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The setting

Fq, a field of finite cardinality q.

A = Fq[t], the ring of coefficients.
F = Fq(t), the fraction field of A.

K , a field over Fq.

Usual motives have coefficient ring Z: the category is Z-linear.
E.g. abelian varieties, algebraic tori.
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Anderson modules and motives

An A-module scheme E is

an abelian group scheme E over SpecK ,

equipped with an action of the ring A = Fq[t].

Anderson’s motive of E

M(E ) = HomFq(E , Ga,K ).

M(E ) carries a left action of the ring K [t]{τ}:

K [t] = K ⊗Fq A, σ : x ⊗ a 7→ xq ⊗ a

K [t]{τ} = { y0 + y1τ + . . .+ ynτ
n | yi ∈ K [t] }

τ · y = σ(y) · τ ∀y ∈ K [t]

K{τ} = EndFq(Ga,K ) acts by composition on the left.

A acts by composition on the right.
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An Anderson A-module is

an A-module scheme E over SpecK such that

E is isomorphic to a finite product of copies of Ga,K .

the motive M(E ) is finitely generated projective over K [t].

M(E ) is finitely generated projective over K{τ} ⊂ K [t]{τ}.
NB: K [t]{τ} = K [t]⊗K K{τ}.

The rank of E is the rank of M(E ) over K [t].

The dimension of E is the rank of M(E ) over K{τ}.

A Drinfeld A-module is an Anderson A-module of dimension 1.
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Pick α ∈ K .

Example

E = Ga,K

Action of t on E is given by α + τ + τ2.

EndFq(Ga,K ) = K{τ}, hence M(E ) = K{τ}.
Claim: M(E ) is generated by 1, τ over K [t].

t · τn

= τn · (α + τ + τ2)

= αqnτn + τn+1 + τn+2

τn+2 = (t − αqn) · τn − τn+1

Conclusion: E is an Anderson module of dimension 1 and rank 2.



Pick α ∈ K .

Example

E = Ga,K

Action of t on E is given by α + τ + τ2.

EndFq(Ga,K ) = K{τ}, hence M(E ) = K{τ}.
Claim: M(E ) is generated by 1, τ over K [t].

t · τn

= τn · (α + τ + τ2)

= αqnτn + τn+1 + τn+2

τn+2 = (t − αqn) · τn − τn+1

Conclusion: E is an Anderson module of dimension 1 and rank 2.



Pick α ∈ K .

Example

E = Ga,K

Action of t on E is given by α + τ + τ2.

EndFq(Ga,K ) = K{τ}, hence M(E ) = K{τ}.
Claim: M(E ) is generated by 1, τ over K [t].

t · τn

= τn · (α + τ + τ2)

= αqnτn + τn+1 + τn+2

τn+2 = (t − αqn) · τn − τn+1

Conclusion: E is an Anderson module of dimension 1 and rank 2.



Pick α ∈ K .

Example

E = Ga,K

Action of t on E is given by α + τ + τ2.

EndFq(Ga,K ) = K{τ}, hence M(E ) = K{τ}.

Claim: M(E ) is generated by 1, τ over K [t].

t · τn

= τn · (α + τ + τ2)

= αqnτn + τn+1 + τn+2

τn+2 = (t − αqn) · τn − τn+1

Conclusion: E is an Anderson module of dimension 1 and rank 2.



Pick α ∈ K .

Example

E = Ga,K

Action of t on E is given by α + τ + τ2.

EndFq(Ga,K ) = K{τ}, hence M(E ) = K{τ}.
Claim: M(E ) is generated by 1, τ over K [t].

t · τn

= τn · (α + τ + τ2)

= αqnτn + τn+1 + τn+2

τn+2 = (t − αqn) · τn − τn+1

Conclusion: E is an Anderson module of dimension 1 and rank 2.



Pick α ∈ K .

Example

E = Ga,K

Action of t on E is given by α + τ + τ2.

EndFq(Ga,K ) = K{τ}, hence M(E ) = K{τ}.
Claim: M(E ) is generated by 1, τ over K [t].

t · τn

= τn · (α + τ + τ2)

= αqnτn + τn+1 + τn+2

τn+2 = (t − αqn) · τn − τn+1

Conclusion: E is an Anderson module of dimension 1 and rank 2.



Pick α ∈ K .

Example

E = Ga,K

Action of t on E is given by α + τ + τ2.

EndFq(Ga,K ) = K{τ}, hence M(E ) = K{τ}.
Claim: M(E ) is generated by 1, τ over K [t].

t · τn = τn · (α + τ + τ2)

= αqnτn + τn+1 + τn+2

τn+2 = (t − αqn) · τn − τn+1

Conclusion: E is an Anderson module of dimension 1 and rank 2.



Pick α ∈ K .

Example

E = Ga,K

Action of t on E is given by α + τ + τ2.

EndFq(Ga,K ) = K{τ}, hence M(E ) = K{τ}.
Claim: M(E ) is generated by 1, τ over K [t].

t · τn = τn · (α + τ + τ2) = αqnτn + τn+1 + τn+2

τn+2 = (t − αqn) · τn − τn+1

Conclusion: E is an Anderson module of dimension 1 and rank 2.



Pick α ∈ K .

Example

E = Ga,K

Action of t on E is given by α + τ + τ2.

EndFq(Ga,K ) = K{τ}, hence M(E ) = K{τ}.
Claim: M(E ) is generated by 1, τ over K [t].

t · τn = τn · (α + τ + τ2) = αqnτn + τn+1 + τn+2

τn+2 = (t − αqn) · τn − τn+1

Conclusion: E is an Anderson module of dimension 1 and rank 2.



Pick α ∈ K .

Example

E = Ga,K

Action of t on E is given by α + τ + τ2.

EndFq(Ga,K ) = K{τ}, hence M(E ) = K{τ}.
Claim: M(E ) is generated by 1, τ over K [t].

t · τn = τn · (α + τ + τ2) = αqnτn + τn+1 + τn+2

τn+2 = (t − αqn) · τn − τn+1

Conclusion: E is an Anderson module of dimension 1 and rank 2.



Pick α ∈ K .

Example

E = Ga,K

Action of t on E is given by α + τ + τ2.

EndFq(Ga,K ) = K{τ}, hence M(E ) = K{τ}.
Claim: M(E ) is generated by 1, τ over K [t].

t · τn = τn · (α + τ + τ2) = αqnτn + τn+1 + τn+2

τn+2 = (t − αqn) · τn − τn+1

Conclusion: E is an Anderson module of dimension 1 and rank 2.



The tangent space at 0

Lie(E ) is an K [t]-module of finite length.

Anderson: Lie(E ) is supported at a rational point of the curve
SpecK [t]/SpecK . We do not demand this.

A nonzero prime p ⊂ A is special if Lie(E )[p] 6= 0.
Otherwise p is called generic.

There are only finitely many special primes.

Special primes always exist if K is finite.

For Drinfeld modules there is at most one special prime.

In the example: a prime p = (f ) is special if and only if f (α) = 0.
If α is transcendental over Fq then every prime is generic.
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Tate modules

A nonzero prime ideal p ⊂ A. Completion Ap, local field Fp.
A separable closure K s/K . The p-adic Tate module:

TpE = HomA(Fp/Ap, E (K s))

Finitely generated free over Ap.

Continuous action of GK = Gal(K s/K ).

rkTpE 6 rkM(E )

rkTpE = rkM(E )⇔ p is generic.
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Anderson: the functor E 7→ M(E ) is fully faithful.

An (effective) A-motive over K is

a left K [t]{τ}-module M such that

M is finitely generated projective over K [t].

The submodule K [t] · τ(M) is of finite K -codimension in M.

The cotangent module ΩM = M/K [t]τ(M).

ΩM(E)
∼−→ HomK (Lie(E ),K ) over K [t]

The same notion of generic and special primes.

The category is abelian after F ⊗A −.

There is a tensor product M ⊗ N.

No duality; easy to repair.

NB: not every motive arises from E .
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Dieudonné-Manin theory

Local field F̂ over Fq, ring of integers O, maximal ideal m.

EK = EK ,F̂ = (limn→∞ K ⊗Fq O/mn)⊗O F̂

Endomorphism σ : EK → EK induced by the q-Frobenius of K .

Example: F̂ = Fq((z)), E = K ((z)), σ(
∑

xnz
n) =

∑
xqn zn.

An EK -isocrystal is

a left EK{τ}-module M such that

M is finitely generated projective over EK .

EK · τ(M) = M.

The category is abelian F̂ -linear.

There is a tensor product and duality.



Dieudonné-Manin theory

Local field F̂ over Fq, ring of integers O, maximal ideal m.

EK = EK ,F̂ = (limn→∞ K ⊗Fq O/mn)⊗O F̂

Endomorphism σ : EK → EK induced by the q-Frobenius of K .

Example: F̂ = Fq((z)), E = K ((z)), σ(
∑

xnz
n) =

∑
xqn zn.

An EK -isocrystal is

a left EK{τ}-module M such that

M is finitely generated projective over EK .

EK · τ(M) = M.

The category is abelian F̂ -linear.

There is a tensor product and duality.
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Dieudonné-Manin theory

Local field F̂ over Fq, ring of integers O, maximal ideal m.

EK = EK ,F̂ = (limn→∞ K ⊗Fq O/mn)⊗O F̂

Endomorphism σ : EK → EK induced by the q-Frobenius of K .

Example: F̂ = Fq((z)), E = K ((z)), σ(
∑

xnz
n) =

∑
xqn zn.

An EK -isocrystal is

a left EK{τ}-module M such that

M is finitely generated projective over EK .

EK · τ(M) = M.

The category is abelian F̂ -linear.

There is a tensor product and duality.
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Dieudonné-Manin classification theorem

Assume that K is algebraically closed. Then

The category of EK -isocrystals is semi-simple.

Simple objects Mλ are classified by slope λ ∈ Q.

In the case F̂ = Fq((z)):

Write λ = s
r with r > 0 and (s, r) = 1.

Mλ = 〈e1, . . . , er 〉
e1

τ−→ . . .
τ−→ er

τ−→ zse1
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Dieudonné-Manin classification theorem

Assume that K is algebraically closed. Then

The category of EK -isocrystals is semi-simple.

Simple objects Mλ are classified by slope λ ∈ Q.

In the case F̂ = Fq((z)):

Write λ = s
r with r > 0 and (s, r) = 1.

Mλ = 〈e1, . . . , er 〉
e1

τ−→ . . .
τ−→ er

τ−→ zse1
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An isocrystal M is pure if at most one slope appears in the DM
decomposition over an algebraic closure.

If M, N are pure then so is M ⊗N and λ(M ⊗N) = λ(M) + λ(N).
Similarly λ(M∗) = −λ(M).

Filtration theorem (for arbitrary K )

Every EK -isocrystal M carries a unique filtration

0 = M0 ⊂ M1 ⊂ . . . ⊂ Mn = M
such that:

Every Mi+1/Mi is pure and not zero.

The slopes are strictly increasing with i .

This is called the Harder-Narasimhan filtration.
Splits if K is perfect (and does not split otherwise).
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The slopes are strictly increasing with i .
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Let M be a pure E-isocrystal of slope 0.

T (M) = (EK s ⊗EK M)τ

Finite-dimensional over F̂ .

Carries a continuous action of GK .

Representation theorem

The functor M 7→ T (M) is an equivalence of

the category of pure isocrystals of slope 0,

the category of continuous GK -representations in
finite-dimensional F̂ -vector spaces.

Can extend this to pure modules of any slope!
The Weil group WK appears instead of GK .
The target category is more complicated.
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Rational p-adic completion of motives

Let M be a motive, and p a place of F = Fq(t).

The rational p-adic completion is

Mp = EK ,Fp ⊗K [t] M

p ⊂ A generic: Mp is pure of slope 0.

For M = M(E ) we have a natural isomorphism

T (Mp) ∼−→ HomFp(VpE , Ωp)

where Ωp = Fp ⊗A Ω1
A/Fq .

p ⊂ A special: Mp need not be pure. The slopes are
non-negative and at least one is strictly positive.

T (

M0
p

) ∼−→ HomFp(VpE , Ωp)
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Weights: the ∞-adic completion

Definition (Anderson ’86)

The weights of M are the slopes of M∞ taken with the opposite
sign. We say that M is pure if so is M∞.

Theorem (Taelman ’10)

A motive arises from an Anderson module if and only if its weights
are strictly positive.

A Tate object L: rank 1, weight 1.
M ⊗ L⊗n is finitely generated over K{τ} for n� 0.

Theorem (Drinfeld ’77)

A motive of rank r > 0 arises from a Drinfeld module if and only if
it is pure of weight 1

r .
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Tate conjectures

Tate conjectures for A-motives over K

Assume that K is finitely generated. Then the functor M 7→ Mp is

(FF) fully faithful after Fp ⊗A −,

(SS) preserves semi-simple objects at the rational level.

Fp ⊗A Hom(M,N) ∼−→ Hom(Mp,Np)

Folklore theorem

Assume that K is finite. Then the Tate conjecture (FF) holds for
all motives M and places p.

Reason: EK ,Fp = Fp ⊗A K [t]. Implies injectivity for arbitrary K .
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Results

Taguchi ’91, ’93: SS for Drinfeld modules, p 6=∞.

Taguchi ’95: FF for generic p and tr degK = 1.
Details omitted.

A. Tamagawa ’94, ’95, ’96: FF+SS for generic p.
Details omitted.

Pink ’95: FF+SS for generic p.
Deduced from the isogeny conjecture. Never published.

Watson ’03: FF for Drinfeld modules, special p.

Stalder ’10: FF+SS for generic p.

Zywina ’16: FF for pure motives, p =∞.

M.’20: counterexample to FF for mixed motives, p =∞.
The work still continues: FFp=∞ is true for many mixed motives.
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Full faithfulness: the algebraic part

Focus on the case tr degK = 1.

X/SpecFq = the smooth projective model of K .

Goal: understand what is Fp ⊗A Hom(M,N).
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Gardeyn’s theory

C = SpecA, X × C , endomorphism σ.

A left OX×C{τ}-module: a pair (F , τ) where F is an
OX×C -module, τ : F → σ∗F is a morphism.

An A-motive M gives rise to a coherent sheaf M̃ on (SpecK )× C
together with a σ-linear endomorphism τ .

Embedding ι : (SpecK )× C ↪→ X × C . Pushforward ι∗M̃.

Gardeyn’s maximal model

There is a unique left OX×C{τ}-submodule M⊂ ι∗M̃ which is

locally free of finite type over OX×C ,

maximal with respect to the inclusion relation.
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Motives M, N  Gardeyn models M, N

Néron property

Hom(M,N) = Hom(M, N )

Mp, Np: the pullback to X × SpecFp.

Theorem

Fp ⊗A Hom(M,N) = Hom(Mp, Np)

Instant consequence of proper base change.
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Full faithfluness: the analytic part

Local field F̂ = Fq((z)).

Scheme X = X × Spec F̂ with an endomorphism σ. Best viewed as
a rigid analytic space over Spec F̂ .

We have M, a left OX {τ}-module which is locally free of finite
type over OX .

Generic fiber functor M 7→Mη: base change to EK = K ⊗̂ F̂ .
We know that Mη is an isocrystal.

When the functor M 7→Mη is fully faithful?
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Local analysis

Closed point x ∈ X ↔ valuation ring R ⊂ K .

ER = R((z)) = R[[z ]][z−1], a subring of EK = K ((z)).
NB: ER is a PID.

Base change from X to ER : M 7→Mx . Produces a left
ER{τ}-module with the following properties:

Mx is finitely generated projective over ER .

The quotient Mx/ERτ(Mx) is of finite length.

Mx has a maximality proerty to be discussed later.

To prove full faithfulness it is enough to show that every morphism
Mη → Nη maps Mx to Nx for all x ∈ X .
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Unramified case (excellent reduction)

An ER -isocrystal is

a left ER{τ}-module M such that

M is finitely generated free over ER ,

M = ERτ(M).

For almost all points x the module Mx is an ER -isocrystal.

Theorem (Watson ’03)

The base change functor EK ⊗ER − is fully faithful on isocrystals.

Open subset U ⊂ X  subspace U ⊂ X , a complement of finitely
many residue disks. The natural morphism

Hom(M|U , N|U ) ∼−→ Hom(Mη, Nη)

is an isomorphism.
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Overconvergence

Split the base change problem in two parts: ER ↪→ E†R ↪→ EK
Closed point x ∈ X ⇔ normalized valuation v : K× → Z.

Γ†R ⊂ K [[z ]], the subring of series with nonzero radius of
convergence w.r.t. v .

The overconvergent ring

E†R = Γ†R [z−1]

The z-adic analog of the p-adic overconvergent ring (F̂ = Qp).

NB: ER ⊂ E†R . Furthermore E†R is a field.
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An overconvergent isocrystal is

a left E†R{τ}-module M such that

M is finite-dimensional over E†R .

M = E†R · τ(M).

For each x the module M†x = E†R ⊗ER Mx is an overconvergent
isocrystal.

We shall study the inclusion Hom(Mx ,Nx) ⊂ Hom(M†x ,N †x ).
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Local maximal models

A local maximal model over R is

a left ER{τ}-module M such that

M is finitely generated free over ER ,

the cotangent module M/ERτ(M) is of finite length,

M is the maximal submodule of K ⊗R M having these
properties.

This is a simultaneous generalization of ER -isocrystals, Gardeyn
maximal models and local shtukas of Hartl.

NB: Mx is a local maximal model for every x .
This follows from the fact that M is a Gardeyn model.
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theorem (M., in progress)

The base change functor E†R ⊗ER − is fully faithful on local
maximal models.

Corollary

For all A-motives M, N over K and all places p of F we have

Fp ⊗A Hom(M,N) = {f : Mp → Np | ∀x f (M†p,x) ⊂ N†p,x}.

Here M†p,x = E†R,Fp
⊗K [t] M. Note that K (t) ⊂ E†R,Fp

for all R, p.

By Watson the condition holds for almost all x .
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Kedlaya’s base change theorem

Consider the base change E†R ↪→ EK .

In the p-adic setting the EK -isocrystals carry extra data:
a connection ∇.

In the p-adic cohomology theory this comes from the Gauß-Manin
connection.

∇ is essentially unique (e.g. it is unique on pure objects).

Theorem (Kedlaya ’03)

In the p-adic setting the base change functor EK ⊗E†R − is fully

faithful.
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Monodromy

The Robba ring for the valuation v

Rv = {
∑

n∈Z xnz
n | converges on a punctured open disk w.r.t. v}

The p-adic monodromy theorem describes the structure of the
Frobenius module Rv ⊗E†R M.

The base change is fully faithful on the level of Frobenius structure
if one assumes that Rv ⊗E†R M is as prescribed by the p-adic

monodromy theorem.

What if we do not restrict Rv ⊗E†R M?

The base change functor is not full, both in the p-adic and the
z-adic setting.

This leads to a counterexample to FF for p =∞.
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Known cases of base change

Theorem (folklore)

The base change functor E ⊗E†R − is fully faithful on pure

isocrystals.

Yields FF for generic p, and p =∞ for pure motives.

Theorem (Ambrus Pal - M. ’20)

The base change functor E ⊗E†R − is fully faithful on isocrystals

with “good” monodromy.

“good” = the result of the p-adic monodromy theorem translated
to the z-adic setting.

Yields Watson’s base change theorem, and FF for Drinfeld
modules, special p. Also applies to p =∞ when the motive has
potential good reduction everywhere.
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