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Modular Forms

Everybody should know modular forms:

f : H → C holomorphic such that

f(
aτ + b

cτ + d
) = (cτ + d)kf(τ)

for all γ =

(
a b

c d

)
∈ Γ1 = SL(2,Z), so

that

f =
∑

n≥0

a(n)qn with q = e2πiτ .

Here k is the weight of f .

Mk(Γ1) the vector space of such f .
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Examples: Eisenstein series

E4 = 1 + 240
∑

σ3(n) q
n

E6 = 1− 504
∑

σ5(n) q
n

We have

R1 = ⊕kMk(Γ1) = C[E4, E6] .

For the algebraic geometer: sections of powers

of the Hodge bundle. If π : X1 → A1 is the

universal elliptic curve then

E = π∗Ω
1
X1/A1

and it extends over the compactification Ã1.

Over C

E = Γ1\H×C
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under the action (τ, z) 7→ (γ(τ), (cτ + d)z).

If E = C/Z + τZ then dz changes under γ

to dz/(cτ + d).

We have

Mk(Γ1) = H0(Ã1,E
⊗k) .

We can generalize this. We have the moduli

space Ag of principally polarized abelian

varieties of dimension g > 1; it carries a

universal p.p. abelian variety π : Xg → Ag.

Over C we have

Ag(C) = Γg\Hg

where Γg = Sp(2g,Z) = Aut(Z2g, 〈 , 〉),
with (Z2g, 〈 , 〉) the lattice with basis
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e1, . . . , eg, f1, . . . , fg with

〈ei, ej〉 = 0 = 〈fi, fj〉, 〈ei, fj〉 = δij

and

Hg = {τ ∈ Mat(g×g,C) : τ t = τ, Im(τ) > 0}

An element γ =

(
a b

c d

)
∈ Γg acts on Hg

by

τ 7→ (aτ + b)(cτ + d)−1 .

We then can look at holomorphic functions

f : Hg → C, with

f(γ(τ)) = det(cτ + d)kf(τ) (γ ∈ Γg)

Again we have a graded ring

Rg = ⊕kMk(Γg)

4



March 8, 2021

the ring of Siegel modular forms of degree g.

In the 1960s Igusa determined the structure

of R2:

R2 = C[ψ4, ψ6, χ10, χ12, χ35]/(χ
2
35 − · · ·)

For g = 3 Tsuyumine gave 34 generators

in 1986 and recently Lercier-Ritzenthaler

reduced that to 19.

The Hodge bundle E = E
(g) = π∗Ω

1
Xg/Ag

has rank g. Over C

E = Γg\Hg ×C
g

under the action (τ, z) 7→ (γ(τ), (cτ + d)z).

Thus we can do more: if given an irrep

ρ : GL(g,C) → GL(W )
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then we have the bundle Eρ obtained by

applying ρ to the transition functions of E.

Over C its sections are given by holomorphic

maps

f : Hg →W

satisfying f(γ(τ)) = ρ(cτ + d)f(τ).

How to describe these modular forms?

A modular form F of genus g has a Fourier

expansion

F =
∑

n≥0

a(n) qn with qn := e2πiTr(nτ)

with a(n) ∈W and n running over symmetric

g × g matrices with n ≥ 0, 2n integral and

with even diagonal.
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In our work we used the Torelli map to

construct Siegel modular forms

Mg
t−→Ag, C 7→ Jac(C) .

Use that Mg is close to Ag for g = 2 and

g = 3:

M2 →֒ A2

and

M3
2:1−→A3
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The Case g = 2

Pull back E to M2; it extends to M2.

A curve of genus 2 is hyperelliptic: y2 = f(x),

with deg(f) = 6, discr(f) 6= 0 (in char 6= 2).

We write

f =

6∑

i=0

ai x
6−i
1 xi2

that is, f ∈ Sym6(V ) with V = 〈x1, x2〉.
The group GL(V ) = GL(2) acts and M2 is

a stack quotient

[Y0/GL(V )]

with Y0 ⊂ Y = Sym6(V ) ⊗ det(V )−2, with

Y0 referring to disc(f) 6= 0.
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We twisted by det(V )−2 so that −idV acts

by (x, y) 7→ (x,−y).

A curve y2 = f comes with differentials

dx/y, xdx/y

and GL(V ) acts by the standard

representation.

We get

[Y0/GL(V )] ∼= M2 →֒ A2

The pull back of E2 to Y0 is the equivariant

bundle V .

And pull back of det(E) to Sym6(V ) is

det(V )3 because we twisted.
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Invariant Theory

An invariant for the action of GL(V ) =

GL(2,C) on Sym6(V ) is a polynomial in

the coefficients a0, . . . , a6 of f invariant

under SL(2,C). Example: the discriminant

discr(f).

Invariants form a ring (Bolza, Clebsch,..)

I = C[A,B,C,D,E]/(E2 = ...)

Now M2 →֒ A2 gives us a map

R2 −→ I with

ψ4 7→ B, ψ6 7→ C − AB, χ10 7→ D, χ12 7→
AD.
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Igusa (1962) made such a map using theta

functions and Thomae’s formulas.

Not every invariant gives a modular form;

e.g. A 7−→ χ12/χ10. Indeed M2 ⊂ A2;

complement is A1,1, zero locus of χ10. We

get

R2 −→ I −→ R2[1/χ10]

But we also have covariants, that is, the

invariants for the action of SL(2,C) on

V ⊕ Sym6(V )

Alternatively, if U →֒ Symd(Sym6(V )) is an

equivariant embedding or, equivalently, if we

have a map of GL(V )-representations

C
φ−→Symd(Sym6(V ))⊗ U∨
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then Φ = φ(1) is a covariant. If U has highest

weight (λ1, λ2) then Φ is a form of degree d

in a0, . . . , a6 and degree λ1 − λ2 in x1, x2.

Example: d = 1: Sym6(V ) ∼= Sym6(V ).

Then Φ = f =
∑
ai x

6−i
1 xi2, our “universal

sextic”.

Example: d = 2. In this case we can write

Sym2(Sym6(V )) as

U [12, 0] + U [10, 2] + U [8, 4] + U [6, 6]

with corresponding four covariants

f2,Hessian, . . . ,

−240 a0a6 + 40 a1a5 − 16 a2a4 + 6 a23

Covariants form a ring C, with 26 generators

(Cayley, Grace and Young, 19th century)
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An irrep of GL(2,C) is Symj(St)⊗det(St)⊗k

with St the standard representation.

For g = 2 the R2-module

M = ⊕j,kMj,k(Γ2)

can be made into a ring.

Proposition 1. Pullback via Y0 → M2 →֒
A2 defines maps

M
µ−→C ν−→M [1/χ10]

with ν ◦ µ = idM .

Apply this to the universal sextic f ∈ C. What

is ν(f)?

f 7→ merom. section of Sym6(E)⊗det(E)−2
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This form can be identified: we have six odd

thetas ϑǫ(τ, z), hence six gradients

(∂ϑǫ/∂z1, ∂ϑǫ/∂z2) (τ, 0)

The product of these is a modular form χ6,3

with character on Γ2. We then have

ν(f) = χ6,−2 = χ6,3/χ5 with χ2
5 = χ10

Write χ6,−2 with dummy variables X1, X2 as

χ6,−2 =

6∑

i=0

αiX
6−i
1 Xi

2

Here αi is meromorphic on H2.

Recall that a covariant of degree d is a

form in a0, . . . , a6, x1, x2 and of degree d in

the ai.
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Theorem 1. The map

ν : C →M ⊗R2[1/χ10]

is given by the substitution ai 7→ αi, xi 7→ Xi

in a covariant.

This is an extremely effective method.

The website smf.compositio.nl gives Fourier

series for all cases where dimSj,k(Γ2) = 1.

We determined the module structure for

⊕kMj,k(Γ2, ǫ) for j = 2, 4, 6, 8 and 10. (Here

ǫ is the unique quadratic character of Γ2.)

We formulated a conjecture about the

vanishing of Sj,2(Γ2) and gave evidence for it

(Sj,2(Γ2) = (0) for j ≤ 52).

The method works also in positive

characteristic.
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Theorem 2. In char 3 the even weight

subring Rev
2 (F3) is generated by forms of

weights 2, 10, 12, 14, 36 and has the form

Rev
2 (F3) = F3[ψ2, χ10, ψ12, χ14, χ36]/J

with J generated by

ψ3
2χ36 − χ3

10ψ12 − ψ2
2χ10χ

2
14 + χ3

14 .

Moreover

R2(F3) = Rev
2 (F3)[χ35]/(χ

2
35 − · · ·) .
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For the binary sextic

f = a0x
6 + a1x

5 + · · ·+ a6

the invariant

A = −240a0a6 + 40a1a5 − 16a2a4 + 6a23

becomes

A = a1a5 − a2a4 (mod 3)

and regular. It gives rise to the Hasse invariant

(of weight p− 1 = 2).
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Theorem 3. The ring R2(F2) is generated

by modular forms of weights 1, 10, 12, 13, 48

with one relation of weight 52:

R2(F2) = F2[ψ1, χ10, ψ12, χ13, χ48]/(R)

with

R = χ4
13 + ψ3

1χ10χ
3
13 + ψ4

1χ48 + χ4
10ψ12 .
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The Case g = 3

Torelli t : M3 −→ A3 is of degree 2, ramified

along the hyperelliptic locusH3. The modular

form χ18 =
∏

ǫ ϑ[ǫ](τ, 0) has divisor

H3 + 2D in Ã3

with D = Ã3 −A3.

We pull back the Hodge bundle E and

similarly the Eρ and extend to M3. We

define

Tρ = H0(M3,Eρ),

the space of Teichmüller modular forms of

weight ρ. (Here ρ is an irrep of GL(3,C).)
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Example: χ9 =
√
χ18 ∈ T9 (with ρ = det9).

Due to Ichikawa.

There is an involution ι (coming from

M3
2:1−→A3) and we have eigenspaces

Tρ = T+
ρ ⊕ T−

ρ .

We can identify

T+
ρ

∼= Sρ(Γ3),

while T−
ρ is the space of genuine Teichmüller

forms; we have

χ9 T
−
ρ ⊂ Sρ′(Γ3) with ρ′ = ρ⊗ det9
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We have another description of the non-

hyperelliptic part of M3:

Mnh
3

∼= [Y0/GL(V )]

Y0 ⊂ Sym4(V )⊗ det−1(V ).

with V = 〈x, y, z〉. We look at the space of

smooth ternary quartics Y0 inside all ternary

quartics Y. (We twisted such that c · idV acts

as c · idY.)

For the invariant theory (of GL(V )) we

have to look at concomitants. Take an

equivariant map of GL(V )-reps

U →֒ Symd(Sym4(V ))

equivalently

ϕ : C −→ Symd(Sym4(V ))⊗ U∨
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Then Φ = ϕ(1) is a concomitant. The

concomitants form a module C over the ring

I of invariants for GL(3,C).

For the modular forms we have a module

Σ = ⊕ρTρ

of vector-valued Teichmüller modular forms

over the ring T of scalar-valued Teichmüller

modular forms.

The pull back of E under Y0 → Mnh
3 is

Y0 × V . This gives us

T −→ I −→ T [1/χ9]

↓ ↓ ↓
Σ −→ C ν−→ Σ[1/χ9]

Modular forms give concomitants, concomitants

give meromorphic modular forms.
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Where does the concomitant f ∈ C, the

universal quartic, go under ν?

f 7−→ χ4,0,−1,

a meromorphic section of

Sym4(E)⊗ det(E)−1

on M3 with

χ4,0,−1 · χ9 = χ4,0,8 ∈ S4,0,8(Γ3),

a holomorphic Siegel modular form.

How to get it? Note dimS4,0,8(Γ3) = 1.
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We take the Schottky form for g = 4 (of

weight 8 vanishing on the Torelli locus) and

develop it along

H3 × H1 →֒ H4

The first non-zero term in the Taylor

expansion is

χ4,0,8 ⊗∆ ∈ S4,0,8(Γ3)⊗ S12(Γ1)

Its Fourier expansion starts as follows: write

qi = e2πiτii (i = 1, 2, 3) and

u = e2πiτ12, v = e2πiτ13, w = e2πiτ23)
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We describe the map ν : C → Σ[1/χ9].

Write the universal quartic f as
∑
aIx

I.

Then write χ4,0,8 as

χ4,0,8 =
∑

I

αIX
I

as a ternary quartic with dummy variables

X1, X2, X3. The αI are holomorphic on H3,

given by their Fourier expansion.

A concomitant is a polynomial in the aI,

x1, x2, x3 and u1, u2, u3 with u1 = x2 ∧ x3,
u2 = x1 ∧ x3 and u3 = x2 ∧ x3.

Theorem 4. The map ν is given by

substituting αI/χ9 for aI.

26



March 8, 2021

Is the result holomorphic?

Theorem 5. Let c be a concomitant of

degree d (say d odd). Let v(c) be its

order of vanishing along the locus of double

conics. Then ν(c)χ9 is a Siegel modular form

vanishing with order v(c) − (d − 1)/2 along

the hyperelliptic locus.

Example: Let c be the discriminant, an

invariant of degree d = 27. Now

ν(c)χ9 = χ18

vanishes with order 1 along H3, the

hyperelliptic locus. So c vanishes with order

14 along the locus of double conics (confirms

a result of Aluffi-Cuckierman).
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In principle we can describe all modular forms

of genus 3.

Example. For d = 2 we find the

decomposition of Sym2(Sym4(V )) as

V [8, 0, 0] + V [6, 2, 0] + V [4, 4, 0] .

The component V [4, 4, 0] defines a

concomitant. It is a form of degree 2

in the aI and degree 4 in u1, u2, u3, the

generators of ∧2V . It gives a meromorphic

Siegel modular form of weight (0, 4,−2). It

becomes holomorphic after multiplication by

χ2
9, hence a form in S0,4,16 vanishing twice at

∞.
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Example. The catalecticant is an invariant of

degree d = 6 associated to

V [8, 8, 8] ⊂ Sym6(Sym4(V )).

It defines a Siegel modular form of weight 56

vanishing with order 6 at ∞ and order 16

along A2,1. It confirms a result of Ottaviani-

Sernesi who view the catalecticant as a section

O(56λ− 6δ0 − 16δ1) on M3.
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