MATH 603A (Toric Varieties) Spring 2021 Syllabus

Instructor: Alexander Borisov Office hours: On Zoom, TBA

Email: borisov@math.binghamton.edu Classes meet: MWF 2:20-3:20, online

Some Useful Texts

Available Online (click on the titles):

Jean-Paul Brasselet. Introduction to Toric Varieties

V.I. Danilov. The Geometry of Toric Varieties

Geert Popma. Toric Geometry. An introduction to toric varieties with an outlook towards toric singularity theory

Printed (optional):

Tadao Oda. Convex Bodies and Algebraic Geometry. An Introduction to the Theory of Toric Varieties. ISBN 978-3-642-72549-4

J.W.S. Cassels. An Introduction to the Geometry of Numbers. ISBN 978-3-540-61788-4

Main Topics to be Covered

Projective spaces

Algebraic varieties, as glued from spectra of algebras

Lattices in \mathbb{R}^n

Convex bodies and convex cones; duality

Construction of toric varieties from rational polyhedral fans

Basic algebraic geometry of curves: divisors, canonical class, Riemann-Roch Theorem, Hurwitz formula

Basic algebraic geometry of surfaces: divisors, canonical class, adjunction, intersection form, blow-up of a point construction

Singularities, Weil and Cartier divisors

Toric aspects of Minimal Model Program

Geometry of Numbers and applications: Minkowski Theorems, successive minima, duality, Lawrence Theorem

Classification results for lattice-free convex lattice polytopes in low dimensions

Connection to the Nyman-Beurling-Báez-Duarte Criterion for the Riemann Hypothesis

Assignments and Grades

The officially registered students will have their course grade determined by attendance, participation, two or three written assignments, and one or two oral examinations (on Zoom, at a mutually convenient time outside of class). The details will be announced later.