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Mahler measures

The (multi-variable) Mahler measure of
a polynomial was introduced by Kurt
Mahler in the 1960s to give a simple
proof of some inequalities for heights in
Gelfond’s method.

Since then it found remarkable and
profound connections with almost any
corner of mathematics — see the book.
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Ramanujan’s mathematics

In 1914, Ramanujan produced a list of rapidly convergent series to 1/π; an
example is

∞∑
k=0

(8k + 1)

(4k
2k

)(2k
k

)2
28k32k

=
2
√

3

π
.

Though Ramanujan’s collection serves as an historical background, the
principal target of my talk will be the ‘impractical’ convergence formula

∞∑
k=0

(−1)k(4k + 1)Ak =
2

π
, where Ak =

(2k
k

)3
26k

,

established by Bauer long before Ramanujan, in 1859.
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Bauer’s series & Van Hamme’s congruences

One natural way of seeing the sequence Ak of the coefficients of the series
is via Pochhammer’s symbol (also known as shifted factorial)

(a)k =
Γ(a + k)

Γ(a)
=

k−1∏
j=0

(a + j) for k = 0, 1, 2, . . . ,

so that Bauer’s identity can be stated as
∞∑
k=0

(−1)k(4k + 1)
(12)3k
k!3

=
2

π
.

In 1996, Van Hamme noticed a p-adic counterpart of the sum in the form
of the (so-called) supercongruences

(p−1)/2∑
k=0

(−1)k(4k + 1)
(12)3k
k!3
≡ p(−1)(p−1)/2 (mod p3) for primes p > 2,

proved in 2008 by Mortenson (and reproved by many since then).
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Hypergeometric sums and supercongruences

Though all those proofs of the evaluation

∞∑
k=0

(−1)k(4k + 1)
(12)3k
k!3

=
2

π

and (super)congruences

(p−1)/2∑
k=0

(−1)k(4k + 1)
(12)3k
k!3
≡ p(−1)(p−1)/2 (mod p3) for primes p > 2

share certain similarities, they do not display intrinsic reasons for the two
to be related.

Dealing with numerous examples of such duality, we have found with
Victor Guo such reasons and used them to prove the above observation
and its many other re-incarnations.
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Creative q-microscoping

We are for

∞∑
k=0

(−1)k(4k + 1)
(12)3k
k!3

=
2

π
,

(p−1)/2∑
k=0

(−1)k(4k + 1)
(12)3k
k!3
≡ p(−1)(p−1)/2 (mod p3) for primes p > 2.

The key idea is that such identities and congruences follow from a
different analysis of the same q-hypergeometric identity. This q-identity
has more parameters (and their choice correspond to the ‘creative’ part of
the method) and the congruences come from the asymptotics at all roots
of unity (the ‘microscoping’ part).

In what follows I will explain the ingredients, in particular, highlight what
those q-analogues are and how useful they can be.
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q-notation

In order to state those q-analogues we need to familiarise ourselves with
standard q-hypergeometric notation. We deal with q inside the unit disc,
|q| < 1, and define (a; q)∞ =

∏∞
j=0(1− aqj) and the related

q-Pochhammer symbol by

(a; q)k =
(a; q)∞

(aqk ; q)∞
=

k−1∏
j=0

(1− aqj) for k = 0, 1, 2, . . . ,

for non-negative integers n, so that

lim
q→1

(qa; q)n
(1− q)n

= (a)n and lim
q→1

(q; q)∞(1− q)1−a

(qa; q)∞
= Γ(a).

Furthermore, we introduce the q-numbers and q-binomial coefficients as

[n] = [n]q =
1− qn

1− q
and

[
n

m

]
=

[
n

m

]
q

=
(q; q)n

(q; q)m(q; q)n−m
,

so that they correspond to n and
(n
m

)
, respectively, in the limit as q → 1.
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q-Bauer sum & q-Van Hamme congruences

Theorem 1. The following identity is true:
∞∑
k=0

[4k + 1]q
(q2; q4)3k
(q4; q4)3k

(−1)kqk =
(q2; q4)2∞(−q3; q4)2∞

(1− q) (−q; q4)2∞(q4; q4)2∞
.

Theorem 2. Let n be a positive odd integer. Then

(n−1)/2∑
k=0

[4k + 1]q
(q2; q4)3k
(q4; q4)3k

(−1)kqk ≡
[n]q2(−q3; q4)(n−1)/2

(−q5; q4)(n−1)/2
(−q)(1−n)/2{

(mod Φn(q)Φn(q2)2) if n ≡ 1 (mod 4),

(mod Φn(q2)3) if n ≡ 3 (mod 4).

Here and in what follows, Φn(q) denotes the n-th cyclotomic polynomial,

Φn(q) =
n∏

j=1
gcd(j ,n)=1

(q − e2πij/n) ∈ Z[q].
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Meta-q-congruences

Theorem 3. Let n > 1 be an odd integer. Then

(n−1)/2∑
k=0

(1− q4k+1) (aq2; q4)k(q2/a; q4)k(q2; q4)k
(1− q) (aq4; q4)k(q4/a; q4)k(q4; q4)k

(−1)kqk

≡
(1− q2n) (−q3; q4)(n−1)/2
(1− q2) (−q5; q4)(n−1)/2

(−q)−(n−1)/2{
(mod Φn(q)(1− aq2n)(a− q2n)) if n ≡ 1 (mod 4),

(mod Φn(q2)(1− aq2n)(a− q2n)) if n ≡ 3 (mod 4).

This theorem implies Theorem 2. Indeed, the denominator of the left-hand
side related to a is the factor (aq4; q4)n−1(q4/a; q4)n−1; its limit as a→ 1
is relatively prime to Φn(q2), since n is odd. On the other hand, the limit
of (1− aq2n)(a− q2n) as a→ 1 has the factor Φn(q2)2. Thus, letting
a→ 1 we see that the congruence is true modulo Φn(q)Φn(q2)2 (or
Φn(q2)3, respectively).
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q-Dixon sum

The following summation formula is a (special case of an) old classics
known as q-Dixon sum.

Theorem 4. We have
∞∑
k=0

(1− q4k+1) (aq2; q4)k(q2/a; q4)k(q2; q4)k
(1− q) (aq4; q4)k(q4/a; q4)k(q4; q4)k

(−1)kqk

=
(q2; q4)∞(q6; q4)∞(−aq3; q4)∞(−q3/a; q4)∞
(−q; q4)∞(−q5; q4)∞(aq4; q4)∞(q4/a; q4)∞

.

Taking a = 1, one gets immediately Theorem 1.

Taking a = q2n (or a = q−2n), one gets a sum that terminates on the left
from k = n > (n − 1)/2 and (after manipulations) the product

(1− q2n) (−q3; q4)(n−1)/2
(1− q2) (−q5; q4)(n−1)/2

(−q)−(n−1)/2

on the right. This implies the congruences modulo a− q2n and 1− aq2n.
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q-Microscope I

The remaining — microscoping — part of Theorem 3 is verifying

(n−1)/2∑
k=0

(1− q4k+1) (aq2; q4)k(q2/a; q4)k(q2; q4)k
(1− q) (aq4; q4)k(q4/a; q4)k(q4; q4)k

(−1)kqk ≡ 0

modulo Φn(q) or Φn(q2) depending on whether n ≡ 1 or 3 (mod 4).

This is equivalent to verifying that the sum
∑(n−1)/2

k=0 cq(k) vanishes at
any n-th (resp., 2n-th) root of unity q = ζ, where

cq(k) =
(1− q4k+1) (aq2; q4)k(q2/a; q4)k(q2; q4)k

(1− q) (aq4; q4)k(q4/a; q4)k(q4; q4)k
(−1)kqk .

Notice that the product on the right in Theorem 4,

(q2; q4)∞(q6; q4)∞(−aq3; q4)∞(−q3/a; q4)∞
(−q; q4)∞(−q5; q4)∞(aq4; q4)∞(q4/a; q4)∞

,

is absolutely bounded as q → ζ.
Wadim Zudilin (RU Nijmegen) Creative microscoping 14 September 2020 11 / 20



q-Microscope II

For n ≡ 1 (mod 4) we can use the symmetry cζ(k) = −cζ(n−12 − k) to

conclude on the desired
∑(n−1)/2

k=0 cζ(k) = 0.

In the case n ≡ 3 (mod 4), write the equality in Theorem 4 as

∞∑
`=0

cq(`n)
n−1∑
k=0

cq(`n + k)

cq(`n)
=

(q2; q4)∞(q6; q4)∞(−aq3; q4)∞(−q3/a; q4)∞
(−q; q4)∞(−q5; q4)∞(aq4; q4)∞(q4/a; q4)∞

.

Consider the limit as q → ζ = −e2πij/n with (j , n) = 1 radially, that is,
q = rζ where r → 1−. On the left-hand side we get

lim
q→ζ

cq(`n + k)

cq(`n)
=

cζ(`n + k)

cζ(`n)
= cζ(k) and lim

q→ζ
cq(`n) =

(12)`
`!

.

The divergence of
∑∞

`=0
( 1
2
)`
`! and boundedness of the right (product) side

then implies that 2
∑(n−1)/2

k=0 cζ(k) =
∑n−1

k=0 cζ(k) = 0.
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How creative microscoping works

Here is the summary of how the method works:

Theorem 4 =⇒
a=1

Theorem 1 =⇒
q→1

Bauer’s formula

a=q±2n & q→ζ ⇓
Theorem 3 =⇒

a→1
Theorem 2 =⇒

q→1
Van Hamme’s congruences

The top of this scheme — Theorem 4 — comes essentially for free from the
Gasper–Rahman book nicknamed the q-Bible among the specialists in
combinatorics and hypergeometric functions.
Many further entries from the book lead to remarkable (and quite
difficult!) congruences, so that the q-Bible turns out to be a treasury book
for number theory as well.

A q-bonus: one can consider the limit as q → −1 in Theorems 1 and 2.
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Theorems 1 and 2 revisited

Recall the theorems with q replaced with −q.

Theorem 1. The following identity is true:

∞∑
k=0

(1 + q4k+1) (q2; q4)3k
(1 + q) (q4; q4)3k

qk =
(q2; q4)2∞(q3; q4)2∞

(1 + q) (q; q4)2∞(q4; q4)2∞
.

Theorem 2. Let n be a positive odd integer. Then

(n−1)/2∑
k=0

(1 + q4k+1) (q2; q4)3k
(1 + q) (q4; q4)3k

qk ≡
[n]q2(q3; q4)(n−1)/2

(q5; q4)(n−1)/2
q(1−n)/2{

(mod Φn(−q)Φn(q2)2) if n ≡ 1 (mod 4),

(mod Φn(q2)3) if n ≡ 3 (mod 4).

Taking the limit as q → 1 in the theorems we arrive at the following
results.
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Another limit

The following are true:
∞∑
k=0

(12)3k
k!3

=
Γ(1/4)4

4π3
and

(p−1)/2∑
k=0

(12)3k
k!3
≡

−Γp(1/4)4 (mod p2) if p ≡ 1 (mod 4),

−p2

16
Γp(1/4)4 (mod p3) if p ≡ 3 (mod 4).

The sum is an innocent hypergeometric summation from the literature,
while the congruences (even modulo p3 for p ≡ 1 (mod 4)) were shown by
Long and Ramakrishna.

The above results can be also cast in the (weaker) form

∞∑
k=0

(12)3k
k!3

=
8L(f , 1)

π
and

(p−1)/2∑
k=0

(12)3k
k!3
≡ a(p) (mod p2),

where a(p) is the p-th Fourier coefficient of f = q
∏∞

m=1(1− q4m)6.
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Other applications

The method of creative telescoping demonstrates its potentials for a
variety of many other congruences, making their proofs mere exercises.
Many existing (tricky and cumbersome!) proofs of supercongruences have
become obsolete.
Examples include p-adic counterparts of Ramanujan’s series for 1/π, like

∞∑
k=0

(8k + 1)
(14)k(12)k(34)k

k!3 9k
=

2
√

3

π

mentioned in the beginning, and some partial versions for (now famous!)
Guillera’s formulas for 1/π2.
One of the latest achievements is a general framework for (q-analogues of)
Dwork-type supercongruences, with many instances experimentally
recorded by Swisher.
It is already clear that the method is capable of proving more than we can
even expect at this moment.
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Dwork-type supercongruences

Examples from our last work with Guo include the supercongruences

(pr−1)/2∑
k=0

(8k + 1)
(14)k(12)k(34)k

k!3 9k
≡ p

(
−3

p

) (pr−1−1)/2∑
k=0

(8k + 1)
(14)k(12)k(34)k

k!3 9k

modulo p3r for primes p > 3 (which underlie Ramanujan’s formula from
the previous slide) and r = 1, 2, . . . , as well as

(pr−1)/2∑
k=0

(−1)k(4k+1)
(12)3k
k!3
≡ p

(
−1

p

) (pr−1−1)/2∑
k=0

(−1)k(4k+1)
(12)3k
k!3

(mod p3r )

for primes p > 2 (which generalize our Theorem 2). We further have

(pr−1)/2∑
k=0

(12)2k
k!2
≡
(
−1

p

) (pr−1−1)/2∑
k=0

(12)2k
k!2

(mod p2r )

for primes p > 2, the case r = 1 conjectured by Rodriguez Villegas and
proved by Mortenson, and also in my joint work with Chan and Long.
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All supercongruences in a uniform way?

It does not look, at least at this moment, that all hypergeometric
(super)congruences can be done via the creative microscope.
For example, in joint work with Long, Tu and Yui we prove the
supercongruences

(p−1)/2∑
k=0

(14)k(13)k(23)k(34)k
k!4

≡ b(p) (mod p3) for p > 3,

where
∑∞

n=1 b(n)qn = q
∏∞

m=1(1− q3m)8, and 13 other alike in a uniform
way using completely different techniques.
This lacks a microscopic approach, however the q-deformation behind

Sr+1

Sr
≡ Sr

Sr−1
(mod p3r ) for r = 1, 2, . . . , where

where Sr =

(pr−1)/2∑
k=0

(14)k(13)k(23)k(34)k
k!4

, is experimentally detected.
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Summary

Here is again the summary of how the creative microscoping works:

Theorem 4 =⇒
a=1

Theorem 1 =⇒
q→1

Bauer’s formula

a=q±2n & q→ζ ⇓
Theorem 3 =⇒

a→1
Theorem 2 =⇒

q→1
Van Hamme’s congruences

Questions?
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Be (q-)hypergeometric!
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