Calculus 3 Final Sample Exam 3

courtesy of Dr. Inna Sysoeva, University of Pittsburgh, adapted

Problem 1. a) Find the unit tangent vector **T** and unit normal vector **N** to the curve $\mathbf{r}(t) = < 3\cos t, 4t, 3\sin t >$ at the point $P = \left(-\frac{3}{\sqrt{2}}, 3\pi, \frac{3}{\sqrt{2}}\right)$. b) Find the curvature of the curve at the point P.

Problem 2. Use linear approximation to approximate the number $\sqrt{3.04 + e^{-0.08}}$.

Problem 3. Determine all local maxima, local minima and saddle points of $f(x, y) = 3y - y^3 - 3x^2y$.

Problem 4. A rectangular box without a lid is to be made from 48 ft^2 of cardboard. Find the maximum volume of the box.

Problem 5. Find the y- coordinate of the center of mass of a lamina that occupies the region bounded by $y^2 = x + 4$, x = 0, and $y \ge 0$ and has density $\rho(x, y) = y$. Simplify your answer as much as possible.

Note: The y- coordinate of the center of mass of a lamina with density function ρ is $(\iint_{D} y\rho \, dA)/(\iint_{D} \rho \, dA)$.

Problem 6. Find the volume of the solid that lies within the cylinder $x^2 + y^2 = 4$, above the (x, y)-plane, and below the cone $z^2 = 4x^2 + 4y^2$.

Problem 7. Let **F** be the two-dimensional vector field given by $\mathbf{F}(x, y) = \langle ye^{xy} - 1, xe^{xy} + 2y \rangle$.

a) Determine if \mathbf{F} is a conservative vector field, and if so, find a potential function.

b) Find the value of the line integral $\int_{C} \mathbf{F} \cdot \mathbf{T} ds$, where C is the line segment from (0,3) to (5,0).

Problem 8. Use Green's Theorem to find the value of $\oint_C -5x^2 dx + 7xy dy$, where *C* is the closed curve consisting of the edges of the triangle with vertices (0,0), (3,1), and (0,3), oriented counterclockwise.

Problem 9. Use Divergence Theorem to find the total flux $\iint_{S} \mathbf{F} \cdot \mathbf{n} \, dS$ of the vector field $\mathbf{F}(x, y, z) = \langle x^2, yz^2, -2xz \rangle$ across the surface S given by $x^2 + y^2 + z^2 = 2$ with outward orientation.

Problem 10. Use Stokes' theorem to evaluate $\oint_C \mathbf{F} \cdot d\mathbf{r}$, where

 $\mathbf{F}(x, y, z) = e^x \mathbf{i} + (x^2 + y^2) \mathbf{j} + z \mathbf{k}$, and C is the boundary of the part of the plane 2x + y + 2z = 2 in the first octant oriented counterclockwise when viewed from above.