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Usual motives have coefficient ring Z: the category is Z-linear.
E.g. abelian varieties, algebraic tori.
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An A-module scheme E is
@ an abelian group scheme E over Spec K,

e equipped with an action of the ring A = F,[t].

Anderson’s motive of E
M(E) = Homg,(E, G, k).

M(E) carries a left action of the ring K[t]{7}:

K[t] = K®p, A, o:x®@a—x7®a
Kt} ={yv+nt+...+y7" | yi € K[t] }
T-y=o(y) -7 VyeK[t]
e K{7} = Endg,(G, k) acts by composition on the left.

@ A acts by composition on the right.
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an A-module scheme E over Spec K such that
e E is isomorphic to a finite product of copies of G, k.

@ the motive M(E) is finitely generated projective over K|t].

M(E) is finitely generated projective over K{7} C K[t]{7}.
NB: K[t]{7} = K[t] @k K{7}.

@ The rank of E is the rank of M(E) over K|[t].
@ The dimension of E is the rank of M(E) over K{7}.

A Drinfeld A-module is an Anderson A-module of dimension 1.
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Pick a € K.

o E =G,k
@ Action of t on E is given by a + 7 + 72.

Endr, (Ga k) = K{7}, hence M(E) = K{7}.
Claim: M(E) is generated by 1, 7 over K|t].

n
t-m"=71" (a+71+73)=a% 7"+ " g 2
n
T2 = (t—a9). " — "L

Conclusion: E is an Anderson module of dimension 1 and rank 2.
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The tangent space at 0

Lie(E) is an K[t]-module of finite length.

Anderson: Lie(E) is supported at a rational point of the curve
Spec K[t]/ Spec K. We do not demand this.

A nonzero prime p C A is special if Lie(E)[p] # 0.
Otherwise p is called generic.

@ There are only finitely many special primes.
@ Special primes always exist if K is finite.

@ For Drinfeld modules there is at most one special prime.

In the example: a prime p = (f) is special if and only if f(«) = 0.
If o is transcendental over Iy then every prime is generic.
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Tate modules

A nonzero prime ideal p C A. Completion Ay, local field F.
A separable closure K*/K. The p-adic Tate module:

ToE = Homa(F, /Ay, E(K®))

Finitely generated free over A,.
Continuous action of Gk = Gal(K*/K).
rk T,E < rk M(E)

rk T,E = rk M(E) < p is generic.
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Anderson: the functor E — M(E) is fully faithful.

An (effective) A-motive over K is

a left K[t]{7}-module M such that
@ M is finitely generated projective over K|t].
@ The submodule K{t] - 7(M) is of finite K-codimension in M.

The cotangent module Qp = M/K[t]T(M).
Qu(e) = Homk(Lie(E), K) over K[t]

The same notion of generic and special primes.
@ The category is abelian after F ®4 —.
@ There is a tensor product M ® N.
@ No duality; easy to repair.

NB: not every motive arises from E.
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Local field F over [y, ring of integers O, maximal ideal m.
Ex = EK,,‘:' = (Iim,,_mo K ®Fq O/m”) R0 F_

Endomorphism o: £k — £k induced by the g-Frobenius of K.
Example: F =TF,((2)), £ = K((2)), o(3 xn2") = 3 x72".

An Ek-isocrystal is

a left Ex{r}-module M such that
@ M is finitely generated projective over k.
o &k -T(M) =M.

e The category is abelian F-linear.

@ There is a tensor product and duality.
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An isocrystal M is pure if at most one slope appears in the DM
decomposition over an algebraic closure.

If M, N are pure then so is M@ N and A(M ®@ N) = A\(M) + \(N).
Similarly A(M*) = —\(M).

Filtration theorem (for arbitrary K)

Every Ek-isocrystal M carries a unique filtration
0O=MycM,C...cM,=M
such that:
e Every M1 1/M; is pure and not zero.

@ The slopes are strictly increasing with i.

This is called the Harder-Narasimhan filtration.
Splits if K is perfect (and does not split otherwise).
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Let M be a pure E-isocrystal of slope 0.
T(M) = (Eks @g,c M)"

@ Finite-dimensional over F.

@ Carries a continuous action of Gg.

Representation theorem

The functor M — T (M) is an equivalence of
@ the category of pure isocrystals of slope 0,

@ the category of continuous Gg-representations in
finite-dimensional F-vector spaces.

Can extend this to pure modules of any slope!
The Weil group Wy appears instead of Gk.
The target category is more complicated.
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Rational p-adic completion of motives

Let M be a motive, and p a place of F = Fy(t).

The rational p-adic completion is
M, = &k F, @k M

@ p C A generic: M, is pure of slope 0.

For M = M(E) we have a natural isomorphism

where Q, = F, ®a QA/]F

@ p C A special: M, need not be pure. The slopes are
non-negative and at least one is strictly positive.

T(Mg) =~ Homp, (VL E, Q)
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Weights: the oo-adic completion

Definition (Anderson '86)

The weights of M are the slopes of M, taken with the opposite
sign. We say that M is pure if so is M.

Theorem (Taelman '10)

A motive arises from an Anderson module if and only if its weights
are strictly positive.

A Tate object L: rank 1, weight 1.
M @ L®" is finitely generated over K{r} for n>> 0.

Theorem (Drinfeld '77)

A motive of rank r > 0 arises from a Drinfeld module if and only if
it is pure of weight %
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Tate conjectures

Tate conjectures for A-motives over K
Assume that K is finitely generated. Then the functor M — M, is

o (FF) fully faithful after F, ®4 —,
@ (SS) preserves semi-simple objects at the rational level.

Fp ®a Hom(M, N) =% Hom(M,, N,)

Folklore theorem

Assume that K is finite. Then the Tate conjecture (FF) holds for
all motives M and places p.

Reason: & r, = F, ®a K[t]. Implies injectivity for arbitrary K.
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Taguchi '91, '93: SS for Drinfeld modules, p # cc.

Taguchi '95: FF for generic p and tr deg K = 1.
Details omitted.

A. Tamagawa '94, 95, '96: FF+SS for generic p.
Details omitted.

Pink '95: FF+SS for generic p.
Deduced from the isogeny conjecture. Never published.

o Watson '03: FF for Drinfeld modules, special p.
@ Stalder '10: FF+SS for generic p.

@ Zywina '16: FF for pure motives, p = oco.

M.'20: counterexample to FF for mixed motives, p = co.
The work still continues: FF,—, is true for many mixed motives.
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Full faithfulness: the algebraic part

Focus on the case tr deg K = 1.
X/ SpecFy = the smooth projective model of K.

Goal: understand what is F, ® 4 Hom(M, N).



Gardeyn's theory



Gardeyn's theory

C = Spec A, X x C, endomorphism ¢.



Gardeyn's theory

C = Spec A, X x C, endomorphism ¢.

A left Oxxc{T}-module: a pair (F,7) where F is an
Oxxc-module, 7: F — o,F is a morphism.



Gardeyn's theory

C = Spec A, X x C, endomorphism ¢.

A left Oxxc{T}-module: a pair (F,7) where F is an
Oxxc-module, 7: F — o,F is a morphism.

An A-motive M gives rise to a coherent sheaf M on (Spec K) x C
together with a o-linear endomorphism 7.



Gardeyn's theory

C = Spec A, X x C, endomorphism ¢.

A left Oxxc{T}-module: a pair (F,7) where F is an
Oxxc-module, 7: F — o,F is a morphism.

An A-motive M gives rise to a coherent sheaf M on (Spec K) x C
together with a o-linear endomorphism 7.

Embedding ¢: (Spec K) x C — X x C. Pushforward ¢, M.



Gardeyn's theory

C = Spec A, X x C, endomorphism ¢.

A left Oxxc{T}-module: a pair (F,7) where F is an
Oxxc-module, 7: F — o,F is a morphism.

An A-motive M gives rise to a coherent sheaf M on (Spec K) x C
together with a o-linear endomorphism 7.

Embedding ¢: (Spec K) x C — X x C. Pushforward ¢, M.

Gardeyn's maximal model

There is a unique left Ox {7 }-submodule M C 1« M which is
@ locally free of finite type over Ox«c,

@ maximal with respect to the inclusion relation.
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Motives M, N ~+ Gardeyn models M, N

Néron property
Hom(M, N) = Hom(M, N)

My, Ny: the pullback to X x Spec F,.

Fy ®a Hom(M, N) = Hom(M,, N,)

Instant consequence of proper base change.
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Full faithfluness: the analytic part

Local field F = Fy((2)).

Scheme X = X x Spec F with an endomorphism . Best viewed as
a rigid analytic space over Spec F.

We have M, a left Ox{7}-module which is locally free of finite
type over Oy.

Generic fiber functor M — M,,: base change to £k = K&F.
We know that M,, is an isocrystal.

When the functor M — M,, is fully faithful?
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Local analysis

Closed point x € X < valuation ring R C K.
Er = R((2)) = R[[z]][z7}], a subring of Ex = K((2)).
NB: &g is a PID.
Base change from X to Eg: M +— M. Produces a left
Er{7}-module with the following properties:

@ M, is finitely generated projective over Eg.

@ The quotient M, /ErT(My) is of finite length.

@ M, has a maximality proerty to be discussed later.

To prove full faithfulness it is enough to show that every morphism
M, — N, maps M, to N for all x € X.
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Unramified case (excellent reduction)

An Eg-isocrystal is

a left Eg{7}-module M such that
@ M is finitely generated free over &g,
o M= ErT(M).

For almost all points x the module M, is an Eg-isocrystal.

Theorem (Watson '03)
The base change functor £k ®g, — is fully faithful on isocrystals.

Open subset U C X ~- subspace U C X, a complement of finitely
many residue disks. The natural morphism

Hom(M|y, M) == Hom(M,,, N,)

is an isomorphism.
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Overconvergence

Split the base change problem in two parts: Eg — 8;, — &k
Closed point x € X < normalized valuation v: K* — Z.

FI? C K][z]], the subring of series with nonzero radius of
convergence w.r.t. v.

The overconvergent ring
Sl ===

The z-adic analog of the p-adic overconvergent ring (I:' =Qp).

NB: Er C S,T?. Furthermore E,T? is a field.
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An overconvergent isocrystal is

a left S,T?{T}—module M such that
@ M is finite-dimensional over 8;2,.
o M= E;r? -7(M).

For each x the module /\/l:r( = 5;2, ®eg, My is an overconvergent
isocrystal.

We shall study the inclusion Hom (M, Ny) € Hom(M, N}).
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Local maximal models

A local maximal model over R is

a left Er{7}-module M such that
@ M is finitely generated free over &g,
@ the cotangent module M/EgT(M) is of finite length,

@ M is the maximal submodule of K ® g M having these
properties.

This is a simultaneous generalization of Eg-isocrystals, Gardeyn
maximal models and local shtukas of Hartl.

NB: My is a local maximal model for every x.
This follows from the fact that M is a Gardeyn model.
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theorem (M., in progress)

The base change functor S,T? ®gr — is fully faithful on local
maximal models.

| \

Corollary
For all A-motives M, N over K and all places p of F we have
Fo @a Hom(M, N) = {f: My — N, | ¥x f(M,) c Ni,}.

Here M, = €L o @iq M. Note that K(t) C £f, o forall R, p.

By Watson the condition holds for almost all x.
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Kedlaya's base change theorem

Consider the base change 5,2 — Ek.

In the p-adic setting the Ek-isocrystals carry extra data:
a connection V.

In the p-adic cohomology theory this comes from the GauB-Manin
connection.

V is essentially unique (e.g. it is unique on pure objects).

Theorem (Kedlaya '03)

In the p-adic setting the base change functor £k @i — is fully
R
faithful.
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The Robba ring for the valuation v

Ry = {>_hczxnz" | converges on a punctured open disk w.r.t. v}

The p-adic monodromy theorem describes the structure of the
Frobenius module R, ot M.
R

The base change is fully faithful on the level of Frobenius structure
if one assumes that R, Rt M is as prescribed by the p-adic
R

monodromy theorem.

What if we do not restrict R, Rt M
R

The base change functor is not full, both in the p-adic and the
z-adic setting.

This leads to a counterexample to FF for p = cc.
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Known cases of base change

Theorem (folklore)

The base change functor £ ®.; — is fully faithful on pure
R
isocrystals.

Yields FF for generic p, and p = oo for pure motives.

Theorem (Ambrus Pal - M. '20)

The base change functor £ ®,; — is fully faithful on isocrystals
R
with “good” monodromy.

“good” = the result of the p-adic monodromy theorem translated
to the z-adic setting.

Yields Watson's base change theorem, and FF for Drinfeld
modules, special p. Also applies to p = oo when the motive has
potential good reduction everywhere.



