Pair Arithmetical Equivalence for Quadratic Fields

Joint work with Zeev Rudnick

Upstate New York Online Number Theory Colloquium October 11, 2021

> Winnie Li Pennsylvania State University

Arithmetical equivalence of fields

The Riemann zeta function is

$$\zeta(s) = \prod_{p \text{ prime}} \frac{1}{1 - p^{-s}}, \quad \Re(s) > 1.$$

Let K be a finite extension of \mathbb{Q} . Each nonzero prime ideal \mathfrak{P} in the ring of integers \mathbb{Z}_K divides a unique prime p, and it has finite index $N(\mathfrak{P})$ in \mathbb{Z}_K . The Dedekind zeta function of K is

$$\zeta_K(s) = \prod_{p \text{ prime }} \prod_{\mathfrak{P}|(p)} \frac{1}{1 - N(\mathfrak{P})^{-s}}, \quad \Re(s) > 1.$$

Two number fields K_1 and K_2 are *arithmetically equivalent* $\Leftrightarrow \zeta_{K_1}(s) = \zeta_{K_2}(s)$

 \Leftrightarrow For each p, there is a norm preserving bijection from prime ideals of K_1 dividing p to those of K_2 .

Gassmann criterion for arithmetical equivalence

Theorem. Let K be a finite Galois extension of \mathbb{Q} containing K_1, K_2 . Let H_i , i = 1, 2, be two subgroups of $G = Gal(K/\mathbb{Q})$ with fixed field K_i (so that $H_i = Gal(K/K_i)$). TFAE:

(1) $\zeta_{K_1}(s) = \zeta_{K_2}(s)$, i.e., K_1 and K_2 are arithmetically equiv;

(2) H_1 and H_2 are *locally conjugate* in G, i.e., for each conjugacy class \mathcal{C} of G,

$$#(\mathcal{C} \cap H_1) = #(\mathcal{C} \cap H_2);$$

(3) The representation induced from 1_{H_1} to G is isomorphic to that from 1_{H_2} to G, i.e., $\operatorname{Ind}_{H_1}^G 1_{H_1} \simeq \operatorname{Ind}_{H_2}^G 1_{H_2}$.

Moreover, K_1 and K_2 are isomorphic if and only if H_1 and H_2 are conjugate in G.

An example of arith. equiv. but non-isomorphic pair of fields

Example [F. Gassmann 1926].

G = the permutation group S_6 on 6 letters,

 $H_1 = \{ id, (12)(34), (13)(24), (14)(23) \},\$

 $H_2 = \{ id, (12)(34), (12)(56), (34)(56) \}.$

Arithmetically solitary

K is called *arithmetically solitary* if $\zeta_K = \zeta_F \Rightarrow K \simeq F$.

Ex. Finite Galois extensions of \mathbb{Q} are arithmetically solitary.

The above example, discovered by Gassmann in 1926, gives the first pair of non-solitary fields of degree 180 which are arithmetically equivalent.

Perlis showed that all number fields K with $[K : \mathbb{Q}] \leq 6$ are arithmetically solitary, and constructed a non-solitary field of degree 7.

Artin L-functions

- \bullet K: a number field
- $G_K = \operatorname{Gal}(\overline{\mathbb{Q}}/K)$: the absolute Galois group of K
- χ : a finite order character of G_K
- The Artin L-function attached to χ is

$$\begin{split} & L(s,\chi,K) \\ &= \prod_{\text{prime ideal } \mathfrak{P} \subset \mathbb{Z}_K, \ \mathfrak{P} \nmid \text{cond}(\chi)} \frac{1}{1 - \chi(Frob_\mathfrak{P})N(\mathfrak{P})^{-s}} \ , \end{split}$$
 which converges absolutely for $\Re s > 1$.

A variant of arith. equiv.

Klüners and Nicolae considered the Artin L-functions of two finite order characters χ_1 and χ_2 of $G_{\mathbb{O}}$, and showed

$$L(s, \chi_1, \mathbb{Q}) = L(s, \chi_2, \mathbb{Q}) \Rightarrow \chi_1 = \chi_2.$$

They also showed that if the base field is not \mathbb{Q} , this need not be true.

One such example is the base field $K = \mathbb{Q}(\sqrt[4]{3}), \chi_i$ being the quadratic character of $\operatorname{Gal}(K_i/K)$, where $K_1 = \mathbb{Q}(\sqrt[8]{3})$ and $K_2 = \mathbb{Q}(\sqrt[8]{16 \cdot 3})$ over K.

Pair arithmetical equivalence

Given two non-isomorphic number fields K and M, let χ and η be two finite order characters of G_K and G_M respectively.

Definition. Two distinct pairs (χ, K) and (η, M) are called *arithmetically equivalent*, denoted $(\chi, K) \sim (\eta, M)$, if the associated Artin L-functions coincide:

$$L(s,\chi,K) = L(s,\eta,M).$$

Observations. (1) $(\chi, K) \sim (\eta, M) \Rightarrow [K : \mathbb{Q}] = [M : \mathbb{Q}].$

(2) If χ and η are trivial, then $(\chi, K) \sim (\eta, M)$ is the same as K and M arith. equiv.

Connection with dihedral modular forms

- Identify a finite order char. χ of G_K with a finite order idele class char. (or Hecke Grossenchar.) of K by class field theory.
- For K quadratic over \mathbb{Q} , there is a unique normalized automorphic Hecke-eigenform g_{χ} of GL(2) over \mathbb{Q} , which is cuspidal iff χ is not self-conjugate, with

$$L(s, g_{\chi}) = L(s, \chi, K).$$

- g_{χ} corresponds to the 2-dim'l dihedral rep'n $\rho_{\chi} := \operatorname{Ind}_{G_K}^{G_Q} \chi$ of G_Q .
- If ρ_{χ} is odd, i.e., det $\rho_{\chi}(c) = -1$ at the complex conjugation c, then g_{χ} is a holomorphic weight one modular form on the

upper half-plane, with Fourier expansion (if cuspidal)

$$g_{\chi}(z) = \sum_{\mathfrak{a}} \chi(\mathfrak{a}) e^{2\pi i N(\mathfrak{a}) z},$$

summing over ideals $0 \neq \mathfrak{a} \subset \mathbb{Z}_K$ coprime to $\operatorname{cond}(\chi)$.

• If ρ_{χ} even, i.e., det $\rho_{\chi}(c) = 1$, then $\rho_{\chi}(c) = \pm I_2$, in which case g_{χ} is a Maass form with Laplacian eigenvalue 1/4, and has Fourier expansion (if cuspidal)

$$g_{\chi}(z) = \sum_{\mathfrak{a}} \chi(\mathfrak{a}) \sqrt{y} K_0(2\pi N(\mathfrak{a})y) 2 \begin{cases} \cos(2\pi N(\mathfrak{a})x), & \text{if } \rho_{\chi}(c) = I_2; \\ \sin(2\pi N(\mathfrak{a})x), & \text{if } \rho_{\chi}(c) = -I_2. \end{cases}$$

Here K_0 is the K-Bessel function.

• If $(\chi, K) \sim (\eta, M)$ for distinct quadratic extensions K and M, then the modular form $g_{\chi} = g_{\eta}$ arises from Hecke characters of two different fields.

An example was first found by Hecke with $K = \mathbb{Q}(\sqrt{-1})$, $M = \mathbb{Q}(\sqrt{-3})$, χ and η quadratic characters.

• Rohrlich (2015) encountered such pairs when he studied the number $\vartheta^{im}(x)$ of isom. classes of irreducible ρ_{χ} with conductor bounded by x:

$$\vartheta^{im}(x) \sim \kappa x^2,$$

where

$$\kappa = \frac{\pi}{2} \sum_{K \text{ imag. quad}} |d_K|^{-5/2} \zeta_K(0)^2 / \zeta_K(2)^2.$$

Pair arith. equiv. for quadratic extensions of \mathbb{Q} Let K be a quadratic extension of \mathbb{Q} . Shall consider

Question 1.[existence] Characterize finite order characters χ of G_K such that $(\chi, K) \sim (\eta, M)$ for another pair (η, M) . If so, there is a third pair (ξ, N) , where N is the third quad. extension contained in the biquadratic extension KM.

Question 2. [construction] Explicitly construct finite order characters of G_K (or idele class characters of K).

Question 3. [classification] Classify quadratic χ in Q1.

Re-interpretation of pair arith. equiv.

Interpret the equality

$$L(s,\chi,K) = L(s,\eta,M)$$

on L-functions of characters as the equality

$$L(s, \operatorname{Ind}_{G_K}^{G_{\mathbb{Q}}} \chi) = L(s, \operatorname{Ind}_{G_M}^{G_{\mathbb{Q}}} \eta)$$

on L-functions of induced degree-two representations $\rho_{\chi} = \operatorname{Ind}_{G_K}^{G_Q} \chi$ and $\rho_{\eta} = \operatorname{Ind}_{G_M}^{G_Q} \eta$ of the Galois group G_Q .

This converts the problem on pair arithmetical equivalence to a problem on isomorphism of induced representations, similar to Gassmann's criterion.

Self-conjugacy

Suppose $\operatorname{Gal}(K/\mathbb{Q}) = \langle c \rangle$. The conjugate of a char. χ of G_K is $\chi^c(g) = \chi(c^{-1}gc)$ for $g \in G_K$.

By class field theory,

 $\chi = \chi^c$ is self-conjugate if and only if it comes from base change \Leftrightarrow there is a char. μ of $G_{\mathbb{Q}}$ such that

$$L(s,\chi,K)=L(s,\mu,\mathbb{Q})L(s,\mu\delta_{K/\mathbb{Q}},\mathbb{Q}),$$

where $\delta_{K/\mathbb{Q}}$ is the quadratic char. associated to K/\mathbb{Q} .

In this case the induced representation $\rho_{\chi} = \mu \oplus \mu \delta_{K/\mathbb{Q}}$ is reducible and g_{χ} is an Eisenstein series. Such (χ, K) is solitary since K is determined by the ratio of the two chars, and $\chi = \mu |_{G_K} = \mu \delta_{K/\mathbb{Q}}|_{G_K}$.

Shall assume χ not self-conjugate.

A criterion for pair arith. equiv.

Thm. Let K be a quadratic extension of \mathbb{Q} with $Gal(K/\mathbb{Q}) = \langle c \rangle$. Suppose a finite order character χ of G_K is not equal to its conjugate χ^c . Then

(a) (χ, K) is arithmetically equivalent to another pair \Leftrightarrow

(b)
$$\chi^c = \chi \cdot \delta$$
 for a quadratic character δ of G_K .

Two reductions:

- Suffices to consider χ up to base change;
- May assume the order of χ is a power of 2.

Study the conductor of such χ .

Explicit construction of χ

We construct such χ for

(i) $K = \mathbb{Q}(\sqrt{-p})$ where p is prime, $p \equiv 3 \mod 4$ or p = 2, and $K = \mathbb{Q}(\sqrt{-1})$. (These are the imaginary quadratic fields with odd class number.)

(r) $K = \mathbb{Q}(\sqrt{q})$ where $q \equiv 1 \mod 4$ is prime or q = 2. (These are the real quadratic fields with odd class number and containing a unit with norm -1.)

Prop. For K as above, let \mathfrak{A} be a nonzero ideal of \mathbb{Z}_K and ξ a primitive character of $(\mathbb{Z}_K/\mathfrak{A})^{\times}$ of order 2^e for an integer $e \geq 1$ such that $\xi((\mathbb{Z}_K)^{\times}) = 1$ for K imaginary and $\xi((\mathbb{Z}_K)^{\times}) \subset \{\pm 1\}$ for K real. Then there is a unique idele class char. χ of K with $\operatorname{cond}(\chi) = \mathfrak{A}$ and order 2^e extending ξ .

Classification of quadratic χ up to base change

We classify quadratic characters χ up to base change for K satisfying (i) or (r), and determine possible conductors.

Note that for χ quadratic, $\chi \neq \chi^c$ if and only if χ and χ^c differ by a quadratic character; therefore we have classified, for such K, all pairs (χ, K) with quadratic χ arithmetically equivalent to another pair.

To give a flavor, we state one case. Other cases are similar.

Thm. Let $K = \mathbb{Q}(\sqrt{-1})$. For each prime $p \equiv 1 \mod 4$, choose one prime v of K above p and let S_K be the collection of these chosen primes. Then

(I) Up to multiplication by characters from base change, a quadratic idele class character χ of K with conductor $\mathfrak{f} = \prod_{v \text{ prime}} v^{m(v)}$ satisfies the conditions

(A) None of primes above $p \equiv 3 \mod 4$ divide \mathfrak{f} ;

(B) If a prime v above $p \equiv 1 \mod 4$ divides \mathfrak{f} , then $v \in S_K$ and m(v) = 1;

(C) If a prime v above 2 divides \mathfrak{f} , then m(v) = 2 or 5. Further $\chi_v(\sqrt{-1}) = -1$ if m(v) = 2, and $\chi_v(1 + \pi_v^3) = 1$ if m(v) = 5. Here $\pi_v = \sqrt{-1} - 1$.

(II) Any quadratic idele class character χ of K with nontrivial conductor \mathfrak{f} satisfying (A)-(C) does not arise from base change. (III) No two distinct quadratic idele class characters of K satisfying (A)-(C) differ by a character from base change.

(IV) Let $\mathfrak{f} = \prod_{v \text{ prime}} v^{m(v)}$ be an integral ideal of K satisfying (A)-(C). Let

 $r(\mathfrak{f}) = \#\{v|\mathfrak{f} : v \text{ is above a prime } p \equiv 5 \mod 8\}.$

Then there is a quadratic idele class character χ of K with conductor \mathfrak{f} satisfying the conditions (A)-(C) if and only if

- $r(\mathfrak{f})$ is even if no $v|\mathfrak{f}$ is above 2,
- $r(\mathfrak{f})$ is odd if there is a prime $v|\mathfrak{f}$ above 2 with m(v) = 2,
- no condition on $r(\mathfrak{f})$ if there is a prime $v|\mathfrak{f}$ above 2 with m(v) = 5.

Examples of holo. wt 1 cusp form arising from two different fields

Let $K = \mathbb{Q}(\sqrt{-1})$. Let q be a prime $\equiv 1 \mod 8$, and \mathfrak{Q} a prime of K above q.

Let ξ be the quadratic char. of $(\mathbb{Z}_K/\mathfrak{Q})^{\times} \simeq (\mathbb{F}_q)^{\times}$. Then $\xi(\sqrt{-1}) = 1$. By Prop., there is a unique quadratic idele class character χ of K with $\operatorname{cond}(\chi) = \mathfrak{Q}$ lifting ξ . Have $\chi \neq \chi^c$. So $(\chi, K) \sim (\eta, M)$ for some pair (η, M) .

The induced rep'n ρ_{χ} has conductor 4q. Take $M = \mathbb{Q}(\sqrt{q})$ in which 2 splits. In order that ρ_{η} has conductor 4q, and η not self-conjugate with $\operatorname{cond}(\eta) = \mathfrak{T}^2$ for a prime \mathfrak{T} of M above 2.

Let η be the lifting of the quadratic character of $(\mathbb{Z}_M/\mathfrak{T}^2)^{\times}$. Check that $\rho_{\chi} = \rho_{\eta}$ is odd so that $g_{\chi} = g_{\eta}$ is holomorphic of weight 1, and cuspidal.

Examples of Maass cusp forms arising from two different fields

Let $K = \mathbb{Q}(\sqrt{t})$ and $M = \mathbb{Q}(\sqrt{q})$, where $t \neq q$ are primes $\equiv 1 \mod 4$ such that the Legendre symbol $(\frac{q}{t}) = (\frac{t}{q}) = 1$. Suppose $\operatorname{Gal}(K/\mathbb{Q}) = \langle \sigma \rangle$ and $\operatorname{Gal}(M/\mathbb{Q}) = \langle \tau \rangle$.

By choice $(q) = \mathfrak{Q} \cdot \sigma(\mathfrak{Q})$ splits in K and $(t) = \mathfrak{T} \cdot \tau(\mathfrak{T})$ splits in M. Let χ be the unique quadratic idele class char. of K with conductor \mathfrak{Q} . One checks that

$$\chi^{\sigma} = \chi \cdot \delta_{KM/M}.$$

So $L(s, \chi, K) = L(s, \eta, M)$ for some char. η of G_M . By checking the conductor of ρ_{χ} , we may choose η to be the unique

quadratic char. of G_M with conductor \mathfrak{T} . It is not self-conjugate and ρ_η is even.

Then $g = g_{\chi} = g_{\eta}$ is a Maass cusp form. There are two possibilities for its Fourier expansion, depending on $\rho_{\chi}(c) = \pm I_2$. The sign for $\rho_{\chi}(c)$ is given by the sign of

$$\chi_{\mathfrak{Q}}(\epsilon_K) \equiv \epsilon_K^{(N(\mathfrak{Q})-1)/2} \mod \mathfrak{Q},$$

where ϵ_K is a fundamental unit of K with norm -1. As shown from the examples below, both signs can occur.

Ex 1. t = 5 and q = 29. Then $(\frac{5}{29}) = 1$. The field $K = \mathbb{Q}(\sqrt{5})$ has class number 1 with a fundamental unit

$$\epsilon_K = \frac{1 + \sqrt{5}}{2}$$

of norm -1. Have (29) = $\mathfrak{Q} \cdot \sigma(\mathfrak{Q})$ where $\mathfrak{Q} = (7 + 2\sqrt{5}).$

One computes $\chi_{\mathfrak{Q}}(\epsilon_K) = +1$ so that $\rho_{\chi}(c) = I_2$.

Ex 2. t = 5 and q = 41, and $K = \mathbb{Q}(\sqrt{5})$. Have $(41) = \mathfrak{Q} \cdot \sigma(\mathfrak{Q})$ with

$$\mathfrak{Q} = (6 + \frac{1 + \sqrt{5}}{2}).$$

One finds $\chi_{\mathfrak{Q}}(\epsilon_K) = -1$ in this case so that $\rho_{\chi}(c) = -I_2$.

Other variants of arith. equiv.

- Two compact Riemannian manifolds are called isospectral if they have the same Laplacian eigenvalues. People constructed isospectral but non-isometric pairs. Eg., Milnor (1964), Vignéras (1982), Sunada (1985), Gordon-Webb-Wolpert (1991)
- Similarly, in graph theory, people considered pairs of finite nonisomorphic graphs with the same spectrum.
- Using Gassmann method, Prasad-Rajan (2003) constructed curves with isogenous Jacobians, Prasad (2017) constructed curves with isomorphic Jacobians, and Arapura et al (2017) constructed varieties with the same Chow motives.

Thank you!