K,
- equipped with an action of the ring $A = \mathbb{F}_q[t]$.

Anderson's motive of E

 $M(E) = \operatorname{Hom}_{\mathbb{F}_q}(E, \mathbb{G}_{a,K}).$

$$\begin{split} & \mathcal{K}[t] = \mathcal{K} \otimes_{\mathbb{F}_q} \mathcal{A}, \quad \sigma : \times \otimes a \mapsto \times^q \otimes a \\ & \mathcal{K}[t]\{\tau\} = \{ y_0 + y_1\tau + \ldots + y_n\tau^n \mid y_i \in \mathcal{K}[t] \} \\ & \tau \cdot y = \sigma(y) \cdot \tau \quad \forall y \in \mathcal{K}[t] \end{split}$$

An A-module scheme E is

- an abelian group scheme E over Spec K,
- equipped with an action of the ring $A = \mathbb{F}_q[t]$.

Anderson's motive of E

 $M(E) = \operatorname{Hom}_{\mathbb{F}_q}(E, \mathbb{G}_{a,K}).$

$$\begin{split} & \mathcal{K}[t] = \mathcal{K} \otimes_{\mathbb{F}_q} \mathcal{A}, \quad \sigma \colon x \otimes \mathbf{a} \mapsto x^q \otimes \mathbf{a} \\ & \mathcal{K}[t]\{\tau\} = \{ y_0 + y_1\tau + \ldots + y_n\tau^n \mid y_i \in \mathcal{K}[t] \} \\ & \tau \cdot y = \sigma(y) \cdot \tau \quad \forall y \in \mathcal{K}[t] \end{split}$$

An *A-module scheme E* is

- an abelian group scheme E over Spec K,
- equipped with an action of the ring $A = \mathbb{F}_q[t]$.

Anderson's motive of E

$$M(E) = \operatorname{Hom}_{\mathbb{F}_q}(E, \mathbb{G}_{a,K}).$$

M(E) carries a left action of the ring $K[t]{\tau}$:

$$\begin{split} & \mathcal{K}[t] = \mathcal{K} \otimes_{\mathbb{F}_q} \mathcal{A}, \quad \sigma \colon x \otimes a \mapsto x^q \otimes a \\ & \mathcal{K}[t]\{\tau\} = \{ y_0 + y_1\tau + \ldots + y_n\tau^n \mid y_i \in \mathcal{K}[t] \} \\ & \tau \cdot y = \sigma(y) \cdot \tau \quad \forall y \in \mathcal{K}[t] \end{split}$$

K{τ} = End_{F_q}(G_{a,K}) acts by composition on the left.
A acts by composition on the right.

An A-module scheme E is

- an abelian group scheme E over Spec K,
- equipped with an action of the ring $A = \mathbb{F}_q[t]$.

Anderson's motive of E

$$M(E) = \operatorname{Hom}_{\mathbb{F}_q}(E, \mathbb{G}_{a,K}).$$

M(E) carries a left action of the ring $K[t]{\tau}$:

$$\begin{split} & \mathcal{K}[t] = \mathcal{K} \otimes_{\mathbb{F}_q} \mathcal{A}, \quad \sigma \colon x \otimes a \mapsto x^q \otimes a \\ & \mathcal{K}[t]\{\tau\} = \{ y_0 + y_1\tau + \ldots + y_n\tau^n \mid y_i \in \mathcal{K}[t] \} \\ & \tau \cdot y = \sigma(y) \cdot \tau \quad \forall y \in \mathcal{K}[t] \end{split}$$

K{τ} = End_{F_q}(G_{a,K}) acts by composition on the left.
A acts by composition on the right.

An *A-module scheme E* is

- an abelian group scheme E over Spec K,
- equipped with an action of the ring $A = \mathbb{F}_q[t]$.

Anderson's motive of E

$$M(E) = \operatorname{Hom}_{\mathbb{F}_q}(E, \mathbb{G}_{a,K}).$$

M(E) carries a left action of the ring $K[t]{\tau}$:

$$\begin{split} & \mathcal{K}[t] = \mathcal{K} \otimes_{\mathbb{F}_q} \mathcal{A}, \quad \sigma \colon x \otimes a \mapsto x^q \otimes a \\ & \mathcal{K}[t]\{\tau\} = \{ y_0 + y_1\tau + \ldots + y_n\tau^n \mid y_i \in \mathcal{K}[t] \} \\ & \tau \cdot y = \sigma(y) \cdot \tau \quad \forall y \in \mathcal{K}[t] \end{split}$$

K{τ} = End_{Fq}(G_{a,K}) acts by composition on the left.
A acts by composition on the right.

- *E* is isomorphic to a finite product of copies of $\mathbb{G}_{a,K}$.
- the motive M(E) is finitely generated projective over K[t].

- *E* is isomorphic to a finite product of copies of $\mathbb{G}_{a,K}$.
- the motive M(E) is finitely generated projective over K[t].

- *E* is isomorphic to a finite product of copies of $\mathbb{G}_{a,K}$.
- the motive M(E) is finitely generated projective over K[t].

- *E* is isomorphic to a finite product of copies of $\mathbb{G}_{a,K}$.
- the motive M(E) is finitely generated projective over K[t].

an A-module scheme E over Spec K such that

- *E* is isomorphic to a finite product of copies of $\mathbb{G}_{a,K}$.
- the motive M(E) is finitely generated projective over K[t].

M(E) is finitely generated projective over $K\{\tau\} \subset K[t]\{\tau\}$.

an A-module scheme E over Spec K such that

- *E* is isomorphic to a finite product of copies of $\mathbb{G}_{a,K}$.
- the motive M(E) is finitely generated projective over K[t].

M(E) is finitely generated projective over $K{\tau} \subset K[t]{\tau}$. NB: $K[t]{\tau} = K[t] \otimes_{\kappa} K{\tau}$.

an A-module scheme E over Spec K such that

- *E* is isomorphic to a finite product of copies of $\mathbb{G}_{a,K}$.
- the motive M(E) is finitely generated projective over K[t].

M(E) is finitely generated projective over $K{\tau} \subset K[t]{\tau}$. NB: $K[t]{\tau} = K[t] \otimes_{\kappa} K{\tau}$.

an A-module scheme E over Spec K such that

- *E* is isomorphic to a finite product of copies of $\mathbb{G}_{a,K}$.
- the motive M(E) is finitely generated projective over K[t].

M(E) is finitely generated projective over $K{\tau} \subset K[t]{\tau}$. NB: $K[t]{\tau} = K[t] \otimes_{\kappa} K{\tau}$.

- The rank of E is the rank of M(E) over K[t].
- The dimension of E is the rank of M(E) over $K\{\tau\}$.

an A-module scheme E over Spec K such that

- *E* is isomorphic to a finite product of copies of $\mathbb{G}_{a,K}$.
- the motive M(E) is finitely generated projective over K[t].

M(E) is finitely generated projective over $K{\tau} \subset K[t]{\tau}$. NB: $K[t]{\tau} = K[t] \otimes_{\kappa} K{\tau}$.

- The rank of E is the rank of M(E) over K[t].
- The dimension of E is the rank of M(E) over $K\{\tau\}$.

A Drinfeld A-module is an Anderson A-module of dimension 1.

Example

- $E = \mathbb{G}_{a,K}$
- Action of t on E is given by $\alpha + \tau + \tau^2$.

Example

- $E = \mathbb{G}_{a,K}$
- Action of t on E is given by $\alpha + \tau + \tau^2$.

 $\operatorname{End}_{\mathbb{F}_q}(\mathbb{G}_{a,K}) = K\{\tau\}$, hence $M(E) = K\{\tau\}$.

Example

- $E = \mathbb{G}_{a,K}$
- Action of t on E is given by $\alpha + \tau + \tau^2$.

End_{\mathbb{F}_q}($\mathbb{G}_{a,K}$) = $K{\tau}$, hence $M(E) = K{\tau}$. Claim: M(E) is generated by 1, τ over K[t].

Example

- $E = \mathbb{G}_{a,K}$
- Action of t on E is given by $\alpha + \tau + \tau^2$.

End_{\mathbb{F}_q}($\mathbb{G}_{a,K}$) = $K{\tau}$, hence $M(E) = K{\tau}$. Claim: M(E) is generated by 1, τ over K[t].

$$t \cdot \tau^n$$

Example

- $E = \mathbb{G}_{a,K}$
- Action of t on E is given by $\alpha + \tau + \tau^2$.

End_{\mathbb{F}_q}($\mathbb{G}_{a,K}$) = $K{\tau}$, hence $M(E) = K{\tau}$. Claim: M(E) is generated by 1, τ over K[t].

$$t \cdot \tau^n = \tau^n \cdot (\alpha + \tau + \tau^2)$$

Example

- $E = \mathbb{G}_{a,K}$
- Action of t on E is given by $\alpha + \tau + \tau^2$.

End_{**F**_q}(**G**_{*a*,*K*}) = $K{\tau}$, hence $M(E) = K{\tau}$. Claim: M(E) is generated by 1, τ over K[t].

$$t \cdot \tau^n = \tau^n \cdot (\alpha + \tau + \tau^2) = \alpha^{q^n} \tau^n + \tau^{n+1} + \tau^{n+2}$$
Pick $\alpha \in K$.

Example

- $E = \mathbb{G}_{a,K}$
- Action of t on E is given by $\alpha + \tau + \tau^2$.

End_{**F**_q}(**G**_{*a*,*K*}) = $K{\tau}$, hence $M(E) = K{\tau}$. Claim: M(E) is generated by 1, τ over K[t].

$$t \cdot \tau^{n} = \tau^{n} \cdot (\alpha + \tau + \tau^{2}) = \alpha^{q^{n}} \tau^{n} + \tau^{n+1} + \tau^{n+2}$$

$$\tau^{n+2} = (t - \alpha^{q^{n}}) \cdot \tau^{n} - \tau^{n+1}$$

Pick $\alpha \in K$.

Example

- $E = \mathbb{G}_{a,K}$
- Action of t on E is given by $\alpha + \tau + \tau^2$.

End_{**F**_q}(**G**_{*a*,*K*}) = $K{\tau}$, hence $M(E) = K{\tau}$. Claim: M(E) is generated by 1, τ over K[t].

$$t \cdot \tau^{n} = \tau^{n} \cdot (\alpha + \tau + \tau^{2}) = \alpha^{q^{n}} \tau^{n} + \tau^{n+1} + \tau^{n+2}$$

$$\tau^{n+2} = (t - \alpha^{q^{n}}) \cdot \tau^{n} - \tau^{n+1}$$

Pick $\alpha \in K$.

Example

- $E = \mathbb{G}_{a,K}$
- Action of t on E is given by $\alpha + \tau + \tau^2$.

End_{**F**_q}(**G**_{*a*,*K*}) = $K{\tau}$, hence $M(E) = K{\tau}$. Claim: M(E) is generated by 1, τ over K[t].

$$t \cdot \tau^{n} = \tau^{n} \cdot (\alpha + \tau + \tau^{2}) = \alpha^{q^{n}} \tau^{n} + \tau^{n+1} + \tau^{n+2}$$

$$\tau^{n+2} = (t - \alpha^{q^{n}}) \cdot \tau^{n} - \tau^{n+1}$$

Conclusion: E is an Anderson module of dimension 1 and rank 2.

The tangent space at 0

And erson: Lie(E) is supported at a rational point of the curve Spec K[t]/Spec K.

And erson: Lie(E) is supported at a rational point of the curve Spec K[t]/Spec K. We do not demand this.

And erson: Lie(E) is supported at a rational point of the curve Spec K[t]/Spec K. We do not demand this.

And erson: Lie(E) is supported at a rational point of the curve Spec K[t]/Spec K. We do not demand this.

- There are only finitely many special primes.
- Special primes always exist if K is finite.
- For Drinfeld modules there is at most one special prime.

And erson: Lie(E) is supported at a rational point of the curve Spec K[t]/Spec K. We do not demand this.

- There are only finitely many special primes.
- Special primes always exist if K is finite.
- For Drinfeld modules there is at most one special prime.

And erson: Lie(E) is supported at a rational point of the curve Spec K[t]/Spec K. We do not demand this.

- There are only finitely many special primes.
- Special primes always exist if K is finite.
- For Drinfeld modules there is at most one special prime.

And erson: Lie(E) is supported at a rational point of the curve Spec K[t]/Spec K. We do not demand this.

- There are only finitely many special primes.
- Special primes always exist if K is finite.
- For Drinfeld modules there is at most one special prime.

And erson: Lie(E) is supported at a rational point of the curve Spec K[t]/Spec K. We do not demand this.

A nonzero prime $\mathfrak{p} \subset A$ is special if $\text{Lie}(E)[\mathfrak{p}] \neq 0$. Otherwise \mathfrak{p} is called *generic*.

- There are only finitely many special primes.
- Special primes always exist if K is finite.
- For Drinfeld modules there is at most one special prime.

In the example: a prime $\mathfrak{p} = (f)$ is special if and only if $f(\alpha) = 0$. If α is transcendental over \mathbb{F}_q then every prime is generic.

Tate modules

A nonzero prime ideal $\mathfrak{p} \subset A$.

A nonzero prime ideal $\mathfrak{p} \subset A$. Completion $A_{\mathfrak{p}}$, local field $F_{\mathfrak{p}}$.

A nonzero prime ideal $\mathfrak{p} \subset A$. Completion $A_{\mathfrak{p}}$, local field $F_{\mathfrak{p}}$. A separable closure K^s/K .

$$T_{\mathfrak{p}}E = \operatorname{Hom}_{\mathcal{A}}(F_{\mathfrak{p}}/A_{\mathfrak{p}}, E(K^{s}))$$

$$T_p E = \operatorname{Hom}_{\mathbb{Z}}(\mathbb{Q}_p/\mathbb{Z}_p, E(K^s))$$

$T_{\mathfrak{p}}E = \operatorname{Hom}_{\mathcal{A}}(F_{\mathfrak{p}}/A_{\mathfrak{p}}, E(K^{s}))$

- Finitely generated free over A_p.
- Continuous action of $G_K = \text{Gal}(K^s/K)$.
- $\operatorname{rk} T_{\mathfrak{p}}E \leq \operatorname{rk} M(E)$
- $\operatorname{rk} T_{\mathfrak{p}}E = \operatorname{rk} M(E) \Leftrightarrow \mathfrak{p}$ is generic.

$$T_{\mathfrak{p}}E = \operatorname{Hom}_{\mathcal{A}}(F_{\mathfrak{p}}/A_{\mathfrak{p}}, E(K^{s}))$$

- Finitely generated free over A_p.
- Continuous action of $G_K = \text{Gal}(K^s/K)$.
- $\operatorname{rk} T_{\mathfrak{p}} E \leq \operatorname{rk} M(E)$
- $\operatorname{rk} T_{\mathfrak{p}}E = \operatorname{rk} M(E) \Leftrightarrow \mathfrak{p}$ is generic.

$$T_{\mathfrak{p}}E = \operatorname{Hom}_{\mathcal{A}}(F_{\mathfrak{p}}/A_{\mathfrak{p}}, E(K^{s}))$$

- Finitely generated free over A_p.
- Continuous action of $G_K = \text{Gal}(K^s/K)$.
- $\operatorname{rk} T_{\mathfrak{p}} E \leq \operatorname{rk} M(E)$
- $\operatorname{rk} T_{\mathfrak{p}}E = \operatorname{rk} M(E) \Leftrightarrow \mathfrak{p}$ is generic.

$$T_{\mathfrak{p}}E = \operatorname{Hom}_{\mathcal{A}}(F_{\mathfrak{p}}/A_{\mathfrak{p}}, E(K^{s}))$$

- Finitely generated free over A_p.
- Continuous action of $G_K = \text{Gal}(K^s/K)$.
- $\operatorname{rk} T_{\mathfrak{p}}E \leq \operatorname{rk} M(E)$
- $\operatorname{rk} T_{\mathfrak{p}}E = \operatorname{rk} M(E) \Leftrightarrow \mathfrak{p}$ is generic.

$$T_{\mathfrak{p}}E = \operatorname{Hom}_{\mathcal{A}}(F_{\mathfrak{p}}/A_{\mathfrak{p}}, E(K^{s}))$$

- Finitely generated free over A_p.
- Continuous action of $G_K = \text{Gal}(K^s/K)$.
- $\operatorname{rk} T_{\mathfrak{p}}E \leq \operatorname{rk} M(E)$
- $\operatorname{rk} T_{\mathfrak{p}}E = \operatorname{rk} M(E) \Leftrightarrow \mathfrak{p}$ is generic.

- (FF) fully faithful after $A_{\mathfrak{p}} \otimes_A -$,
- (SS) preserves semi-simple objects on the rational level.

Tate conjectures, first version (generic p)

Assume that K is finitely generated. Then the functor $E \mapsto T_{\mathfrak{p}}E$ is

• (FF) fully faithful after $A_{\mathfrak{p}} \otimes_{\mathcal{A}} -$,

• (SS) preserves semi-simple objects on the rational level.

- (FF) fully faithful after $A_{\mathfrak{p}}\otimes_{\mathcal{A}} -$,
- (SS) preserves semi-simple objects on the rational level.

- (FF) fully faithful after $A_{\mathfrak{p}} \otimes_A -$,
- (SS) preserves semi-simple objects on the rational level.

- (FF) fully faithful after $A_{\mathfrak{p}} \otimes_A -$,
- (SS) preserves semi-simple objects on the rational level.

$$A_{\mathfrak{p}} \otimes_{A} \operatorname{Hom}(E_{1}, E_{2}) \xrightarrow{\sim} \operatorname{Hom}(T_{\mathfrak{p}}E_{1}, T_{\mathfrak{p}}E_{2})$$

- (FF) fully faithful after $A_{\mathfrak{p}} \otimes_A -$,
- (SS) preserves semi-simple objects on the rational level.

$$A_{\mathfrak{p}} \otimes_{A} \operatorname{Hom}(E_{1}, E_{2}) \xrightarrow{\sim} \operatorname{Hom}(T_{\mathfrak{p}}E_{1}, T_{\mathfrak{p}}E_{2})$$

An (effective) A-motive over K is

a left $K[t]{\tau}$ -module M such that

- M is finitely generated projective over K[t].
- The submodule $K[t] \cdot \tau(M)$ is of finite K-codimension in M.

An (effective) A-motive over K is

a left $K[t]{\tau}$ -module M such that

- M is finitely generated projective over K[t].
- The submodule $K[t] \cdot \tau(M)$ is of finite K-codimension in M.

An (effective) A-motive over K is

a left $K[t]{\tau}$ -module M such that

- M is finitely generated projective over K[t].
- The submodule $K[t] \cdot \tau(M)$ is of finite K-codimension in M.

An (effective) A-motive over K is

a left $K[t]{\tau}$ -module M such that

- M is finitely generated projective over K[t].
- The submodule $K[t] \cdot \tau(M)$ is of finite K-codimension in M.

The cotangent module $\Omega_M = M/K[t]\tau(M)$.

An (effective) A-motive over K is

a left $K[t]{\tau}$ -module M such that

- M is finitely generated projective over K[t].
- The submodule $K[t] \cdot \tau(M)$ is of finite K-codimension in M.

The cotangent module $\Omega_M = M/K[t]\tau(M)$.

$$\Omega_{\mathcal{M}(E)} \xrightarrow{\sim} \operatorname{Hom}_{\mathcal{K}}(\operatorname{Lie}(E), \mathcal{K}) \text{ over } \mathcal{K}[t]$$
An (effective) A-motive over K is

a left $K[t]{\tau}$ -module M such that

- M is finitely generated projective over K[t].
- The submodule $K[t] \cdot \tau(M)$ is of finite K-codimension in M.

The cotangent module $\Omega_M = M/K[t]\tau(M)$.

$$\Omega_{\mathcal{M}(E)} \xrightarrow{\sim} \operatorname{Hom}_{\mathcal{K}}(\operatorname{Lie}(E), \mathcal{K}) \text{ over } \mathcal{K}[t]$$

An (effective) A-motive over K is

a left $K[t]{\tau}$ -module M such that

- M is finitely generated projective over K[t].
- The submodule $K[t] \cdot \tau(M)$ is of finite K-codimension in M.

The cotangent module $\Omega_M = M/K[t]\tau(M)$.

$$\Omega_{\mathcal{M}(E)} \xrightarrow{\sim} \operatorname{Hom}_{\mathcal{K}}(\operatorname{Lie}(E), \mathcal{K}) \text{ over } \mathcal{K}[t]$$

- The category is abelian after $F \otimes_A -$.
- There is a tensor product $M \otimes N$.
- No duality; easy to repair.

An (effective) A-motive over K is

a left $K[t]{\tau}$ -module M such that

- M is finitely generated projective over K[t].
- The submodule $K[t] \cdot \tau(M)$ is of finite K-codimension in M.

The cotangent module $\Omega_M = M/K[t]\tau(M)$.

$$\Omega_{\mathcal{M}(E)} \xrightarrow{\sim} \operatorname{Hom}_{\mathcal{K}}(\operatorname{Lie}(E), \mathcal{K}) \text{ over } \mathcal{K}[t]$$

- The category is abelian after $F \otimes_A -$.
- There is a tensor product $M \otimes N$.
- No duality; easy to repair.

An (effective) A-motive over K is

a left $K[t]{\tau}$ -module M such that

- M is finitely generated projective over K[t].
- The submodule $K[t] \cdot \tau(M)$ is of finite K-codimension in M.

The cotangent module $\Omega_M = M/K[t]\tau(M)$.

$$\Omega_{\mathcal{M}(E)} \xrightarrow{\sim} \operatorname{Hom}_{\mathcal{K}}(\operatorname{Lie}(E), \mathcal{K}) \text{ over } \mathcal{K}[t]$$

- The category is abelian after $F \otimes_A -$.
- There is a tensor product $M \otimes N$.
- No duality; easy to repair.

An (effective) A-motive over K is

a left $K[t]{\tau}$ -module M such that

- M is finitely generated projective over K[t].
- The submodule $K[t] \cdot \tau(M)$ is of finite K-codimension in M.

The cotangent module $\Omega_M = M/K[t]\tau(M)$.

$$\Omega_{\mathcal{M}(E)} \xrightarrow{\sim} \operatorname{Hom}_{\mathcal{K}}(\operatorname{Lie}(E), \mathcal{K}) \text{ over } \mathcal{K}[t]$$

- The category is abelian after $F \otimes_A -$.
- There is a tensor product $M \otimes N$.
- No duality; easy to repair.

An (effective) A-motive over K is

a left $K[t]{\tau}$ -module M such that

- M is finitely generated projective over K[t].
- The submodule $K[t] \cdot \tau(M)$ is of finite K-codimension in M.

The cotangent module $\Omega_M = M/K[t]\tau(M)$.

$$\Omega_{\mathcal{M}(E)} \xrightarrow{\sim} \operatorname{Hom}_{\mathcal{K}}(\operatorname{Lie}(E), \mathcal{K}) \text{ over } \mathcal{K}[t]$$

The same notion of generic and special primes.

- The category is abelian after $F \otimes_A -$.
- There is a tensor product $M \otimes N$.
- No duality; easy to repair.

NB: not every motive arises from E.

Local field \hat{F} over \mathbb{F}_q , ring of integers \mathcal{O} , maximal ideal \mathfrak{m} .

Local field \hat{F} over \mathbb{F}_q , ring of integers \mathcal{O} , maximal ideal \mathfrak{m} .

$$\mathcal{E}_{\mathcal{K}} = \mathcal{E}_{\mathcal{K},\hat{\mathcal{F}}} = (\lim_{n \to \infty} \mathcal{K} \otimes_{\mathbb{F}_q} \mathcal{O}/\mathfrak{m}^n) \otimes_{\mathcal{O}} \hat{\mathcal{F}}$$

Local field \hat{F} over \mathbb{F}_q , ring of integers \mathcal{O} , maximal ideal \mathfrak{m} .

$$\mathcal{E}_{\mathcal{K}} = \mathcal{E}_{\mathcal{K},\hat{\mathcal{F}}} = (\lim_{n \to \infty} \mathcal{K} \otimes_{\mathbb{F}_q} \mathcal{O}/\mathfrak{m}^n) \otimes_{\mathcal{O}} \hat{\mathcal{F}}$$

Endomorphism $\sigma: \mathcal{E}_{\mathcal{K}} \to \mathcal{E}_{\mathcal{K}}$ induced by the *q*-Frobenius of *K*.

Local field \hat{F} over \mathbb{F}_q , ring of integers \mathcal{O} , maximal ideal \mathfrak{m} .

$$\mathcal{E}_{\mathcal{K}} = \mathcal{E}_{\mathcal{K},\hat{\mathcal{F}}} = (\lim_{n \to \infty} \mathcal{K} \otimes_{\mathbb{F}_q} \mathcal{O}/\mathfrak{m}^n) \otimes_{\mathcal{O}} \hat{\mathcal{F}}$$

Endomorphism $\sigma \colon \mathcal{E}_{\mathcal{K}} \to \mathcal{E}_{\mathcal{K}}$ induced by the *q*-Frobenius of *K*. Example: $\hat{F} = \mathbb{F}_q((z))$,

Local field \hat{F} over \mathbb{F}_q , ring of integers \mathcal{O} , maximal ideal \mathfrak{m} .

$$\mathcal{E}_{\mathcal{K}} = \mathcal{E}_{\mathcal{K},\hat{\mathcal{F}}} = (\lim_{n \to \infty} \mathcal{K} \otimes_{\mathbb{F}_q} \mathcal{O}/\mathfrak{m}^n) \otimes_{\mathcal{O}} \hat{\mathcal{F}}$$

Endomorphism $\sigma \colon \mathcal{E}_{\mathcal{K}} \to \mathcal{E}_{\mathcal{K}}$ induced by the *q*-Frobenius of *K*. Example: $\hat{F} = \mathbb{F}_q((z)), \mathcal{E} = \mathcal{K}((z)),$

Local field \hat{F} over \mathbb{F}_q , ring of integers \mathcal{O} , maximal ideal \mathfrak{m} .

$$\mathcal{E}_{\mathcal{K}} = \mathcal{E}_{\mathcal{K},\hat{\mathcal{F}}} = (\lim_{n \to \infty} \mathcal{K} \otimes_{\mathbb{F}_q} \mathcal{O}/\mathfrak{m}^n) \otimes_{\mathcal{O}} \hat{\mathcal{F}}$$

Endomorphism $\sigma \colon \mathcal{E}_{\mathcal{K}} \to \mathcal{E}_{\mathcal{K}}$ induced by the *q*-Frobenius of *K*. Example: $\hat{F} = \mathbb{F}_q((z)), \ \mathcal{E} = \mathcal{K}((z)), \ \sigma(\sum x_n z^n) = \sum x_n^q z^n$.

Local field \hat{F} over \mathbb{F}_q , ring of integers \mathcal{O} , maximal ideal \mathfrak{m} .

$$\mathcal{E}_{\mathcal{K}} = \mathcal{E}_{\mathcal{K},\hat{\mathcal{F}}} = (\lim_{n \to \infty} \mathcal{K} \otimes_{\mathbb{F}_q} \mathcal{O}/\mathfrak{m}^n) \otimes_{\mathcal{O}} \hat{\mathcal{F}}$$

Endomorphism $\sigma: \mathcal{E}_{K} \to \mathcal{E}_{K}$ induced by the *q*-Frobenius of *K*. Example: $\hat{F} = \mathbb{F}_{q}((z)), \ \mathcal{E} = K((z)), \ \sigma(\sum x_{n}z^{n}) = \sum x_{n}^{q}z^{n}$.

An \mathcal{E}_K -isocrystal is

a left $\mathcal{E}_{\mathcal{K}}\{\tau\}$ -module M such that

• *M* is finitely generated projective over \mathcal{E}_{K} .

• $\mathcal{E}_K \cdot \tau(M) = M$.

Local field \hat{F} over \mathbb{F}_q , ring of integers \mathcal{O} , maximal ideal \mathfrak{m} .

$$\mathcal{E}_{K} = \mathcal{E}_{K,\hat{F}} = (\lim_{n \to \infty} K \otimes_{\mathbb{F}_{q}} \mathcal{O}/\mathfrak{m}^{n}) \otimes_{\mathcal{O}} \hat{F}$$

Endomorphism $\sigma: \mathcal{E}_K \to \mathcal{E}_K$ induced by the *q*-Frobenius of *K*.

Example:
$$\hat{F} = \mathbb{F}_q((z)), \ \mathcal{E} = \mathcal{K}((z)), \ \sigma(\sum x_n z^n) = \sum x_n^q z^n.$$

An \mathcal{E}_K -isocrystal is

a left $\mathcal{E}_{\mathcal{K}} \{ \tau \}$ -module M such that

• *M* is finitely generated projective over $\mathcal{E}_{\mathcal{K}}$.

• $\mathcal{E}_K \cdot \tau(M) = M.$

Local field \hat{F} over \mathbb{F}_q , ring of integers \mathcal{O} , maximal ideal \mathfrak{m} .

$$\mathcal{E}_{\mathcal{K}} = \mathcal{E}_{\mathcal{K},\hat{\mathcal{F}}} = (\lim_{n \to \infty} \mathcal{K} \otimes_{\mathbb{F}_q} \mathcal{O}/\mathfrak{m}^n) \otimes_{\mathcal{O}} \hat{\mathcal{F}}$$

Endomorphism $\sigma: \mathcal{E}_{\mathcal{K}} \to \mathcal{E}_{\mathcal{K}}$ induced by the *q*-Frobenius of *K*.

Example:
$$\hat{F} = \mathbb{F}_q((z)), \ \mathcal{E} = \mathcal{K}((z)), \ \sigma(\sum x_n z^n) = \sum x_n^q z^n.$$

An \mathcal{E}_K -isocrystal is

a left $\mathcal{E}_{\mathcal{K}} \{ \tau \}$ -module M such that

• *M* is finitely generated projective over $\mathcal{E}_{\mathcal{K}}$.

•
$$\mathcal{E}_{K} \cdot \tau(M) = M$$
.

Local field \hat{F} over \mathbb{F}_q , ring of integers \mathcal{O} , maximal ideal \mathfrak{m} .

$$\mathcal{E}_{K} = \mathcal{E}_{K,\hat{F}} = (\lim_{n \to \infty} K \otimes_{\mathbb{F}_{q}} \mathcal{O}/\mathfrak{m}^{n}) \otimes_{\mathcal{O}} \hat{F}$$

Endomorphism $\sigma \colon \mathcal{E}_{\mathcal{K}} \to \mathcal{E}_{\mathcal{K}}$ induced by the *q*-Frobenius of *K*.

Example:
$$\hat{F} = \mathbb{F}_q((z)), \ \mathcal{E} = \mathcal{K}((z)), \ \sigma(\sum x_n z^n) = \sum x_n^q z^n.$$

An \mathcal{E}_K -isocrystal is

a left $\mathcal{E}_{\mathcal{K}} \{ \tau \}$ -module M such that

• *M* is finitely generated projective over $\mathcal{E}_{\mathcal{K}}$.

• $\mathcal{E}_{K} \cdot \tau(M) = M$.

- The category is abelian \hat{F} -linear.
- There is a tensor product and duality.

Local field \hat{F} over \mathbb{F}_q , ring of integers \mathcal{O} , maximal ideal \mathfrak{m} .

$$\mathcal{E}_{K} = \mathcal{E}_{K,\hat{F}} = (\lim_{n \to \infty} K \otimes_{\mathbb{F}_{q}} \mathcal{O}/\mathfrak{m}^{n}) \otimes_{\mathcal{O}} \hat{F}$$

Endomorphism $\sigma \colon \mathcal{E}_{\mathcal{K}} \to \mathcal{E}_{\mathcal{K}}$ induced by the *q*-Frobenius of *K*.

Example:
$$\hat{F} = \mathbb{F}_q((z)), \ \mathcal{E} = \mathcal{K}((z)), \ \sigma(\sum x_n z^n) = \sum x_n^q z^n.$$

An \mathcal{E}_K -isocrystal is

a left $\mathcal{E}_{\mathcal{K}} \{ \tau \}$ -module M such that

• M is finitely generated projective over $\mathcal{E}_{\mathcal{K}}$.

•
$$\mathcal{E}_{K} \cdot \tau(M) = M$$
.

• The category is abelian \hat{F} -linear.

• There is a tensor product and duality.

Local field \hat{F} over \mathbb{F}_q , ring of integers \mathcal{O} , maximal ideal \mathfrak{m} .

$$\mathcal{E}_{K} = \mathcal{E}_{K,\hat{F}} = (\lim_{n \to \infty} K \otimes_{\mathbb{F}_{q}} \mathcal{O}/\mathfrak{m}^{n}) \otimes_{\mathcal{O}} \hat{F}$$

Endomorphism $\sigma: \mathcal{E}_{\mathcal{K}} \to \mathcal{E}_{\mathcal{K}}$ induced by the *q*-Frobenius of *K*.

Example:
$$\hat{F} = \mathbb{F}_q((z)), \ \mathcal{E} = \mathcal{K}((z)), \ \sigma(\sum x_n z^n) = \sum x_n^q z^n.$$

An \mathcal{E}_K -isocrystal is

a left $\mathcal{E}_{\mathcal{K}} \{ \tau \}$ -module M such that

• M is finitely generated projective over $\mathcal{E}_{\mathcal{K}}$.

•
$$\mathcal{E}_{K} \cdot \tau(M) = M$$
.

- The category is abelian \hat{F} -linear.
- There is a tensor product and duality.

Assume that K is algebraically closed. Then

- The category of $\mathcal{E}_{\mathcal{K}}$ -isocrystals is semi-simple.
- Simple objects M_{λ} are classified by *slope* $\lambda \in \mathbb{Q}$.

Assume that K is algebraically closed. Then

• The category of $\mathcal{E}_{\mathcal{K}}$ -isocrystals is semi-simple.

• Simple objects M_{λ} are classified by *slope* $\lambda \in \mathbb{Q}$.

Assume that K is algebraically closed. Then

- The category of $\mathcal{E}_{\mathcal{K}}$ -isocrystals is semi-simple.
- Simple objects M_{λ} are classified by *slope* $\lambda \in \mathbb{Q}$.

Assume that K is algebraically closed. Then

- The category of $\mathcal{E}_{\mathcal{K}}$ -isocrystals is semi-simple.
- Simple objects M_{λ} are classified by *slope* $\lambda \in \mathbb{Q}$.

- Write $\lambda = \frac{s}{r}$ with r > 0 and (s, r) = 1.
- $M_{\lambda} = \langle e_1, \ldots, e_r \rangle$
- $e_1 \xrightarrow{\tau} \ldots \xrightarrow{\tau} e_r \xrightarrow{\tau} z^s e_1$

Assume that K is algebraically closed. Then

- The category of \mathcal{E}_{K} -isocrystals is semi-simple.
- Simple objects M_{λ} are classified by *slope* $\lambda \in \mathbb{Q}$.

- Write $\lambda = \frac{s}{r}$ with r > 0 and (s, r) = 1.
- $M_{\lambda} = \langle e_1, \ldots, e_r \rangle$ • $e_1 \xrightarrow{\tau} \dots \xrightarrow{\tau} e_r \xrightarrow{\tau} z^s e_1$

Assume that K is algebraically closed. Then

- The category of $\mathcal{E}_{\mathcal{K}}$ -isocrystals is semi-simple.
- Simple objects M_{λ} are classified by *slope* $\lambda \in \mathbb{Q}$.

- Write $\lambda = \frac{s}{r}$ with r > 0 and (s, r) = 1.
- $M_{\lambda} = \langle e_1, \dots, e_r \rangle$ • $e_1 \xrightarrow{\tau} \cdots \xrightarrow{\tau} e_r \xrightarrow{\tau} Z^s e_1$

Assume that K is algebraically closed. Then

- The category of $\mathcal{E}_{\mathcal{K}}$ -isocrystals is semi-simple.
- Simple objects M_{λ} are classified by *slope* $\lambda \in \mathbb{Q}$.

- Write $\lambda = \frac{s}{r}$ with r > 0 and (s, r) = 1.
- $M_{\lambda} = \langle e_1, \dots, e_r \rangle$ • $e_1 \xrightarrow{\tau} \dots \xrightarrow{\tau} e_r \xrightarrow{\tau} z^s e_1$

Assume that K is algebraically closed. Then

- The category of $\mathcal{E}_{\mathcal{K}}$ -isocrystals is semi-simple.
- Simple objects M_{λ} are classified by *slope* $\lambda \in \mathbb{Q}$.

- Write $\lambda = \frac{s}{r}$ with r > 0 and (s, r) = 1.
- $M_{\lambda} = \langle e_1, \ldots, e_r \rangle$
- $e_1 \xrightarrow{\tau} \ldots \xrightarrow{\tau} e_r \xrightarrow{\tau} z^s e_1$

If *M*, *N* are pure then so is $M \otimes N$ and $\lambda(M \otimes N) = \lambda(M) + \lambda(N)$. Similarly $\lambda(M^*) = -\lambda(M)$.

If *M*, *N* are pure then so is $M \otimes N$ and $\lambda(M \otimes N) = \lambda(M) + \lambda(N)$. Similarly $\lambda(M^*) = -\lambda(M)$.

Filtration theorem (for arbitrary K)

Every $\mathcal{E}_{\mathcal{K}}$ -isocrystal M carries a unique filtration

$$0 = M_0 \subset M_1 \subset \ldots \subset M_n = M$$

such that:

- Every M_{i+1}/M_i is pure and not zero.
- The slopes are strictly increasing with *i*.

If *M*, *N* are pure then so is $M \otimes N$ and $\lambda(M \otimes N) = \lambda(M) + \lambda(N)$. Similarly $\lambda(M^*) = -\lambda(M)$.

Filtration theorem (for arbitrary K)

Every $\mathcal{E}_{\mathcal{K}}$ -isocrystal M carries a unique filtration

$$0 = M_0 \subset M_1 \subset \ldots \subset M_n = M$$

such that:

- Every M_{i+1}/M_i is pure and not zero.
- The slopes are strictly increasing with *i*.

This is called the *Harder-Narasimhan filtration*. Splits if K is perfect (and does not split otherwise).

$$T(M) = (\mathcal{E}_{K^s} \otimes_{\mathcal{E}_K} M)^{\tau}$$

$$T(M) = (\mathcal{E}_{K^s} \otimes_{\mathcal{E}_K} M)^{\tau}$$

- Finite-dimensional over \hat{F} .
- Carries a continuous action of G_K .

$$T(M) = (\mathcal{E}_{K^s} \otimes_{\mathcal{E}_K} M)^{\tau}$$

- Finite-dimensional over \hat{F} .
- Carries a continuous action of G_K .

Representation theorem

The functor $M \mapsto T(M)$ is an equivalence of

- the category of pure isocrystals of slope 0,
- the category of continuous G_K-representations in finite-dimensional \hat{F} -vector spaces.
Let M be a pure \mathcal{E} -isocrystal of slope 0.

$$T(M) = (\mathcal{E}_{K^s} \otimes_{\mathcal{E}_K} M)^{ au}$$

• Finite-dimensional over \hat{F} .

• Carries a continuous action of G_K .

Representation theorem

The functor $M \mapsto T(M)$ is an equivalence of

- the category of pure isocrystals of slope 0,
- the category of continuous G_K-representations in finite-dimensional Ê-vector spaces.

Can extend this to pure modules of any slope! The Weil group W_K appears instead of G_K . The target category is more complicated.

Let *M* be a motive, and \mathfrak{p} a *place* of $F = \mathbb{F}_q(t)$.

Let *M* be a motive, and \mathfrak{p} a *place* of $F = \mathbb{F}_q(t)$.

The rational p-adic completion is

$$M_{\mathfrak{p}} = \mathcal{E}_{K,F_{\mathfrak{p}}} \otimes_{K[t]} M$$

Let *M* be a motive, and \mathfrak{p} a *place* of $F = \mathbb{F}_q(t)$.

The rational p-adic completion is

$$M_{\mathfrak{p}} = \mathcal{E}_{K,F_{\mathfrak{p}}} \otimes_{K[t]} M$$

• $\mathfrak{p} \subset A$ generic: $M_{\mathfrak{p}}$ is pure of slope 0.

Let *M* be a motive, and \mathfrak{p} a *place* of $F = \mathbb{F}_q(t)$.

The rational p-adic completion is

$$M_{\mathfrak{p}} = \mathcal{E}_{K,F_{\mathfrak{p}}} \otimes_{K[t]} M$$

• $\mathfrak{p} \subset A$ generic: $M_{\mathfrak{p}}$ is pure of slope 0. For M = M(E) we have a natural isomorphism $T(M_{\mathfrak{p}}) \xrightarrow{\sim} \operatorname{Hom}_{F_{\mathfrak{p}}}(V_{\mathfrak{p}}E, \Omega_{\mathfrak{p}})$ where $\Omega_{\mathfrak{p}} = F_{\mathfrak{p}} \otimes_{A} \Omega^{1}_{A/\mathbb{F}_{q}}$.

Let *M* be a motive, and \mathfrak{p} a *place* of $F = \mathbb{F}_q(t)$.

The rational p-adic completion is

$$M_{\mathfrak{p}} = \mathcal{E}_{K,F_{\mathfrak{p}}} \otimes_{K[t]} M$$

• $\mathfrak{p} \subset A$ generic: $M_{\mathfrak{p}}$ is pure of slope 0.

For M = M(E) we have a natural isomorphism

$$T(M_{\mathfrak{p}}) \xrightarrow{\sim} \operatorname{Hom}_{F_{\mathfrak{p}}}(V_{\mathfrak{p}}E, \, \Omega_{\mathfrak{p}})$$

where $\Omega_{\mathfrak{p}} = F_{\mathfrak{p}} \otimes_{\mathcal{A}} \Omega^{1}_{\mathcal{A}/\mathbb{F}_{q}}$.

 p ⊂ A special: M_p need not be pure. The slopes are non-negative and at least one is strictly positive.

Let *M* be a motive, and \mathfrak{p} a *place* of $F = \mathbb{F}_q(t)$.

The rational p-adic completion is

$$M_{\mathfrak{p}} = \mathcal{E}_{K,F_{\mathfrak{p}}} \otimes_{K[t]} M$$

• $\mathfrak{p} \subset A$ generic: $M_{\mathfrak{p}}$ is pure of slope 0.

For M = M(E) we have a natural isomorphism

$$T(M_{\mathfrak{p}}) \xrightarrow{\sim} \operatorname{Hom}_{F_{\mathfrak{p}}}(V_{\mathfrak{p}}E, \, \Omega_{\mathfrak{p}})$$

where $\Omega_{\mathfrak{p}} = F_{\mathfrak{p}} \otimes_{\mathcal{A}} \Omega^{1}_{\mathcal{A}/\mathbb{F}_{q}}$.

 p ⊂ A special: M_p need not be pure. The slopes are non-negative and at least one is strictly positive.

$$M^0_{\mathfrak{p}}$$

Let *M* be a motive, and \mathfrak{p} a *place* of $F = \mathbb{F}_q(t)$.

The rational p-adic completion is

$$M_{\mathfrak{p}} = \mathcal{E}_{K,F_{\mathfrak{p}}} \otimes_{K[t]} M$$

• $\mathfrak{p} \subset A$ generic: $M_{\mathfrak{p}}$ is pure of slope 0.

For M = M(E) we have a natural isomorphism

$$T(M_{\mathfrak{p}}) \xrightarrow{\sim} \operatorname{Hom}_{F_{\mathfrak{p}}}(V_{\mathfrak{p}}E, \, \Omega_{\mathfrak{p}})$$

where $\Omega_{\mathfrak{p}} = F_{\mathfrak{p}} \otimes_{\mathcal{A}} \Omega^{1}_{\mathcal{A}/\mathbb{F}_{q}}$.

 p ⊂ A special: M_p need not be pure. The slopes are non-negative and at least one is strictly positive.

$$T(M^0_{\mathfrak{p}}) \xrightarrow{\sim} \operatorname{Hom}_{F_{\mathfrak{p}}}(V_{\mathfrak{p}}E, \Omega_{\mathfrak{p}})$$

Weights: the ∞ -adic completion

The weights of M are the slopes of M_{∞} taken with the opposite sign. We say that M is *pure* if so is M_{∞} .

The weights of M are the slopes of M_{∞} taken with the opposite sign. We say that M is *pure* if so is M_{∞} .

Theorem (Taelman '10)

A motive arises from an Anderson module if and only if its weights are strictly positive.

The weights of M are the slopes of M_{∞} taken with the opposite sign. We say that M is *pure* if so is M_{∞} .

Theorem (Taelman '10)

A motive arises from an Anderson module if and only if its weights are strictly positive.

A Tate object L: rank 1, weight 1.

The weights of M are the slopes of M_{∞} taken with the opposite sign. We say that M is *pure* if so is M_{∞} .

Theorem (Taelman '10)

A motive arises from an Anderson module if and only if its weights are strictly positive.

A Tate object L: rank 1, weight 1. $M \otimes L^{\otimes n}$ is finitely generated over $K{\tau}$ for $n \gg 0$.

The weights of M are the slopes of M_{∞} taken with the opposite sign. We say that M is *pure* if so is M_{∞} .

Theorem (Taelman '10)

A motive arises from an Anderson module if and only if its weights are strictly positive.

A Tate object L: rank 1, weight 1. $M \otimes L^{\otimes n}$ is finitely generated over $K{\tau}$ for $n \gg 0$.

Theorem (Drinfeld '77)

A motive of rank r > 0 arises from a Drinfeld module if and only if it is pure of weight $\frac{1}{r}$.

Assume that K is *finitely generated*. Then the functor $M \mapsto M_p$ is

• (FF) fully faithful after $F_{\mathfrak{p}} \otimes_A -$,

• (SS) preserves semi-simple objects at the rational level.

Assume that K is *finitely generated*. Then the functor $M \mapsto M_p$ is

• (FF) fully faithful after $F_{\mathfrak{p}} \otimes_A -$,

• (SS) preserves semi-simple objects at the rational level.

Assume that K is *finitely generated*. Then the functor $M \mapsto M_p$ is

- (FF) fully faithful after $F_{\mathfrak{p}}\otimes_A -$,
- (SS) preserves semi-simple objects at the rational level.

Assume that K is *finitely generated*. Then the functor $M \mapsto M_{\mathfrak{p}}$ is

• (FF) fully faithful after $F_{\mathfrak{p}}\otimes_{A}-$,

• (SS) preserves semi-simple objects at the rational level.

 $F_{\mathfrak{p}} \otimes_{\mathcal{A}} \operatorname{Hom}(M, N) \xrightarrow{\sim} \operatorname{Hom}(M_{\mathfrak{p}}, N_{\mathfrak{p}})$

Assume that K is *finitely generated*. Then the functor $M \mapsto M_p$ is

- (FF) fully faithful after $F_{\mathfrak{p}}\otimes_{A}-$,
- (SS) preserves semi-simple objects at the rational level.

$$F_{\mathfrak{p}} \otimes_{\mathcal{A}} \operatorname{Hom}(M, N) \xrightarrow{\sim} \operatorname{Hom}(M_{\mathfrak{p}}, N_{\mathfrak{p}})$$

Folklore theorem

Assume that K is finite. Then the Tate conjecture (FF) holds for all motives M and places \mathfrak{p} .

Assume that K is *finitely generated*. Then the functor $M \mapsto M_p$ is

- (FF) fully faithful after $F_{\mathfrak{p}}\otimes_{A}-$,
- (SS) preserves semi-simple objects at the rational level.

$$F_{\mathfrak{p}} \otimes_{\mathcal{A}} \operatorname{Hom}(M, N) \xrightarrow{\sim} \operatorname{Hom}(M_{\mathfrak{p}}, N_{\mathfrak{p}})$$

Folklore theorem

Assume that K is finite. Then the Tate conjecture (FF) holds for all motives M and places \mathfrak{p} .

Reason: $\mathcal{E}_{\mathcal{K},\mathcal{F}_{\mathfrak{p}}} = \mathcal{F}_{\mathfrak{p}} \otimes_{\mathcal{A}} \mathcal{K}[t]$. Implies injectivity for arbitrary \mathcal{K} .

- Taguchi '91, '93: SS for Drinfeld modules, $\mathfrak{p} \neq \infty$.
- Taguchi '95: FF for generic p and tr deg K = 1. Details omitted.
- A. Tamagawa '94, '95, '96: FF+SS for generic p. Details omitted.
- Pink '95: FF+SS for generic p.
 Deduced from the isogeny conjecture. Never published.
- Watson '03: FF for Drinfeld modules, special p.
- Stalder '10: FF+SS for generic p.
- Zywina '16: FF for pure motives, $\mathfrak{p} = \infty$.

- Taguchi '91, '93: SS for Drinfeld modules, $\mathfrak{p} \neq \infty$.
- Taguchi '95: FF for generic p and tr deg K = 1. Details omitted.
- A. Tamagawa '94, '95, '96: FF+SS for generic p. Details omitted.
- Pink '95: FF+SS for generic p. Deduced from the isogeny conjecture. Never published.
- Watson '03: FF for Drinfeld modules, special p.
- Stalder '10: FF+SS for generic p.
- Zywina '16: FF for pure motives, $\mathfrak{p} = \infty$.

- Taguchi '91, '93: SS for Drinfeld modules, $\mathfrak{p} \neq \infty$.
- Taguchi '95: FF for generic p and tr deg K = 1. Details omitted.
- A. Tamagawa '94, '95, '96: FF+SS for generic p. Details omitted.
- Pink '95: FF+SS for generic p.
 Deduced from the isogeny conjecture. Never published.
- Watson '03: FF for Drinfeld modules, special p.
- Stalder '10: FF+SS for generic p.
- Zywina '16: FF for pure motives, $\mathfrak{p} = \infty$.

- Taguchi '91, '93: SS for Drinfeld modules, $\mathfrak{p} \neq \infty$.
- Taguchi '95: FF for generic p and tr deg K = 1. Details omitted.
- A. Tamagawa '94, '95, '96: FF+SS for generic p. Details omitted.
- Pink '95: FF+SS for generic p.
 Deduced from the isogeny conjecture. Never published.
- Watson '03: FF for Drinfeld modules, special p.
- Stalder '10: FF+SS for generic p.
- Zywina '16: FF for pure motives, $\mathfrak{p} = \infty$.

- Taguchi '91, '93: SS for Drinfeld modules, $\mathfrak{p} \neq \infty$.
- Taguchi '95: FF for generic p and tr deg K = 1. Details omitted.
- A. Tamagawa '94, '95, '96: FF+SS for generic p. Details omitted.
- Pink '95: FF+SS for generic p.
 Deduced from the isogeny conjecture. Never published.
- Watson '03: FF for Drinfeld modules, special p.
- Stalder '10: FF+SS for generic p.
- Zywina '16: FF for pure motives, $\mathfrak{p} = \infty$.

- Taguchi '91, '93: SS for Drinfeld modules, $\mathfrak{p} \neq \infty$.
- Taguchi '95: FF for generic p and tr deg K = 1. Details omitted.
- A. Tamagawa '94, '95, '96: FF+SS for generic p. Details omitted.
- Pink '95: FF+SS for generic p.
 Deduced from the isogeny conjecture. Never published.
- Watson '03: FF for Drinfeld modules, special p.
- Stalder '10: FF+SS for generic p.
- Zywina '16: FF for pure motives, $\mathfrak{p} = \infty$.

- Taguchi '91, '93: SS for Drinfeld modules, $\mathfrak{p} \neq \infty$.
- Taguchi '95: FF for generic p and tr deg K = 1. Details omitted.
- A. Tamagawa '94, '95, '96: FF+SS for generic p. Details omitted.
- Pink '95: FF+SS for generic p. Deduced from the isogeny conjecture. Never published.
- Watson '03: FF for Drinfeld modules, special p.
- Stalder '10: FF+SS for generic p.
- Zywina '16: FF for pure motives, $\mathfrak{p} = \infty$.

- Taguchi '91, '93: SS for Drinfeld modules, $\mathfrak{p} \neq \infty$.
- Taguchi '95: FF for generic p and tr deg K = 1. Details omitted.
- A. Tamagawa '94, '95, '96: FF+SS for generic p. Details omitted.
- Pink '95: FF+SS for generic p.
 Deduced from the isogeny conjecture. Never published.
- Watson '03: FF for Drinfeld modules, special p.
- Stalder '10: FF+SS for generic p.
- Zywina '16: FF for pure motives, $\mathfrak{p} = \infty$.

- Taguchi '91, '93: SS for Drinfeld modules, $\mathfrak{p} \neq \infty$.
- Taguchi '95: FF for generic p and tr deg K = 1. Details omitted.
- A. Tamagawa '94, '95, '96: FF+SS for generic p. Details omitted.
- Pink '95: FF+SS for generic p.
 Deduced from the isogeny conjecture. Never published.
- Watson '03: FF for Drinfeld modules, special p.
- Stalder '10: FF+SS for generic p.
- Zywina '16: FF for pure motives, $\mathfrak{p} = \infty$.

M.'20: counterexample to FF for mixed motives, $\mathfrak{p} = \infty$. The work still continues: $FF_{\mathfrak{p}=\infty}$ is true for many mixed motives. Focus on the case tr deg K = 1.

Focus on the case tr deg K = 1. $X / \text{Spec } \mathbb{F}_q$ = the smooth projective model of K. Focus on the case tr deg K = 1. $X / \text{Spec } \mathbb{F}_q$ = the smooth projective model of K. Goal: understand what is $F_{\mathfrak{p}} \otimes_A \text{Hom}(M, N)$.

Gardeyn's theory

Gardeyn's theory

 $C = \operatorname{Spec} A, X \times C$, endomorphism σ .

Gardeyn's theory

 $C = \operatorname{Spec} A, X \times C$, endomorphism σ .

A left $\mathcal{O}_{X \times C} \{\tau\}$ -module: a pair (\mathcal{F}, τ) where \mathcal{F} is an $\mathcal{O}_{X \times C}$ -module, $\tau \colon \mathcal{F} \to \sigma_* \mathcal{F}$ is a morphism.
Gardeyn's theory

 $C = \operatorname{Spec} A, X \times C$, endomorphism σ .

A left $\mathcal{O}_{X \times C} \{\tau\}$ -module: a pair (\mathcal{F}, τ) where \mathcal{F} is an $\mathcal{O}_{X \times C}$ -module, $\tau \colon \mathcal{F} \to \sigma_* \mathcal{F}$ is a morphism.

An A-motive M gives rise to a coherent sheaf \tilde{M} on $(\text{Spec } K) \times C$ together with a σ -linear endomorphism τ .

Gardeyn's theory

 $C = \operatorname{Spec} A, X \times C$, endomorphism σ .

A left $\mathcal{O}_{X \times C} \{\tau\}$ -module: a pair (\mathcal{F}, τ) where \mathcal{F} is an $\mathcal{O}_{X \times C}$ -module, $\tau \colon \mathcal{F} \to \sigma_* \mathcal{F}$ is a morphism.

An A-motive M gives rise to a coherent sheaf \tilde{M} on $(\text{Spec } K) \times C$ together with a σ -linear endomorphism τ .

Embedding ι : (Spec K) × $C \hookrightarrow X \times C$. Pushforward $\iota_* \tilde{M}$.

Gardeyn's theory

 $C = \operatorname{Spec} A, X \times C$, endomorphism σ .

A left $\mathcal{O}_{X \times C} \{\tau\}$ -module: a pair (\mathcal{F}, τ) where \mathcal{F} is an $\mathcal{O}_{X \times C}$ -module, $\tau \colon \mathcal{F} \to \sigma_* \mathcal{F}$ is a morphism.

An A-motive M gives rise to a coherent sheaf \tilde{M} on $(\text{Spec } K) \times C$ together with a σ -linear endomorphism τ .

Embedding ι : (Spec K) × $C \hookrightarrow X \times C$. Pushforward $\iota_* \tilde{M}$.

Gardeyn's maximal model

There is a unique left $\mathcal{O}_{X \times C} \{\tau\}$ -submodule $\mathcal{M} \subset \iota_* \tilde{M}$ which is

- locally free of finite type over $\mathcal{O}_{X \times C}$,
- maximal with respect to the inclusion relation.

Motives $M, N \rightsquigarrow$ Gardeyn models \mathcal{M}, \mathcal{N}

Motives *M*, *N* \rightsquigarrow Gardeyn models *M*, *N*

Néron property $\mathsf{Hom}(M,N) = \mathsf{Hom}(\mathcal{M},\,\mathcal{N})$

Motives *M*, *N* \rightsquigarrow Gardeyn models *M*, *N*

 $\mathcal{M}_{\mathfrak{p}}, \mathcal{N}_{\mathfrak{p}}$: the pullback to $X \times \operatorname{Spec} F_{\mathfrak{p}}$.

Motives $M, N \rightsquigarrow$ Gardeyn models \mathcal{M}, \mathcal{N}

Néron property $\operatorname{\mathsf{Hom}}(M,N)=\operatorname{\mathsf{Hom}}(\mathcal{M},\,\mathcal{N})$

 $\mathcal{M}_{\mathfrak{p}}, \mathcal{N}_{\mathfrak{p}}$: the pullback to $X \times \operatorname{Spec} F_{\mathfrak{p}}$.

Theorem

$$F_{\mathfrak{p}} \otimes_{\mathcal{A}} \operatorname{Hom}(M, N) = \operatorname{Hom}(\mathcal{M}_{\mathfrak{p}}, \mathcal{N}_{\mathfrak{p}})$$

Instant consequence of proper base change.

Full faithfluness: the analytic part

Scheme $\mathcal{X} = X \times \operatorname{Spec} \hat{F}$ with an endomorphism σ . Best viewed as a rigid analytic space over $\operatorname{Spec} \hat{F}$.

Scheme $\mathcal{X} = X \times \operatorname{Spec} \hat{F}$ with an endomorphism σ . Best viewed as a rigid analytic space over $\operatorname{Spec} \hat{F}$.

We have \mathcal{M} , a left $\mathcal{O}_{\mathcal{X}}\{\tau\}$ -module which is locally free of finite type over $\mathcal{O}_{\mathcal{X}}$.

Scheme $\mathcal{X} = X \times \operatorname{Spec} \hat{F}$ with an endomorphism σ . Best viewed as a rigid analytic space over $\operatorname{Spec} \hat{F}$.

We have \mathcal{M} , a left $\mathcal{O}_{\mathcal{X}}\{\tau\}$ -module which is locally free of finite type over $\mathcal{O}_{\mathcal{X}}$.

Generic fiber functor $\mathcal{M} \mapsto \mathcal{M}_{\eta}$: base change to $\mathcal{E}_{K} = K \widehat{\otimes} \widehat{F}$. We know that \mathcal{M}_{η} is an isocrystal.

Scheme $\mathcal{X} = X \times \text{Spec } \hat{F}$ with an endomorphism σ . Best viewed as a rigid analytic space over $\text{Spec } \hat{F}$.

We have \mathcal{M} , a left $\mathcal{O}_{\mathcal{X}}\{\tau\}$ -module which is locally free of finite type over $\mathcal{O}_{\mathcal{X}}$.

Generic fiber functor $\mathcal{M} \mapsto \mathcal{M}_{\eta}$: base change to $\mathcal{E}_{K} = K \widehat{\otimes} \widehat{F}$. We know that \mathcal{M}_{η} is an isocrystal.

When the functor $\mathcal{M} \mapsto \mathcal{M}_{\eta}$ is fully faithful?

Local analysis

Closed point $x \in X \leftrightarrow$ valuation ring $R \subset K$. $\mathcal{E}_R = R((z)) = R[[z]][z^{-1}]$, a subring of $\mathcal{E}_K = K((z))$. NB: \mathcal{E}_R is a PID.

 $\mathcal{E}_R = R((z)) = R[[z]][z^{-1}]$, a subring of $\mathcal{E}_K = K((z))$. NB: \mathcal{E}_R is a PID.

Base change from \mathcal{X} to \mathcal{E}_R : $\mathcal{M} \mapsto \mathcal{M}_X$.

 $\mathcal{E}_R = R((z)) = R[[z]][z^{-1}]$, a subring of $\mathcal{E}_K = K((z))$. NB: \mathcal{E}_R is a PID.

- \mathcal{M}_{x} is finitely generated projective over \mathcal{E}_{R} .
- The quotient $\mathcal{M}_x/\mathcal{E}_R\tau(\mathcal{M}_x)$ is of finite length.
- \mathcal{M}_{x} has a maximality proerty to be discussed later.

 $\mathcal{E}_R = R((z)) = R[[z]][z^{-1}]$, a subring of $\mathcal{E}_K = K((z))$. NB: \mathcal{E}_R is a PID.

- \mathcal{M}_{x} is finitely generated projective over \mathcal{E}_{R} .
- The quotient $\mathcal{M}_x/\mathcal{E}_R \tau(\mathcal{M}_x)$ is of finite length.
- \mathcal{M}_x has a maximality proerty to be discussed later.

 $\mathcal{E}_R = R((z)) = R[[z]][z^{-1}]$, a subring of $\mathcal{E}_K = K((z))$. NB: \mathcal{E}_R is a PID.

- \mathcal{M}_{x} is finitely generated projective over \mathcal{E}_{R} .
- The quotient $\mathcal{M}_x/\mathcal{E}_R \tau(\mathcal{M}_x)$ is of finite length.
- \mathcal{M}_{x} has a maximality proerty to be discussed later.

 $\mathcal{E}_R = R((z)) = R[[z]][z^{-1}]$, a subring of $\mathcal{E}_K = K((z))$. NB: \mathcal{E}_R is a PID.

- \mathcal{M}_{x} is finitely generated projective over \mathcal{E}_{R} .
- The quotient $\mathcal{M}_x/\mathcal{E}_R\tau(\mathcal{M}_x)$ is of finite length.
- \mathcal{M}_x has a maximality proerty to be discussed later.

 $\mathcal{E}_R = R((z)) = R[[z]][z^{-1}]$, a subring of $\mathcal{E}_K = K((z))$. NB: \mathcal{E}_R is a PID.

Base change from \mathcal{X} to \mathcal{E}_R : $\mathcal{M} \mapsto \mathcal{M}_x$. Produces a left $\mathcal{E}_R\{\tau\}$ -module with the following properties:

- \mathcal{M}_{x} is finitely generated projective over \mathcal{E}_{R} .
- The quotient $\mathcal{M}_x/\mathcal{E}_R \tau(\mathcal{M}_x)$ is of finite length.
- \mathcal{M}_x has a maximality proerty to be discussed later.

To prove full faithfulness it is enough to show that every morphism $\mathcal{M}_{\eta} \to \mathcal{N}_{\eta}$ maps \mathcal{M}_{x} to \mathcal{N}_{x} for all $x \in X$.

An \mathcal{E}_R -isocrystal is

a left $\mathcal{E}_R\{\tau\}\text{-module }M$ such that

- *M* is finitely generated free over \mathcal{E}_R ,
- $M = \mathcal{E}_R \tau(M)$.

An \mathcal{E}_R -isocrystal is

a left $\mathcal{E}_R\{\tau\}\text{-module }M$ such that

- M is finitely generated free over \mathcal{E}_R ,
- $M = \mathcal{E}_R \tau(M)$.

An \mathcal{E}_R -isocrystal is

a left $\mathcal{E}_R\{\tau\}\text{-module }M$ such that

- M is finitely generated free over \mathcal{E}_R ,
- $M = \mathcal{E}_R \tau(M)$.

An \mathcal{E}_R -isocrystal is

a left $\mathcal{E}_R\{\tau\}\text{-module }M$ such that

- M is finitely generated free over \mathcal{E}_R ,
- $M = \mathcal{E}_R \tau(M)$.

For almost all points x the module \mathcal{M}_x is an \mathcal{E}_R -isocrystal.

An \mathcal{E}_R -isocrystal is

a left $\mathcal{E}_R\{\tau\}\text{-module }M$ such that

- M is finitely generated free over \mathcal{E}_R ,
- $M = \mathcal{E}_R \tau(M)$.

For almost all points x the module \mathcal{M}_x is an \mathcal{E}_R -isocrystal.

Theorem (Watson '03)

The base change functor $\mathcal{E}_{\mathcal{K}} \otimes_{\mathcal{E}_{\mathcal{R}}} -$ is fully faithful on isocrystals.

An \mathcal{E}_R -isocrystal is

a left $\mathcal{E}_R\{\tau\}\text{-module }M$ such that

- M is finitely generated free over \mathcal{E}_R ,
- $M = \mathcal{E}_R \tau(M)$.

For almost all points x the module \mathcal{M}_x is an \mathcal{E}_R -isocrystal.

Theorem (Watson '03)

The base change functor $\mathcal{E}_{\mathcal{K}} \otimes_{\mathcal{E}_{\mathcal{R}}} -$ is fully faithful on isocrystals.

Open subset $U \subset X$

An \mathcal{E}_R -isocrystal is

a left $\mathcal{E}_R\{\tau\}\text{-module }M$ such that

- M is finitely generated free over \mathcal{E}_R ,
- $M = \mathcal{E}_R \tau(M)$.

For almost all points x the module \mathcal{M}_x is an \mathcal{E}_R -isocrystal.

Theorem (Watson '03)

The base change functor $\mathcal{E}_{\mathcal{K}} \otimes_{\mathcal{E}_{\mathcal{R}}} -$ is fully faithful on isocrystals.

Open subset $U \subset X \rightsquigarrow$ subspace $\mathcal{U} \subset \mathcal{X}$, a complement of finitely many residue disks.

An \mathcal{E}_R -isocrystal is

a left $\mathcal{E}_R\{\tau\}\text{-module }M$ such that

- M is finitely generated free over \mathcal{E}_R ,
- $M = \mathcal{E}_R \tau(M)$.

For almost all points x the module \mathcal{M}_x is an \mathcal{E}_R -isocrystal.

Theorem (Watson '03)

The base change functor $\mathcal{E}_{\mathcal{K}} \otimes_{\mathcal{E}_{\mathcal{R}}} -$ is fully faithful on isocrystals.

Open subset $U \subset X \rightsquigarrow$ subspace $\mathcal{U} \subset \mathcal{X}$, a complement of finitely many residue disks. The natural morphism

$$\mathsf{Hom}(\mathcal{M}|_{\mathcal{U}},\,\mathcal{N}|_{\mathcal{U}}) \xrightarrow{\sim} \mathsf{Hom}(\mathcal{M}_{\eta},\,\mathcal{N}_{\eta})$$

is an isomorphism.

Overconvergence

Split the base change problem in two parts:

Split the base change problem in two parts: $\mathcal{E}_R \hookrightarrow \mathcal{E}_R^{\dagger} \hookrightarrow \mathcal{E}_K$

Split the base change problem in two parts: $\mathcal{E}_R \hookrightarrow \mathcal{E}_R^{\dagger} \hookrightarrow \mathcal{E}_K$ Closed point $x \in X \Leftrightarrow$ normalized valuation $v \colon K^{\times} \to \mathbb{Z}$.
Split the base change problem in two parts: $\mathcal{E}_R \hookrightarrow \mathcal{E}_R^{\dagger} \hookrightarrow \mathcal{E}_K$ Closed point $x \in X \Leftrightarrow$ normalized valuation $v \colon K^{\times} \to \mathbb{Z}$. $\Gamma_R^{\dagger} \subset K[[z]]$, the subring of series with nonzero radius of convergence w.r.t. v. Split the base change problem in two parts: $\mathcal{E}_R \hookrightarrow \mathcal{E}_R^{\dagger} \hookrightarrow \mathcal{E}_K$ Closed point $x \in X \Leftrightarrow$ normalized valuation $v \colon K^{\times} \to \mathbb{Z}$. $\Gamma_R^{\dagger} \subset K[[z]]$, the subring of series with nonzero radius of convergence w.r.t. v.

The overconvergent ring

$$\mathcal{E}_R^{\dagger} = \Gamma_R^{\dagger}[z^{-1}]$$

Split the base change problem in two parts: $\mathcal{E}_R \hookrightarrow \mathcal{E}_R^{\dagger} \hookrightarrow \mathcal{E}_K$ Closed point $x \in X \Leftrightarrow$ normalized valuation $v \colon K^{\times} \to \mathbb{Z}$. $\Gamma_R^{\dagger} \subset K[[z]]$, the subring of series with nonzero radius of convergence w.r.t. v.

The overconvergent ring

$$\mathcal{E}_{R}^{\dagger} = \Gamma_{R}^{\dagger}[z^{-1}]$$

The z-adic analog of the *p*-adic overconvergent ring $(\hat{F} = \mathbb{Q}_p)$. NB: $\mathcal{E}_R \subset \mathcal{E}_R^{\dagger}$. Furthermore \mathcal{E}_R^{\dagger} is a field.

An overconvergent isocrystal is

- a left $\mathcal{E}_R^{\dagger} \{ \tau \}$ -module M such that
 - *M* is finite-dimensional over \mathcal{E}_R^{\dagger} .

•
$$M = \mathcal{E}_R^{\dagger} \cdot \tau(M).$$

An overconvergent isocrystal is

- a left $\mathcal{E}_R^{\dagger} \{ \tau \}$ -module M such that
 - *M* is finite-dimensional over \mathcal{E}_R^{\dagger} .

•
$$M = \mathcal{E}_R^{\dagger} \cdot \tau(M).$$

For each x the module $\mathcal{M}_x^{\dagger} = \mathcal{E}_R^{\dagger} \otimes_{\mathcal{E}_R} \mathcal{M}_x$ is an overconvergent isocrystal.

We shall study the inclusion $\operatorname{Hom}(\mathcal{M}_x,\mathcal{N}_x)\subset\operatorname{Hom}(\mathcal{M}_x^\dagger,\mathcal{N}_x^\dagger).$

Local maximal models

a left $\mathcal{E}_R{\tau}$ -module M such that

- *M* is finitely generated free over \mathcal{E}_R ,
- the cotangent module $M/\mathcal{E}_R \tau(M)$ is of finite length,
- M is the maximal submodule of K ⊗_R M having these properties.

- a left $\mathcal{E}_R{\tau}$ -module M such that
 - M is finitely generated free over \mathcal{E}_R ,
 - the cotangent module $M/\mathcal{E}_R \tau(M)$ is of finite length,
 - M is the maximal submodule of K ⊗_R M having these properties.

- a left $\mathcal{E}_R{\tau}$ -module M such that
 - M is finitely generated free over \mathcal{E}_R ,
 - the cotangent module $M/\mathcal{E}_R \tau(M)$ is of finite length,
 - M is the maximal submodule of K ⊗_R M having these properties.

- a left $\mathcal{E}_R{\tau}$ -module M such that
 - *M* is finitely generated free over \mathcal{E}_R ,
 - the cotangent module $M/\mathcal{E}_R \tau(M)$ is of finite length,
 - *M* is the maximal submodule of *K* ⊗_{*R*} *M* having these properties.

- a left $\mathcal{E}_R{\tau}$ -module M such that
 - *M* is finitely generated free over \mathcal{E}_R ,
 - the cotangent module $M/\mathcal{E}_R \tau(M)$ is of finite length,
 - M is the maximal submodule of K ⊗_R M having these properties.

This is a simultaneous generalization of \mathcal{E}_R -isocrystals, Gardeyn maximal models and local shtukas of Hartl.

- a left $\mathcal{E}_R{\tau}$ -module M such that
 - *M* is finitely generated free over \mathcal{E}_R ,
 - the cotangent module $M/\mathcal{E}_R \tau(M)$ is of finite length,
 - *M* is the maximal submodule of $K \otimes_R M$ having these properties.

This is a simultaneous generalization of \mathcal{E}_R -isocrystals, Gardeyn maximal models and local shtukas of Hartl.

NB: \mathcal{M}_x is a local maximal model for every x. This follows from the fact that \mathcal{M} is a Gardeyn model.

theorem (M., in progress)

The base change functor $\mathcal{E}_R^{\dagger}\otimes_{\mathcal{E}_R} -$ is fully faithful on local maximal models.

theorem (M., in progress)

The base change functor $\mathcal{E}_R^{\dagger} \otimes_{\mathcal{E}_R} -$ is fully faithful on local maximal models.

Corollary

For all A-motives M, N over K and all places \mathfrak{p} of F we have $F_{\mathfrak{p}} \otimes_A \operatorname{Hom}(M, N) = \{f \colon M_{\mathfrak{p}} \to N_{\mathfrak{p}} \mid \forall x \ f(M_{\mathfrak{p},x}^{\dagger}) \subset N_{\mathfrak{p},x}^{\dagger}\}.$

Here $M_{\mathfrak{p},x}^{\dagger} = \mathcal{E}_{R,F_{\mathfrak{p}}}^{\dagger} \otimes_{K[t]} M$. Note that $K(t) \subset \mathcal{E}_{R,F_{\mathfrak{p}}}^{\dagger}$ for all R, \mathfrak{p} . By Watson the condition holds for almost all x.

Kedlaya's base change theorem

In the *p*-adic setting the $\mathcal{E}_{\mathcal{K}}$ -isocrystals carry extra data: a *connection* ∇ .

In the *p*-adic setting the $\mathcal{E}_{\mathcal{K}}$ -isocrystals carry extra data: a *connection* ∇ .

In the p-adic cohomology theory this comes from the Gauß-Manin connection.

In the *p*-adic setting the $\mathcal{E}_{\mathcal{K}}$ -isocrystals carry extra data: a *connection* ∇ .

In the p-adic cohomology theory this comes from the Gauß-Manin connection.

 ∇ is essentially unique (e.g. it is unique on pure objects).

In the *p*-adic setting the $\mathcal{E}_{\mathcal{K}}$ -isocrystals carry extra data: a *connection* ∇ .

In the p-adic cohomology theory this comes from the Gauß-Manin connection.

 ∇ is essentially unique (e.g. it is unique on pure objects).

Theorem (Kedlaya '03)

In the *p*-adic setting the base change functor $\mathcal{E}_{\mathcal{K}} \otimes_{\mathcal{E}_{\mathcal{R}}^{\dagger}} -$ is fully faithful.

Monodromy

$\mathcal{R}_{v} = \{\sum_{n \in \mathbb{Z}} x_{n} z^{n} \mid \text{converges on a punctured open disk w.r.t. } v\}$

 $\mathcal{R}_{v} = \{\sum_{n \in \mathbb{Z}} x_{n} z^{n} \mid \text{converges on a punctured open disk w.r.t. } v\}$

The *p*-adic monodromy theorem describes the structure of the Frobenius module $\mathcal{R}_v \otimes_{\mathcal{E}_R^{\dagger}} M$.

 $\mathcal{R}_{v} = \{\sum_{n \in \mathbb{Z}} x_{n} z^{n} \mid \text{converges on a punctured open disk w.r.t. } v\}$

The *p*-adic monodromy theorem describes the structure of the Frobenius module $\mathcal{R}_{v} \otimes_{\mathcal{E}_{p}^{\dagger}} M$.

The base change is fully faithful on the level of Frobenius structure **if one assumes that** $\mathcal{R}_v \otimes_{\mathcal{E}_R^{\dagger}} M$ is as prescribed by the *p*-adic monodromy theorem.

 $\mathcal{R}_{v} = \{\sum_{n \in \mathbb{Z}} x_{n} z^{n} \mid \text{converges on a punctured open disk w.r.t. } v\}$

The *p*-adic monodromy theorem describes the structure of the Frobenius module $\mathcal{R}_{v} \otimes_{\mathcal{E}_{p}^{\dagger}} M$.

The base change is fully faithful on the level of Frobenius structure **if one assumes that** $\mathcal{R}_{\mathbf{v}} \otimes_{\mathcal{E}_{R}^{\dagger}} M$ is as prescribed by the *p*-adic monodromy theorem.

What if we do not restrict $\mathcal{R}_{v} \otimes_{\mathcal{E}_{R}^{\dagger}} M$?

 $\mathcal{R}_{v} = \{\sum_{n \in \mathbb{Z}} x_{n} z^{n} \mid \text{converges on a punctured open disk w.r.t. } v\}$

The *p*-adic monodromy theorem describes the structure of the Frobenius module $\mathcal{R}_{v} \otimes_{\mathcal{E}_{p}^{\dagger}} M$.

The base change is fully faithful on the level of Frobenius structure **if one assumes that** $\mathcal{R}_{\mathbf{v}} \otimes_{\mathcal{E}_{R}^{\dagger}} M$ is as prescribed by the *p*-adic monodromy theorem.

What if we do not restrict $\mathcal{R}_{v} \otimes_{\mathcal{E}_{D}^{\dagger}} M$?

The base change functor is **not full**, both in the p-adic and the z-adic setting.

 $\mathcal{R}_{v} = \{\sum_{n \in \mathbb{Z}} x_{n} z^{n} \mid \text{converges on a punctured open disk w.r.t. } v\}$

The *p*-adic monodromy theorem describes the structure of the Frobenius module $\mathcal{R}_{v} \otimes_{\mathcal{E}_{p}^{\dagger}} M$.

The base change is fully faithful on the level of Frobenius structure if one assumes that $\mathcal{R}_v \otimes_{\mathcal{E}_R^{\dagger}} M$ is as prescribed by the *p*-adic monodromy theorem.

What if we do not restrict $\mathcal{R}_{v} \otimes_{\mathcal{E}_{D}^{\dagger}} M$?

The base change functor is **not full**, both in the p-adic and the z-adic setting.

This leads to a counterexample to FF for $\mathfrak{p} = \infty$.

Known cases of base change

Theorem (folklore)

The base change functor $\mathcal{E}\otimes_{\mathcal{E}_R^\dagger}-$ is fully faithful on pure isocrystals.

Yields FF for generic $\mathfrak{p},$ and $\mathfrak{p}=\infty$ for pure motives.

Theorem (folklore)

The base change functor $\mathcal{E}\otimes_{\mathcal{E}_R^\dagger}-$ is fully faithful on pure isocrystals.

Yields FF for generic $\mathfrak{p},$ and $\mathfrak{p}=\infty$ for pure motives.

Theorem (Ambrus Pal - M. '20)	
The base change functor $\mathcal{E}\otimes_{\mathcal{E}_{n}^{\dagger}}-$ is fully faithful or	n isocrystals
with "good" monodromy.	

"good" = the result of the p-adic monodromy theorem translated to the z-adic setting.

Theorem (folklore)

The base change functor $\mathcal{E}\otimes_{\mathcal{E}_R^\dagger}-$ is fully faithful on pure isocrystals.

Yields FF for generic \mathfrak{p} , and $\mathfrak{p} = \infty$ for pure motives.

	Theorem (Ambrus	Pal	- M.	'20`
--	-----------	--------	-----	------	------

The base change functor $\mathcal{E}\otimes_{\mathcal{E}_R^\dagger}-$ is fully faithful on isocrystals with "good" monodromy.

"good" = the result of the p-adic monodromy theorem translated to the z-adic setting.

Yields Watson's base change theorem, and FF for Drinfeld modules, special \mathfrak{p} . Also applies to $\mathfrak{p} = \infty$ when the motive has potential good reduction everywhere.