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Calc II: p-adic Integration

Hp(x) := max(1, |x|p), x ∈ Qp

U(0) := {x | |x|p ≤ 1}, vol(U(0)) = 1

U(j) := {x | |x|p = pj}, vol(U(j)) = pj(1− 1

p
)

∫
Qp
Hp(xp)

−sdxp =

∫
U(0)

Hp(xp)
−sdxp +

∑
j≥1

∫
U(j)

Hp(xp)
−sdxp

= 1 +
∑
j≥1

p−jsvol(U(j))
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Leading constant

∫
Qp
Hp(xp)

−sdxp =
1− p−s

1− p−(s−1)

Put s = 2:

∫
. . . = (1 +

1

p
) =

#P1(Fp)
p

We interpret this as a volume with respect to a natural measure.

Introduction



Leading constant

∫
Qp
Hp(xp)

−sdxp =
1− p−s

1− p−(s−1)

Put s = 2:

∫
. . . = (1 +

1

p
) =

#P1(Fp)
p

We interpret this as a volume with respect to a natural measure.

Introduction



Leading constant

∫
Qp
Hp(xp)

−sdxp =
1− p−s

1− p−(s−1)

Put s = 2:

∫
. . . = (1 +

1

p
) =

#P1(Fp)
p

We interpret this as a volume with respect to a natural measure.

Introduction



Toric varieties

X = XΣ - projective equivariant compactification of T = Gdm.

N ' Zd, M = Hom(N,Z), Σ = {σ} - fan

e1, . . . , en - 1-dimensional cones in Σ

0→M → PL(Σ)→ Pic(XΣ)→ 0,

ϕ = ϕs ∈ PL(Σ) is defined by its values on ej : ϕs(ej) = sj ∈ C

T (Qp)/T (Zp) = N

Introduction
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Height integrals (Batyrev–T. 1995)
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Height integrals (Batyrev–T. 1995)

Local heights:
Hp(ϕs, tp) := pϕs(t̄p)

∫
T (Qp)

Hp(ϕs, tp)
−1 dtp =

 d∑
k=1

∑
σ∈Σ(k)

(−1)k

( ∑
n∈σ∩N

p−ϕs(n)

)

=

d∑
k=1

∑
σ∈Σ(k)

(−1)k
∏
ej∈σ

1

1− p−sj

Introduction



Toric modular forms
(Lev Borisov–Gunnels 2000)

Fix ϕ such that ϕ(ej) /∈ Z, for all j. For q ∈ H, put

fN,ϕ(q) :=
∑
m∈M

 d∑
k=1

∑
σ∈Σ(k)

(−1)k

( ∑
n∈σ∩N

qm·ne2πiϕ(n)

) ,

Let p be a prime, and assume that ϕ(ej) ∈ 1
pZ, for all j. Then

fN,ϕ(q)

is a modular form for Γ1(p) of weight d.

For every p, the ring of toric modular forms for Γ1(p) coincides
with the ring of modular forms, for weights ≥ 3.

Introduction
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Tamagawa numbers / Peyre (1995)

X – smooth projective Fano variety, dim(X) = d, over a
number field F

−KX is equipped with an adelic metrization.

For x ∈ X(Fv) choose local analytic coordinates x1, . . . , xd, in a
neighborhood Ux. In Ux, a section of the canonical line bundle has
the form s := dx1 ∧ . . . ∧ dxd. Put

τv = τX,v := ‖s‖vdx1 · · · dxd,

where dx1 · · · dxd is the standard normalized Haar measure on F dv .
It globalizes to X(Fv).

For almost all v, and Zariski open U ⊂ X,∫
U(Fv)

τv =

∫
X(Fv)

τv =

∫
X(ov)

τv =
∑

x̃∈X(Fq)

∫
π−1(x̃)

τv =
#X(Fq)

qd
.

Introduction
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Birational Calabi-Yau (Batyrev 1997)

X, Y birational Calabi-Yau of dimension n

A canonical bundle of a Calabi-Yau variety has a canonical
metrization ∫

X(Fv)
τv =

#X(Fq)
qn

∀′v

If X ⊃ U ⊂ Y , then

#X(Fq)
qn

=

∫
X(Fv)

τv =

∫
U(Fv)

τv =

∫
Y (Fv)

τv =
#Y (Fq)
qn

, ∀q

Applications
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Igusa integrals: local theory

Let U := X \D, with

D = ∪α∈ADα, −KX =
∑

ραDα,

where Dα are geometrically irreducible, smooth, and intersecting
transversally.

For A ⊂ A let

DA := ∩α∈ADα, D◦A = DA \ ∪A′⊃ADA′ .

DA ⊂ X is smooth, of codimension #A (or empty).

Applications
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Local heights and height integrals

Let
Hα : U(Fv)→ R≥0

be the v-adic distance to the boundary component Dα.

Zv(s) :=

∫
U(Fv)

∏
α∈A

Hα(x)−sαdτv

Applications
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Local computations

In charts, via partition of unity: in a neighborhood of x ∈ D◦A(F ) it
takes the form ∫ ∏

α∈A
|xα|sα−ραv dτv

Essentially, this is a product of integrals of the form∫
|x|v≤1

|x|s−1
v dxv.

Applications
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Denef’s formula

For almost all v one has:

Zv(s) =
∑
A

#D◦A(Fq)

qdim(X)

∏
α∈A

q − 1

qsα−ρα+1 − 1
.

Specialize to sα = ρα, for all α ∈ A:

Zv(ρ) =
∑
A

#D◦A(Fq)

qdim(X)
=

#X(Fq)

qdim(X)
.

Applications
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Applications

The integral

is an invariant under blowups,

encodes information about singularities of X,

plays a central role in analytic/spectral approches to Manin’s
conjectures, volume asymptotics, etc.

Applications



Basic questions

How much arithmetic is encoded in geometry?

How much geometry can be read off from arithmetic?

Rationality problems
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Rationality

(R) rational: if X ∼ Pn for some n,

(S) stably rational: if X × Pn is rational, for some n

(U) unirational: if Pn 99K X, for some n

Rationality problems
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Specialization of (stable) rationality

Voisin (2013): integral decomposition of ∆ (Bloch-Srinivas)

Colliot-Thélène–Pirutka (2015): universal CH0-triviality

Nicaise–Shinder (2017): K0(V ark)/L, char(k) = 0

Kontsevich–T. (2017): Burn(k), char(k) = 0

Rationality problems
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Specialization of (stable) rationality

Larsen–Lunts (2003): K0(V ark)/L is isomorphic to the free
abelian group spanned by classes of algebraic varieties over k,
modulo stable rationality.

Nicaise–Shinder (2017): motivic reduction – formula for
homomorphism

K0(V arK)/L→ K0(V ark)/L, K = k((t)),

inspired by motivic integration as in Denef–Loeser, , ...

Kontsevich–T. (2017): Same formula for

Burn(K)→ Burn(k),

the free abelian group spanned by classes of varieties over the
corresponding field, modulo rationality.

Rationality problems
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Specialization (Kontsevich-T. 2017)

Let o ' k[[t]], K ' k((t)), char(k) = 0.

Let X/K be a smooth proper (or projective) variety, with
function field L = K(X).

Choose a regular model

π : X → Spec(o),

such that π is proper and the special fiber X0 over Spec(k) is a
simple normal crossings (snc) divisor:

X0 = ∪α∈A dαDα, dα ∈ Z≥1.

Put

ρ([L/K]) :=
∑
∅6=A⊆A

(−1)#A−1[DA × A#A−1/k] ∈ Burn(k),

Rationality problems



From birational types to equivariant
birational types

There are close similarities between the study of birational
properties of varieties over nonclosed fields and the study of
birational group actions on varieties over algebraically closed fields.

Enormous literature, already in dimension 2, going back to Manin,
Iskovskikh, Bogomolov, Colliot-Thélène, Dolgachev, Beauville,
Blanc, Prokhorov, Cheltsov, Shramov, ...

This motivated the search for ways to “integrate in presence of
group actions”.
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P1 with Z/5Z-action

Consider two actions

(x0, x1) 7→ (ζ5x0, ζ
4
5x1), or 7→ (ζ2

5x0, ζ
3
5x1).

The weights in the tangent space at fixed points 0,∞ are: 2 and 3,
respectively, 1 and 4.

weights at 0 and ∞ differ, in both cases, by ±1,

these two actions are not equivariantly birational.
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Reichstein–Youssin (2002)

Let V and W be d-dimensional faithful representations of an
abelian group G of rank r ≤ d, and

χ1, . . . , χd, respectively η1, . . . , ηd,

the characters of G appearing in V , respectively W . Then V and
W are G-equivariantly birational if and only if

χ1 ∧ · · · ∧ χd = ± η1 ∧ · · · ∧ ηd

(This condition is meaningful only when r = d.)

Equivariant birational types



Reichstein–Youssin (2002)

In particular, all cyclic linear actions on Pn, with n ≥ 2, of the
same order, are equivariantly birational.

There exist actions of (Z/pZ)2 on P2 that are not equivariantly
rational.

Note that representations of a group G are equivariantly stably
birational.
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Equivariant bir. types (Kontsevich-T. 2019)

G - finite abelian group, A = G∨ its group of characters,

X - smooth projective, of dimension n, with regular G-action,

XG = t Fα,

βα - (equivalence class of) representation of G, acting in the
tangent space TxαX, for xα ∈ Fα, i.e.,

βα := [a1,α, . . . , an,α],

an unordered n-tuple of characters ai ∈ A,

β : X 7→
∑
α

βα.
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First examples: P2

Consider an action of Z/NZ on X = P2 given by

(x : y : z) 7→ (ζax : ζby : z),

ζ = ζN , a, b ∈ Z/NZ, gcd(a, b,N) = 1, a 6= b.

Fixed points are

(0 : 0 : 1), (0 : 1 : 0), (1 : 0 : 0).

Then
β(X) = [a, b] + [a− b,−b] + [b− a,−a].
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First examples: P2

All such actions are equivalent. Declare β(X) = 0, i.e.,

[a, b] = −[b− a,−a]− [a− b,−b]

Allowing
[a, b] = −[a,−b]

we find
[a, b] = [a, b− a] + [a− b, b].

Equivariant birational types



Birational types B2(Z/NZ)

Generators: [a, b], a, b ∈ Z/NZ, gcd(a, b,N) = 1

Relations:

[a, b] = [b, a]

[a, b] = [a, b− a] + [a− b, b] if a 6= b

[a, a] = [a, 0]

Equivariant birational types



Birational types

This gives
(
p
2

)
linear equations in the same number of variables.

rkQ(B2(G)) =
p2 + 23

24
=
p2 − 1

24
+ 1
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Equivariant bir. types (Kontsevich-T. 2019)

Let X̃ → X be a G-equivariant blowup. Consider relations

β(X̃)− β(X) = 0.

It turns out, that these can be formalized as follows.
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Birational types Bn(G)

Consider the Z-module
Bn(G)

generated by unordered tupels [a1, . . . , an], ai ∈ A, such that

(G)
∑

i Zai = A, and

(B) for all a1, a2, b1, . . . , bn−2 ∈ A we have

[a1, a2, b1, . . . bn−2] =

[a1 − a2, a2, b1, . . . , bn−2] + [a1, a2 − a1, b1, . . . , bn−2] if a1 6= a2,

[a1, 0, b1, . . . , bn−2] if a1 = a2.
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Birational types

For n ≥ 3 the systems of equations are highly overdetermined.

rkQ(B3(G))
?
=

(p− 5)(p− 7)

24
=
p2 − 1

24
+ 1− p− 1

2

Jumps at
p = 43, 59, 67, 83, ...
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Birational types

Consider XG = t Fα and record eigenvalues of G

[a1,α, . . . , an,α]

in the tangent space TxαX, at some xα ∈ Fα. Put

β(X) :=
∑
α

[a1,α, . . . , an,α]

Kontsevich-T. 2019

The class
β(X) ∈ Bn(G)

is a well-defined G-equivariant birational invariant.
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Birational types

Variant: introduce the quotient

µ− : Bn(G)→ B−n (G)

by an additional relation

[a1, a2, . . . , an] = −[−a1, a2, . . . , an].

The class of Pn, n ≥ 2, with linear action of G := Z/NZ is

torsion in Bn(G) and

trivial in B−n (G).
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Cyclic action on Pn, n ≥ 2

Since all such actions are birationally equivalent, it suffices to
consider one, with G = Z/NZ acting by

(x0, . . . , xn) 7→ (ζNx0, x1, . . . , xn).

This action fixes the point (1, 0, . . . , 0) and the hyperplane x0 = 0.
We have

β(Pn) = [1, 0, . . . , 0] + [0,−1, . . . ,−1] = [1, 0, . . .] + [−1, 0, . . .].
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Equivariant Burnside group (Kresch-T. 2020)

Let G be a finite abelian group. Let

Burnn(G)

be the quotient of the free abelian group generated by symbols

(H,G/H ýK,β),

where

H ⊆ G is a subgroup

K is a G/H-Galois algebra over a field of transcendence degree
d ≤ n over k, up to isomorphism, and β is a faithful
(n− d)-dimensional representation of H,

modulo somewhat complicated blowup relations.
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Equivariant Burnside group

The class of a G-variety is computed on a standard model X:

X is smooth projective,

there exists a Zariski open U ⊂ X such that G acts freely on U ,

the complement X \ U is a normal crossings divisor,

for every g ∈ G and every irreducible component D of X \ U ,
either g(D) = D or g(D) ∩D = ∅.
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Equivariant Burnside group

Passing to a standard model X, define:

[X ý G] :=
∑
H⊆G

∑
F

(H,G/H ýk(F ), βF (X)) ∈ Burnn(G),

where

the sum is over all strata F ⊂ X with generic stabilizer H,

the symbols records the eigenvalues of H in the tangent space
at x ∈ F , as before, as well as the G/H-action on the function
field of F , respectively the orbit of F .

This is a G-birational invariant.
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Equivariant birational geometry: tools

Equivariant MMP (classification of links, ... )

Equivariant birational rigidity (analysis of singularities, ...)
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Abelian actions on surfaces

If there is no curve of genus ≥ 1 in the fixed locus XG, then all
actions are linear, with the exception of one fixed-point free
action of Z/2Z× Z/4Z.

When there is a curve of genus ≥ 1 in XG, it will appear on
every equivariantly birational model.

In particular, B2(G) does not give anything new in dimension 2.
However, it enters as coefficient group in higher dimensions, and
can contribute nontrivially.
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Abelian actions

Abelian actions in dimension 3 are not fully settled, but should be,
in principle, accessible.

The following examples focus on dimension 4, where we currently
do not know how to systematically factor birational maps, and in
particular, do not understand the (failure of) rationality of cubic
fourfolds.
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Cubic fourfolds

There is an extensive literature on their automorphisms (and on
automorphisms of their variety of lines) , e.g., Laza, Zheng, Fu,
Mongardi, Mayanskiy, Ouchi, ...

Here are N > 1, with Z/NZ acting on a smooth cubic fourfold:

N = 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 15, 16, 18, 21, 24, 30, 32, 33, 36, 48.

Note that

dQ := dimB4(Z/NZ)⊗ Q = 0, for all N < 27, N = 30, 32,

but
N 33 36 48

dQ 2 3 7

These are rigid. Are they rational?
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Cubic fourfolds

One can also work with finite coefficients. Let

dp = dp(N) := dimB4(Z/NZ)⊗ Fp.

We have d2, d3 = 0, for all N ≤ 15, and N = 18, 21.

N 16 24 30 32 33 36 48

d2 1 5 10 12 3 19 50

d3 0 0 0 0 2 3 7
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Birational types: using Bn(G)

Consider the cubic fourfold X ⊂ P5 given by

x2
1x2 + x2

2x3 + x2
3x1 + x2

4x5 + x2
5x0 + x3

0 = 0.

G = Z/36Z acts with weights (0, 4, 28, 16, 9, 18) and isolated fixed
points. Computing the weights in the tangent spaces, we find that
β(X) =

[4, 24, 31, 22]+[28, 24, 19, 10]+[24, 12, 7, 34]+[9, 5, 17, 29]+[14, 26, 2, 9]

(Solving a system of 443557 linear equations in 82251 variables,...)

β(X) 6= β(P4) = 0 ∈ B4(Z/36Z)⊗ F2 = F19
2

Thus X is not G-equivariantly birational to P4 (with linear action).
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Birational types: using Burnn(G)

Consider the cubic fourfold X ⊂ P5, given by

x0x
2
1 + x2

0x2 − x0x
2
2 − 4x0x

2
4 + x2

1x2 + x2
3x5 − x2x

2
4 − x3

5 = 0.

G = Z/6Z acts with weights (0, 0, 0, 1, 3, 4). This X is rational,
since it contains the disjoint planes

x0 = x1 − x4 = x3 − x5 = 0 and x2 = x1 − 2x4 = x3 + x5 = 0,

but not G-equivariantly birational to P4 with linear action.

There is a cubic surface S ⊂ X, with Z/3Z-stabilizer, Z/2Z fixes an
elliptic curve, and this S is not stably Z/2Z-equivariantly rational;
the corresponding symbol

[Z/3Z,Z/2Z ýk(S), β] 6= 0 ∈ Burn4(Z/6Z),

does not interact with any other symbols in [X ý G].
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does not interact with any other symbols in [X ý G].
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Nonabelian invariants

Let G be a finite nonabelian group. Let

Burnn(G)

be the quotient of the free abelian group generated by symbols

(H,NG(H)/H ýK,β),

where

H ⊆ G is an abelian subgroup

K is a NG(H)/H-Galois algebra over a field of transcendence
degree d ≤ n over k, up to isomorphism, and β is a faithful
(n− d)-dimensional representation of H,

modulo somewhat complicated blowup relations.

Equivariant birational types



Nonabelian invariants

As before, passing to a standard G-equivariant smooth projective
model X, which, in particular, has only abelian stabilizers, define:

[X ý G] :=
∑
H⊆G

∑
F

(H,G/H ýk(F ), βF (X)) ∈ Burnn(G),

where the sum is over abelian subgroups H ⊂ G, and all strata
F ⊂ X with generic stabilizer H, ...
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Nonabelian actions on surfaces

Consider the action of G = C2 ×S3 = W (G2) on the corresponding
torus T and its Lie algebra t.

These are stably equivariantly birational
(Lemire-Popov-Reichstein 2005)

They are not equivariantly birational (Iskovskikh 2005)
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Nonabelian actions on surfaces

These actions can be realized via:

the action on y1y2y3 = 1 via permutation of variables and
taking inverses, with model DP6

the action on x1 + x2 + x3 via permutation and reversing signs,
with model P2
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Nonabelian actions on surfaces

The action on P2 = P(I ⊕ V ), with coordinates (u0 : u1 : u2) is
given by 1 0 0

0 0 1

0 1 0

,
 1 0 0

0 0 1

0 −1 −1

, ι :=

 1 0 0

0 −1 0

0 0 −1

.

There is one fixed point, (1 : 0 : 0); after blowing up, the
exceptional curve is stabilized by the central involution ι, and
comes with a nontrivial S3-action, contributing the symbol

(C2,S3 ýk(P1), (1)) ∈ [X ý G].

Additionally, the line `0 := {u0 = 0} has as stabilizer the central
C2, contributing the same symbol. ... There are also other terms.
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Nonabelian actions on surfaces

A better model for the second action is the quadric

v0v1 + v1v2 + v2v0 = 3w2,

where S3 permutes the coordinates (v0 : v1 : v2) and the central
involution exchanges the sign on w. There are no G-fixed points,
but a conic R0 := {w = 0} with stabilizer the central C2 and a
nontrivial action of S3,

... and some other terms.
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Nonabelian actions on surfaces

The crucial difference is that the summand

(C2,S3 ýk(P1), (1))

appears twice in the P2 model, and only once in the quadric model.

No relations can eliminate this symbol.

This P1, with S3-action, should be viewed as an analog of a curve
of genus ≥ 1 in the fixed locus – it will appear on every
equivariantly birational model.
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Nonabelian actions on P2

Iskovskikh/Dolgachev: “Are there embeddings of a finite group
G into PGL3 that are not conjugate in Cr2?”

Reichstein-Youssin provide such embeddings, but in their
examples G has to contain an abelian subgroup of rank 2.

Let G = C5 ×S3, and V be the standard 2-dimensional
representation of S3. Let χ be a nontrivial character of C5. We get
a generically free action of G on P2 = P(I ⊕Vχ), where Vχ := V ⊗χ.

Kresch-T. 2021

The class
[P2 ý G] ∈ Burn2(G)

is nontrivial. Moreover, if χ 6= ±χ′ then the corresponding classes
are distinct.
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Specialization of equivariant birational types

As already mentioned, there has been major recent progress in
birational geometry, using failure of (stable) rationality via
specialization.

Theorem (Kresch-T. 2020)

Let X and X ′ be smooth projective varieties over K with
generically free G-actions, admitting regular models X , respectively
X ′, smooth and projective over o, to which the G-action extends. If
X and X ′ are G-equivariantly birational over K then so are the
special fibers of X and X ′.

There is also a notion of BG-rational singularities, allowing to
understand the equivariant birational type of special fibers with
mild singularities.
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Modular/motivic types Mn(G)

Fix an integer n ≥ 2. Consider the Z-module

Mn(G) generated by 〈a1, . . . , an〉, ai ∈ A,
∑
i

Zai = A,

(S) for all σ ∈ Sn, a1, . . . , an ∈ A we have

〈aσ(1), . . . , aσ(n)〉 = 〈a1, . . . , an〉,

(M) for all 2 ≤ k ≤ n, all a1, . . . , ak ∈ A, b1, . . . , bn−k ∈ A such that∑
i

Zai +
∑
j

Zbj = A

we have
〈a1, . . . , ak, b1, . . . bn−k〉 =

=
∑

1≤i≤k
〈a1 − ai, . . . , ai, . . . , ak − ai, b1, . . . , bn−k〉
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Modular/motivic types Mn(G), n ≥ 2

Let G be an abelian group. Consider the Z-module

Mn(G)

generated by unordered tupels 〈a1, . . . , an〉, ai ∈ A, such that

(G)
∑

i Zai = A, and

(M) for all a1, a2, b1, . . . , bn−2 ∈ A we have

〈a1, a2, b1, . . . bn−2〉 =

〈a1 − a2, a2, b1, . . . , bn−2〉+ 〈a1, a2 − a1, b1, . . . , bn−2〉.

The only difference with Bn(G): [a, a] = [a, 0], 〈a, a〉 = 2〈a, 0〉.

Motivic types



Modular/motivic types Mn(G), n ≥ 2

Let G be an abelian group. Consider the Z-module

Mn(G)

generated by unordered tupels 〈a1, . . . , an〉, ai ∈ A, such that

(G)
∑

i Zai = A, and

(M) for all a1, a2, b1, . . . , bn−2 ∈ A we have

〈a1, a2, b1, . . . bn−2〉 =

〈a1 − a2, a2, b1, . . . , bn−2〉+ 〈a1, a2 − a1, b1, . . . , bn−2〉.

The only difference with Bn(G): [a, a] = [a, 0], 〈a, a〉 = 2〈a, 0〉.

Motivic types



Birational types → modular types

Consider the map
µ : Bn(G)→Mn(G)

(µ0) [a1, . . . , an] 7→ 〈a1, . . . , an〉, if all a1, . . . , an 6= 0,

(µ1) [0, a2, . . . , an] 7→ 2〈0, a2, . . . , an〉, if all a2, . . . , an 6= 0,

(µ2) [0, 0, a3, . . . , an] 7→ 0, for all a3, . . . , an,

and extended by Z-linearity.
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Birational types → modular types

Theorem

µ is a well-defined homomorphism; surjective, modulo 2-torsion
(Kontsevich-Pestun-T. 2019)

µ is an isomorphism, ⊗Q (Hassett-Kresch-T. 2020)

Motivic types



Birational types → modular types

Theorem

µ is a well-defined homomorphism; surjective, modulo 2-torsion
(Kontsevich-Pestun-T. 2019)

µ is an isomorphism, ⊗Q (Hassett-Kresch-T. 2020)

Motivic types



Modular types – lattice theory

Consider the free abelian group Sn(G), generated by symbols

β = [a1, . . . , an] = [aσ(1), . . . , aσ(n)], ∀σ ∈ Sn,

where β is an n-dimensional faithful representation of G, i.e., a
collection of characters a1, . . . , an of G, up to permutation,
spanning G∨.

We have a diagram

Sn(G)
b // Bn(G)

µ

��
Sn(G)

m //Mn(G)
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Modular types – lattice theory

Consider the free abelian group on triples

(L, χ,Λ),

where

L ' Zn is an n-dimensional lattice,

χ ∈ L⊗A is an element inducing, by duality, a surjection
L∨ → A,

Λ is a basic cone, i.e., a simplicial cone spanned by a basis of L.

Motivic types



Modular types – lattice theory

Let T be the quotient by GLn(Z)-equivalence. There is a natural
map

T → Sn(G),

(L, χ,Λ) 7→ [a1, . . . , an],

defined by decomposing

χ =

n∑
i=1

ei ⊗ ai, ai ∈ A,

where {e1, . . . , en} is a basis of Λ.

The symmetry property is precisely the ambiguity in the order of
generating elements of Λ.
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Modular types – lattice theory

Imposing scissor-type relations on T, via subdivision of cones, we
obtain a diagram

T
ψ

,,XXXXX
XXXXXX

XXXXXX

s

����

Mn(G)

T/(scissor-type relations)

∼ 33fffffffffff

Motivic types



Birational types – lattice theory

There is a similar group T̃, based on triples

(L, χ,Λ′),

where now Λ′ is a smooth cone of arbitrary dimension (i.e., one
spanned by part of a basis of L), such that

χ ∈ Im(L′ ⊗A→ L⊗A),

where L′ ⊆ L is the sublattice spanned by Λ′.

Again, impose relations coming from the GLn(Z)-action.

There is a natural map

T̃ → Sn(G),

(L, χ,Λ′) 7→ [a1, . . . , an].
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Birational types – lattice theory

For a face Λ′′ of Λ′ of dimension at least 2,

Λ′′ = R≥0〈e1, . . . , er〉 ⊂ Λ′ = R≥0〈e1, . . . , es〉,

consider the star subdivision

Σ∗Λ′(Λ
′′),

consisting of the 2r − 1 cones spanned by

e1 + · · ·+ er, er+1, . . . , es,

and all proper subsets of {e1, . . . , er}.
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Birational types – lattice theory

We introduce Subdivision relations on T̃:

(S) Put

(L, χ,Λ′) =
∑

Λ̃′∈Σ∗
Λ′ (Λ

′′)

χ∈Im(L̃′⊗A→L⊗A)

(−1)dim(Λ′)−dim(Λ̃′)(L, χ, Λ̃′),

respectively,

(L, χ,Λ′) = (L, χ,Λ), for a basic cone Λ, having Λ′ as a face.
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Birational types – lattice theory

We have:

T̃
ψ̃

++WWWW
WWWWW

WWWWW
WWW

s̃
����

Bn(G)

T̃/(subdivision relations)

∼
33ggggggggg
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Birational types – lattice theory

The definition of
ψ̃(L, χ,Λ′)

extends to the case of a simplicial cone Λ′ (satisfying the
condition), with L′ = L ∩ Λ′R.

We can define Hecke operators on Bn(G)

T`,r : Bn(G)→ Bn(G),

where ` - |G| and 1 ≤ r ≤ n− 1, as a sum over certain overlattices:

T`,r(ψ̃(L, χ,Λ′)) :=
∑

L⊂L̂⊂L⊗Q
L̂/L'(Z/`Z)r

ψ̃(L̂, χ,Λ′).
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Hecke operators on Mn(G)

The Hecke operators:

T`,r :Mn(G)→Mn(G) 1 ≤ r ≤ n− 1

are well-defined and commute.

Example:

T2(〈a1, a2〉) = 〈2a2, a2〉+
(
〈a1− a2, 2a2〉+ 〈2a1, a2− a1〉

)
+ 〈a1, 2a2〉.
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Eigenvalues of T2 on M2(Z/59Z)
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Birational types: summary

Construction of groups related to Bn(G)

Nonabelian versions

Refined G-equivariant birational invariants

Unexpected connection between the Cremona group and
automorphic forms (cohomology of congruence subgroups),
Hecke operators

Motivic types
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