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Abstract

The goal of this note is to bring attention to an interesting family of rings: the
rings of Z-valued functions on Z and, more generally, infinite subsets of Z whose
restrictions to all finite sets are given by polynomials with integer coefficients. Our
interest in these functions was inspired by the work of Sayak Sengupta on iterations
of integer polynomials, but they appear to be of independent interest. In partic-
ular, they enjoy some properties reminiscent of the properties of complex analytic
functions, including forming a sheaf in the cofinite and density one topologies.

1. Introduction

Let f : Z → Z be a function. By a classical polynomial interpolation theorem, for

any finite set X ⊂ Z there exists a polynomial p(x) ∈ Q[x] such that p(x) = f(x) for

all x ∈ X. Moreover, if we require deg p(x) < |X|, this p(x) is unique; we will denote

it by fX(x). It is well known that in general one cannot guarantee that fX ∈ Z[x]:

f(x) = x(x+1)
2 provides a simple, perhaps the simplest, counterexample. If we

require that for all finite X the polynomial fX does belong to Z[x], we get infinitely

many congruence conditions on the values of f . To begin with, for all integers n and

m by considering X = {n,m} we get that n −m must divide f(n) − f(m). More

restrictive, but also more complicated, conditions appear when we consider X with

|X| ≥ 3. For the lack of a better name, we will call such functions locally integer

polynomial functions or LIP functions. Clearly, these functions form a ring, that

we will denote by LZ[x] or LIP (Z). More generally, replacing Z by its arbitrary

infinite subset U , we get the ring LIP (U) of locally integer polynomial functions

on U .

Our initial motivation to study these objects comes from the paper of Sayak

Sengupta [12] on iterations of integer polynomials. Some of the main results of that

paper concern with partial classification of orbits of integer polynomials starting at a

fixed integer and eventually containing 0. In particular, he found the maximal length

of such sequences, depending on the starting integer, together with some other
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finiteness and structural results. It is easy to see that his results can be extended

to iterations of LIP functions, as his methods only involve integer polynomials and

finite integer sequences. To preempt any confusion, we must point out that our use

of the word “locally” is different from Sengupta’s use of it in [11], where it means

“modulo primes”.

It turned out that LIP functions on Z and, especially, on infinite subsets of Z are

rich and interesting objects. In particular, there are some mysterious similarities

between these rings and the rings of complex-analytic functions on domains in C. As

such, this theory has some potential to fill in an interesting gap in our understanding

of the integers. There have been many attempts to develop a theory for the integers

that would resemble the usual topology on C, viewed as the set of maximal ideals

on C[x], including, in particular, the theory of Berkovich spaces and various results

around the technically non-existent “field of one element” (e.g. [2, 3, 7, 10]). We

hope that LIP functions become an important addition to these efforts, especially

if combined with some natural topologies on N, like Golomb and Kirch topologies

([4, 6, 8, 9]). Golomb and Kirch topologies have been around for a long time, but

are relatively unknown to number theorists. They are Hausdorff and connected,

and are defined using certain arithmetic progressions. As we will see in Sections 4

and 5, arithmetic progressions naturally appear in the theory of LIP functions.

In this direction we prove that LIP functions form a sheaf, and not just a presheaf,

for cofinite and density one topologies on Z and N. For Golomb and Kirch topolo-

gies, the situation is more complicated, because they have non-connected open sets,

and for a non-connected open set the sheafification of the LIP presheaf must be a

direct product of the sheafifications on the connected components. We consider the

Kirch topology and present some partial results and open questions regarding LIP

functions on Kirch-open sets.

One would also hope that there is a connection with Diophantine equations.

Obviously, if a system of Diophantine equations has a non-constant solution in

LIP (U) for some infinite U ⊆ Z, then it has infinitely many solutions in Z. The

converse is unlikely to hold in general, and we do not know if it is true even for the

classical Pell’s equation x2 − 2y2 = 1.

The paper is organized as follows. Section 2 is devoted to the general results for

the rings of LIP functions on infinite subsets of Z. In particular, we prove that these

rings are never Noetherian. In Section 3 we study LIP (Z) with the special emphasis

on growth estimates for non-polynomial LIP functions. In Section 4 we consider

the problem of extending a LIP function from one infinite subset to another (LIP

continuation). This leads us to a question of when an integer-valued function is

not LIP, and we study the “minimal obstructions” to LIPness, that we call circuits.

In the final Section 5 we study the sheaf-theoretic properties of the rings of LIP

functions. The main result of this section is Theorem 9 that shows that a function

is LIP if its restriction to each subset in some covering family is LIP, provided that



INTEGERS: 24 (2024) 3

the intersection of any two subsets in the family is “large enough”. This implies

that LIP functions form not just a presheaf, but a sheaf in some natural non-

Hausdorff topologies. We also define and study the sheafification of the presheaf of

LIP functions, the “locally LIP” functions, with respect to the Kirch topology on

N and discuss some open questions regarding this notion.

2. General results on LIP functions on infinite subsets of Z

We start with the basic definitions.

Definition 1. Suppose U is an infinite subset of Z. Then f : U → Z is a locally

integer polynomial (LIP, for short) function if the restriction of f to any finite

subset X of U can be given by a polynomial with integer coefficients.

Definition 2. For an infinite subset U of Z, we denote by LIP (U) the subset of

all functions f : U → Z that consists of all LIP functions on U .

The following lemma is immediate.

Lemma 1. Suppose U ⊆ Z is infinite. Then LIP (U) is a subring of the ring of all

integer-valued functions on U . It is a commutative ring with identity, containing

Z[x].

Proof. As a subset of the ring of all integer-valued functions on U , the set LIP (U)

is closed under subtraction and multiplication. Since polynomials are uniquely

determined by their values on the infinite set U , the natural evaluation map from

Z[x] to the ring of all integer-valued functions on U is an inclusion. And, clearly,

the image of this map is in LIP (U).

It is logically possible that even if the interpolation polynomial for the function

f on a finite set X is not an integer polynomial, there exists some other polynomial

p(x) ∈ Z[x], of higher degree, that takes the same values on all x ∈ X. However the

following easy lemma shows that this cannot happen (cf. also [12], Lemma 2.2).

Lemma 2. Suppose X = {x0, . . . , xd} ⊂ Z. Suppose fX(x) ∈ Q[x] is a polynomial

of degree at most d, and p(x) ∈ Z[x] is such that p(x) = fX(x) for all x ∈ X. Then

fX(x) ∈ Z[x].

Proof. Clearly, p(x) = fX(x)+g(x)·
d∏
i=0

(x−xi) for some g(x) ∈ Q[x]. If g(x) /∈ Z[x],

denote by k the largest degree of x in g(x) with non-integer coefficient gk. Since the

coefficient of xk+d+1 in p(x) also equals gk, we see that p(x) /∈ Z[x], a contradiction.

Thus g(x) ∈ Z[x], so fX(x) ∈ Z[x].
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The above lemma suggests the following definition.

Definition 3. For a function f ∈ LIP (U) and finite X ⊂ U , we call the inter-

polation polynomial for f on X the restriction of f to X, to be denoted by fX , or

fX(x) is we want to specify that we consider it as an element of Z[x]. We will also

use the same convention for arbitrary f : U → Z, except that fX may be a rational

polynomial.

The following theorem shows that LIP (U) is a much bigger ring than Z[x]. In

fact, it has the same cardinality as R.

Theorem 1. Suppose σ : N → U is any bijection. Then for any a0, a1, a2, . . . ∈ Z
the following function is in LIP (U):

f(x) =

∞∑
k=0

ak

k∏
i=1

(x− σ(i)) = a0 + a1(x− σ(1)) + . . .+ ak

k∏
i=1

(x− σ(i)) + . . .

Moreover, every function in LIP (U) is of this form for some unique sequence of

integers {ai}∞i=0.

Proof. Even though the sum is formally infinite, all terms of its restriction to x ∈ U
vanish for k ≥ σ−1(x). Thus this formula does define an integer-valued function on

U and, moreover, it is in LIP (U). To prove the existence and uniqueness, denote

by fn(x) the partial sum of the above series: fn(x) =
n−1∑
k=0

ak
k∏
i=1

(x−σ(i)). Then for

every m = σ(n) ∈ U we need to have

f(m) = fn(m) = fn−1(m) + an−1

n−1∏
i=1

(m− σ(i)).

This is equivalent to

an−1 = (f(m)− fn−1(m))/

n−1∏
i=1

(m− σ(i)).

Thus for every f : U → Z we can recursively define the unique sequence of rational

ai such that f is given by the above infinite series. And if f is a LIP function then

all polynomials fn are in Z[x], so all ai are integers.

Remark 1. Different σ produce different sequences of coefficients for the same

function f . And while this description of LIP functions is good for their addition,

it is not well suited for the product.

Remark 2. Instead of the sums above, we can consider formal sums f(x) =
∞∑
k=0

ak(x)
k∏
i=1

pi(x)k, where the sequence {pn(x)} runs through the (countable) set
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of all irreducible integer polynomials with content 1 and positive leading coefficient,

and ak(x) are integer polynomials. Such functions are defined not just on Z, but

on Qalg. Moreover, all their formal derivatives are also defined on Qalg and have

the property that all restrictions to finite subsets are given by integer polynomials.

Perhaps, such generalizations are also worth studying.

The following observation is vaguely reminiscent of a well-known important prop-

erty of complex analytic functions.

Lemma 3. Suppose f ∈ LIP (U) and f(x) = 0 for infinitely many x ∈ U . Then

f = 0.

Proof. Suppose X = {x ∈ Z | f(x) = 0}. Take arbitrary m ∈ U . Since X is

infinite, we can find x ∈ X such that |x−m| > |f(m)|. Since |x−m| must divide

|f(x)− f(m)| = |f(m)|, we must have f(m) = 0. Thus f = 0.

Corollary 1. Suppose U and V are infinite subsets of Z and U ⊆ V . Then the

restriction map LIP (V ) → LIP (U) is an injection. In particular, LIP (Z) is nat-

urally contained in all LIP (U).

Lemma 4. For every infinite U ⊆ Z the ring LIP (U) is a domain, and its only

units are 1 and −1.

Proof. If f(x)g(x) = 0 for all x ∈ U , then f or g must vanish on an infinite subset

of U , so by Lemma 3 it must be zero. If f(x)g(x) = 1 for all x ∈ U , then f(x) = ±1

for all x. Therefore (f − 1)(f + 1) = 0, so f = 1 or f = −1.

We can take this one step further, with the following easy theorem.

Theorem 2. Suppose U ⊆ Z is infinite. If f ∈ LIP (U) and |f(x)| is prime for

infinitely many x, then f is irreducible in LIP (U).

Proof. If f = gh, then one of the following must be true for infinitely many x ∈ U :

g(x) = 1, g(x) = −1, h(x) = 1, h(x) = −1. In the first two cases g is a unit, and in

the last two cases h is a unit.

So far we have only used the property of LIP functions that the difference of

inputs must divide the difference of outputs. The proof of the next theorem uses

the LIP property in a more substantial way.

Theorem 3. For C ∈ R and d ∈ N, suppose f ∈ LIP (U) is such that |f(x)| ≤
C|x|d for infinitely many x ∈ U. Then f ∈ Z[x].

Proof. Suppose X = {x ∈ U | |f(x)| ≤ C|x|d}. Fix pairwise distinct x0, x1, . . . , xd in

X. Suppose g(x) = f{x0,x1,...,xd}(x). Suppose xd+1 ∈ X and |xd+1| is large enough.
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Then by adding xd+1 to the list of inputs, and considering the new interpolation

polynomial, we get that

f(xd+1) = a ·
d∏
i=0

(xd+1 − xi) + g(xd+1)

for some a ∈ Z that depends on xd+1. Now note that as |xd+1| goes to +∞, |f(xd+1)|
and |g(xd+1)| grow at most as a constant multiple of |x|d, while

∏d
i=0(xd+1 − xi)

grows like |x|d+1. Therefore for all xd+1 in X with large enough |xd+1| we must

have a = 0, thus f(xd+1) = g(xd+1). Thus f(x) − g(x) = 0 for infinitely many x,

so by Lemma 3 f(x) = g(x) for all x.

Corollary 2. Suppose f(x) is a prime element of Z[x], i.e. a prime in Z or an

irreducible integer polynomial with content 1. Then it is a prime element of LIP (U).

Proof. If f(x) = g(x)h(x) then |g(x)| and |h(x)| grow at most polynomially as |x|
goes to infinity. So g(x) and h(x) are in Z[x].

Corollary 3. Z[x] is algebraically closed in LIP (U).

Proof. Suppose f ∈ LIP (U) satisfies some algebraic equation with coefficients in

Z[x]. Then by looking at this equation over R, the absolute value of f(x) must grow

at most polynomially in |x|.

There is no reason to expect the rings LIP (U) to be Noetherian. Indeed, we

have the following result.

Theorem 4. Suppose U is an infinite subset of Z. Then LIP (U) contains an

infinite strictly increasing chain of principal ideals.

Proof. While all LIP functions can be expressed as formal infinite sums, some can

actually be expressed as formal infinite products. Specifically, for any bijection

σ : Z→ U and for all m ∈ N consider the functions

fm(x) =

∞∏
k=m

(
1 +

k∏
i=1

(x− σ(i))

)
.

Clearly, fm ∈ LIP (U) for all m, and we have an infinite strictly increasing chain

of principal ideals

(f1) ⊂ (f2) ⊂ · · · ⊂ (fm) ⊂ · · · .

Remark 3. It seems plausible that the functions fm cannot be written as products

of finitely many primes (irreducibles), which would mean that LIP (U) are never

atomic ([1]). However, we do not have a proof at this time.
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3. LIP functions on Z

In this section we study LIP (Z) = LZ[x]. As noted in the previous section, LZ[x] is

a commutative ring with identity. It contains Z[x] and is contained in LIP (U) for

any infinite U ⊆ Z. We are primarily concerned with the behavior of LIP functions

w.r.t. the “infinite prime”, i.e. the regular absolute value. A very similar theory

can also be developed for LIP (N).

The following two properties are specific for LZ[x]

Theorem 5. 1) LZ[x] is closed under the operation of composition of functions.

2) LZ[x] is closed under the (left) discrete derivative operator: if f(x) ∈ LZ[x],

then f(x)− f(x− 1) ∈ LZ[x].

Proof. 1) If f(x) and g(x) are in LZ[x] then the restriction of their composition

f(g(x)) to any finite set X is given by the polynomial fY (gX(x)), where Y = g(X).

2) Suppose f(x) is in LZ[x]. From the first part of the theorem, f(x− 1) is also

in LZ[x]. So the same is true for the difference f(x)− f(x− 1).

By Theorem 3, if for f ∈ LZ[x] the absolute value of f(x) grows at most poly-

nomially on some infinite subset of Z, then f is just a polynomial. In some sense,

this result is tight, as the next theorem shows.

Theorem 6. If τ : N → R is any sequence with lim
n→+∞

τ(n) = +∞, then there

exists f ∈ LZ[x] \ Z[x] such that |f(x)| < |x|τ(|x|) for all x in some infinite X ⊆ Z.

Proof. For every strictly increasing sequence of natural numbers {c1, c2, . . .} con-

sider the LIP function

f(x) =

∞∑
i=1

∏
|j|≤ci

(x− j)

and X = {ck+1 − 1 | k ∈ N}.
Then for every x = ck+1 − 1 ∈ X

|f(x)|= |
k∑
i=1

∏
|j|≤ci

(x− j)|≤k
∏
|j|≤ck

|x− j|≤k(ck+1 − 1 + ck)2ck+1≤(2x)2ck+2.

Note that this is less that x4ck+4. So for a given τ we will choose c1 = 1 and

then for each k we will be able to choose ck+1 > ck so that τ(ck+1 − 1) > 4ck + 4.

Clearly, |f(x)| < |x|τ(|x|) for all x ∈ X, the set X is infinite, and f /∈ Z[x].

Remark 4. The above theorem also holds for LIP (U) for arbitrary infinite U ,

simply because LZ[x] ⊆ LIP (U).
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On the other hand, Theorem 3 does admit a non-trivial strengthening, if instead

of looking at some infinite X ⊆ Z we look at the entire Z. For this, it is convenient

to first prove a lemma.

Lemma 5. Suppose f ∈ Z[x] and deg f = d. Then |f(x)| ≥ d!
2d

for some x ∈
{0, 1, . . . , d}.

Proof. Consider the polynomial g(x) of degree at most (d−1) such that g(x) = f(x)

for all x ∈ {0, 1, . . . , d− 1}. By Lemma 2, g ∈ Z[x]. Clearly, f(x) = g(x) + ax(x−
1) . . . (x− d+ 1) for some integer a. Since deg f = d, we have a 6= 0. Consider the

(left) discrete derivative operator: (δf)(x) = f(x)−f(x−1). For every r < s ∈ N this

can be defined on functions on {r, . . . , s} with outputs in functions on {r+1, . . . , s}.
So its d-th composition power, δd, applied to f(x) on {0, . . . , d}, gives a function

on {d}. By a standard calculation, δd(g) = 0 and (δdf)(d) = d! · a. If for all

x in {0, . . . , d} we have |f(x)| < d!
2d
, then for all x in {1, . . . , d} we must have

|(δf)(x)| < d!
2d−1 , and so on. At the end, |(δdf)(d)| < d!, a contradiction with

a 6= 0.

Theorem 7. Suppose f(x) ∈ LZ[x] and for all but finitely many x ∈ Z

|f(x)| < (2|x| − 1)!

22|x|−1
.

Then f ∈ Z[x].

Proof. Consider the “standard” bijection σ : N→ Z:

σ(k) =


0, if k = 1
k
2 , if k is even
−k−12 , if k ≥ 3 is odd

Denote the corresponding subsets σ({1, 2, . . . , i}) by Xi. Define di to be the

degree of the interpolation polynomial fi(x) for f(x) on Xi. Clearly, di−1 ≤ di
Suppose f /∈ Z[x]. Then lim(di) = +∞ and di−1 < di for infinitely many i. We

will prove that di = i− 1 for all such i. Indeed, fi(x) = fi−1(x) + a
∏

j∈Xi−1

(x− j).

Since di−1 < di, we have a 6= 0. Because di−1 ≤ |Xi−1| − 1, we have di = |Xi−1| =
i − 1. For such i, we can apply Lemma 5 to a suitable shift of fi, to get that

max
j∈Xi

|f(j)| ≥ (i−1)!
2i−1 . So for each i from some infinite subset of N we get a j ∈ Xi

such that |f(j)| ≥ (i−1)!
2i−1 . Note that i ≥ 2|j| for every j ∈ Xi, so for all |j| ≥ 1 we

have |f(j)| ≥ (2|j|−1)!
22|j|−1 . Note also that each j can only work for finitely many i-s.

Thus, if f /∈ Z[x], we get an infinite set of j-s for which |f(j)| ≥ (2|j|−1)!
22|j|−1 .

The next example shows that the above bound cannot be improved much.
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Example 1. Consider f(x) =
∞∑
i=0

(−1)i
∏
|j|≤i

(x − j). Then |f(x)| ≤ (2|x| − 1)! for

all x ∈ Z.

Proof. For x = 0 the inequality is 0 ≤ 0. Since f is clearly an odd function, it is

enough to consider x > 0. Then

f(x) = (−1)x · [(2x− 1) · . . . · 1− (2x− 2) · . . . · 2 + (2x− 3) · . . . · 3− . . .+ (−1)xx].

Since the absolute value of the first term is (2x− 1)! and the absolute values of

the terms in the alternating sum are decreasing, we get the desired inequality.

4. LIP continuation and obstructions to LIPness

We begin with a natural definition.

Definition 4. Suppose U and V are infinite subsets of Z. If f ∈ LIP (U) is a

restriction of g ∈ LIP (V ) to U, then we say that g is a LIP continuation of f from

U to V .

Remark 5. LIP continuation does not always exist. But if it exists, it is unique

by Corollary 1.

It is natural to ask if there exist LIP functions on U that can be LIP continued

to U t{a} and U t{b}, but not to U t{a, b}. Because of the uniqueness of the LIP

continuation, it is a question of finding a function on U t {a, b} which is not LIP,

but whose restrictions to U t {a} and U t {b} are LIP.

We are going to construct such infinite U by “growing” it from the following

finite example.

Example 2. Suppose U = {0}, a = −1, b = 1. Consider f : {−1, 0, 1} → Z
given by the values {0, 0, 1} respectively. It is given by an integer-valued non-integer

polynomial f(x) = x(x+1)
2 , but its restrictions to {−1, 0} and {0, 1} can be given by

integer polynomials 0 and x respectively.

Theorem 8. Suppose x1, . . . , xn, a, b are distinct integers, and f(x) ∈ Z[x] is an

integer-valued non-integer polynomial such that its restrictions to {x1, . . . , xn, a}
and {x1, . . . , xn, b} can be given by integer polynomials. Then

1) |a− b| ≥ 2

2) Denote by V the set of all integers x, such that gcd(x−a, a−b) = 1. There exists

a LIP function on the union U of {x1, . . . , xn} and V that can be LIP continued to

U t {a} and U t {b}, to coincide with f(x) on {x1, . . . , xn, a, b}.
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Proof. 1) Denote by X the finite set {x1, . . . , xn}. By the given conditions on f ,
fXt{a}(x) = fX(x) + α ·

n∏
i=1

(x− xi)

fXt{b}(x) = fX(x) + β ·
n∏
i=1

(x− xi)

for some α 6= β in Z.

Similarly, fXt{a,b}(x) = fX(x) + (ux + v) ·
n∏
i=1

(x − xi), and we are given that

fXt{a,b}(x) /∈ Z[x], so u or v is not an integer. Plugging in a and b, we get α = ua+v

and β = ub+ v. Thus α− β = u(a− b). If a− b = ±1, then u ∈ Z. So, since α ∈ Z,
we get that v ∈ Z, a contradiction.

2) To prove the second statement, we will show that one can add to X any

element xn+1 of U \X, by defining f(xn+1) appropriately. And we will repeat the

argument one-by-one for all elements of U that are not already in X.

To define f(xn+1) as yn+1, we just need the following, for some integers c and d:
yn+1 = fXt{a}(xn+1) + c · (xn+1 − a)

n∏
i=1

(xn+1 − xi)

yn+1 = fXt{b}(xn+1) + d · (xn+1 − b)
n∏
i=1

(xn+1 − xi)

Since we are free to choose any yn+1, we just need to find c and d so that

fXt{a}(xn+1)+c(xn+1−a)

n∏
i=1

(xn+1−xi) = fXt{b}(xn+1)+d(xn+1−b)
n∏
i=1

(xn+1−xi).

Subtracting the formulas in the proof of the first statement, and plugging in xn+1

for x, we get fXt{a}(xn+1)−fXt{b}(xn+1) = (α−β)
n∏
i=1

(xn+1−xi). So, dividing by

n∏
i=1

(xn+1−xi), we just need to solve the equation β−α = c(xn+1−a)−d(xn+1−b), for

given α and β and unknown c and d. Because xn+1 ∈ V, gcd(xn+1−a, xn+1−b) = 1,

so such c and d always exist.

Remark 6. The above calculations also show that one cannot add to X any element

of the doubly-infinite arithmetic progression a+(b−a)Z. Indeed, for such x we have

gcd(x − a, x − b) = (a − b), which would imply that α − β is a multiple of a − b,
which is impossible by the argument at the end of the proof of the first statement of

the theorem.

Example 3. Applying the above theorem to Example 2, we get an example of a

non-LIP function on V = 2Z ∪ {−1, 1} which is LIP on V \ {−1} and on V \ {1}.
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Remark 7. The above example may be interpreted as evidence that the set V =

2Z ∪ {−1, 1} is in some sense “not simply-connected”. An analogous fact in the

theory of complex-analytic functions is that
√
z can be analytically continued from

the domain Re(z) > 0 to the complements in C of iR>0 and of −iR>0, but not to

their union, C \ {0}.

We also want to consider general integer-valued functions on subsets of Z that

may or may not be LIP. Clearly, if a function is LIP on some set, it is LIP on all

of its subsets. The following definition describes the “minimal obstructions” to the

LIP condition. The terminology is inspired by the theory of matroids.

Definition 5. Suppose f : U → Z is a function not in LIP (U). A finite subset X

of U is called a circuit for f if fX /∈ Z[x] but fX\{a} ∈ Z[x] for every a ∈ X.

Before analyzing the structure of circuits, it is convenient to prove a general

lemma about interpolating polynomials.

Lemma 6. (Exchange Formula) Suppose X t {a, b} is a finite subset of Z, and f

is a function on it. Then

fXt{a}(x) = fXt{b}(x) + c · (a− b) ·
∏
z∈X

(x− z).

where c is the coefficient for x|X|+1 in fXt{a,b}(x).

Proof. Clearly, fXt{a,b}(x) = fXt{b}(x) + c · (x− b)
∏
z∈X

(x− z), where c is as in the

statement of the lemma. Similarly, fXt{a,b}(x) = fXt{a}(x) + c · (x−a)
∏
z∈X

(x− z).

Subtracting one of these identities from the other proves the required formula.

Lemma 7. Suppose X is a circuit for f . Then

1) fX(x) = cx|X|−1 + . . . with c /∈ Z.

2) Suppose d is the denominator of c (in reduced form). Then all elements of X

are congruent modulo d.

Proof. 1) Take any a ∈ X. Then fX(x) = fX\{a}(x) + c ·
∏

z∈X\{a}
(x − z) for some

constant c, which is the coefficient of x|X|−1. Since fX\{a} ∈ Z[x] but fX /∈ Z[x],

c /∈ Z.

2) For every a and b in X by the Exchange Formula (Lemma 6) for X \ {a, b},
a, and b, we have

fX\{b}(x) = fX\{a}(x) + c · (a− b) ·
∏

z∈X\{a,b}

(x− z)

Since fX\{b} and fX\{a} are in Z[x], we have c(a− b) ∈ Z, so d | (a− b).
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Remark 8. All functions described in Example 3 have only one circuit: X =

{−1, 1}. At the other extreme, a non-LIP function can have infinitely many circuits.

We do not know if there is a function on Z with exactly k ≥ 2 circuits.

Remark 9. All circuits of size 2 are of the form X = {a, b}, where a− b does not

divide f(a) − f(b). Larger circuits also exist, for example f(x) = 1
2x

2 on U = 2Z
has X = {−2, 0, 2} as a circuit.

5. Sheaf-theoretic properties of LIP Functions

One of the fundamental properties of complex-analytic functions is that they form

a sheaf with respect to the usual topology on C. We want to investigate the analogs

of this phenomenon for LIP functions.

The most common topology on Z is the discrete topology: all sets are open and

closed. But there are many natural topologies on Z (and its subsets) that have no

finite non-empty open sets. This will be our assumption for the remainder of the

paper.

Definition 6. Suppose S is an infinite subset of Z, and τ is a topology on S, which

we view as the collection of all open subsets of S. Suppose that all non-empty U ∈ τ
are infinite. Then the collection of rings LIP (U) for all nonempty U ∈ τ together

with the restriction maps is called the LIP presheaf on (S, τ).

Remark 10. The formal definition of a presheaf, appropriate for our situation, is a

contravariant functor from the category of nonempty τ -open subsets of S with respect

to inclusion to the category of commutative rings. We will forgo such formalities.

Remark 11. The notions of presheaf and sheaf have played a pivotal role in the

reformulation of Algebraic Geometry via the language of schemes by Grothendieck

and his collaborators, and have been generalized considerably. For a relatively ele-

mentary introduction see, for example, [5], section I.5.

Clearly, LIP presheaf on (S, τ) is a subpresheaf of the sheaf of all integer-valued

functions on τ -open nonempty subsets of S. To every presheaf one can canonically

associate a sheaf, by the construction called sheafification. In our situation it can

be given by the following definition.

Definition 7. For (S, τ) as above, the LIP sheaf of (S, τ), to be denoted by LIP(S, τ)

is defined as follows. For every nonempty U ∈ τ the ring LIP(S, τ)(U) consists of

all f : U → Z such that for every a ∈ U there exists an open Ua ⊆ U containing a,

such f|Ua
∈ LIP (Ua). The restriction maps are the usual restriction maps. We will

call elements of LIP(S, τ)(U) locally LIP functions on U .
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From the above definition, it is clear that LIP(S, τ)(U) ⊇ LIP (U). In general,

this inclusion is not an equality. In fact, if U is not connected, then LIP(S, τ)(U)

is the product of LIP(S, τ)(Ui) where Ui are the connected components of U . But

if U is connected, one can hope that the above inclusion is an equality. The main

goal of this section is to prove this for several natural topologies. Our principal

result is the following general theorem.

Theorem 9. Suppose f : U → Z, and Z ⊇ U =
⋃
α Uα, such that for every α1 and

α2 and any distinct elements a1 ∈ Uα1
and a2 ∈ Uα2

the intersection Uα1
∩ Uα2

contains infinitely many terms of the arithmetic progression a1 + (a2 − a1)Z. Then

f ∈ LIP (U) if and only if its restriction to each Uα is LIP.

Proof. The implication in one direction is obvious. So we suppose that all re-

strictions of f to Uα are LIP, and we will prove that f ∈ LIP (U) by means of

contradiction.

Suppose f is not LIP on U . Then it has some circuit X. For each x ∈ X pick

Uα that contains it. Replacing U by the finite union of these Uα, we can essentially

reduce the problem to the case when the family {Uα} is finite: {U1, U2, . . . , UN}.
Suppose k ≤ N −1 is the largest number such that the restriction of f to

⋃k
i=1 Ui is

LIP. Then the restriction of f to
⋃k+1
i=1 Ui = (

⋃k
i=1 Ui)∪Uk+1 is not LIP. So we have

essentially reduced the problem to the case of a 2-set family: U = V1 ∪ V2, where

V1 =
⋃k
i=1 Ui and V2 = Uk+1 (note that the intersection property is preserved).

Consider a circuit for f on this U = V1 ∪ V2, that has the smallest possible

number of elements not in W = V1 ∩ V2. Note that X must have some element a

in V1 \ V2 and some element b in V2 \ V1. The minimality condition implies that if

a or b is exchanged for any element of W \X, the resulting set is not a circuit for

f . Suppose X = {x1, . . . , xn, a, b} and w ∈ W \X. Then for some integers s and t

we have 
f(w) = fX\{b}(w) + s · (w − a)

n∏
i=1

(w − xi)

f(w) = fX\{a}(w) + t · (w − b)
n∏
i=1

(w − xi)

Subtracting and applying the Exchange Formula (Lemma 6), we get

0 = c(a− b)
n∏
i=1

(w − xi) +

n∏
i=1

(w − xi)(s(w − a)− t(w − b)),

where c /∈ Z is the highest degree coefficient of fX(x). Dividing by
n∏
i=1

(w − xi),

we get 0 = c(a − b) + s(w − a) − t(w − b). Because the intersection of W and the

arithmetic progression a+ (b− a)Z is infinite, we can take w in this progression to

get a contradiction with c /∈ Z.
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The above theorem has applications to many topologies, including the following.

Definition 8. For S ⊆ Z the cofinite topology on S is the topology where the

non-empty open sets are the complements of finite sets.

Definition 9. The density one topology on N is the topology where the non-empty

open sets are the sets of density one: lim
x→+∞

|{n∈U |n≤x}|
|{n∈N|n≤x}| = 1.

Definition 10. The density one topology on Z is the topology where the non-empty

open sets are the sets of density one: lim
x→+∞

|{n∈U ||n|≤x}|
|{n∈Z||n|≤x}| = 1.

Corollary 4. For the cofinite and density one topologies on N and Z for all non-

empty open sets U we have the equality LIP(S, τ)(U) = LIP (U). This means that

the rings of LIP functions form a sheaf in these topologies.

Proof. Intersection of any two non-empty open sets in any of the above topolo-

gies has density one, so it must intersect infinitely with every infinite arithmetic

progression.

Corollary 5. Suppose P is the set of all primes in N, with the cofinite topology.

Then for all non-empty open sets U we have the equality LIP(S, τ)(U) = LIP (U).

This means that the rings of LIP functions form a sheaf in this topology.

Proof. The proof is a combination of Theorem 9 and Dirichlet’s Theorem on primes

in arithmetic progressions. Specifically, every arithmetic progression that contains

two primes must contain infinitely many primes.

Remark 12. The above example can be identified with the standard Zariski topology

on the set of the maximal ideals of Z. Instead of the cofinite topology we can also

consider (natural or Dirichlet) density one topology, with essentially the same proof,

but using a stronger version of Dirichlet’s Theorem.

All of the above topologies are not Hausdorff, moreover all non-empty open sets

are dense. A much more interesting example is given by Kirch topology on N. We

start with recalling its definition and some of its basic properties.

Definition 11. Kirch topology on N is the topology with the basis {a+dZ≥0}, where

a and d are natural numbers, gcd(a, d) = 1, and d is square-free.

Kirch topology makes N into a Hausdorff, connected, locally connected space.

In fact, every open set from the above basis is connected (cf. [8], Theorem 5, also

[13], Theorem 3.5). From Dirichlet’s Theorem on primes in arithmetic progression

we get that the set of all primes is dense in N in Kirch topology.

For the reader’s convenience, we state and prove the following easy lemma.
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Lemma 8. Suppose a1, a2, d1, and d2 are natural numbers. Then the arithmetic

progressions a1 + d1Z≥0 and a2 + d2Z≥0 intersect if and only if gcd(d1, d2) divides

a1 − a2. And when they do intersect, the intersection is of the form a3 + d3Z≥0,
where d3 = lcm(d1, d2).

Proof. Suppose first that there exists a ∈ a1 + d1Z≥0 ∩ a2 + d2Z≥0. Then a =

a1 + n1d1 = a2 + n2d2. Therefore a1 − a2 = n2d2 − n1d1, so gcd(d1, d2) divides

a1−a2. In the other direction, suppose gcd(d1, d2) divides a1−a2. Then by Bezout

Lemma, there exist integers n1 and n2 such that a1 − a2 = n2d2 − n1d1. This

implies a1 +n1d1 = a2 +n2d2, By replacing the pair (n1, n2) by (n1 +kd2, n2 +kd1)

for large enough k we get that the number above is positive, so the two arithmetic

progressions intersect.

To prove that the intersection is an arithmetic progression, suppose a3 is the

smallest element of the intersection. Then

a1 + d1Z≥0 ∩ a2 + d2Z≥0 ⊇ a3 + d1Z≥0 ∩ a3 + d2Z≥0 = a3 + lcm(d1, d2)Z≥0.

On the other hand, if a ∈ a1 + d1Z≥0 ∩ a2 + d2Z≥0, then a− a3 is divisible by both

d1 and d2, thus by lcm(d1, d2).

The next lemma is undoubtedly classical, but we have not seen it anywhere, and

it seems both fundamental and somewhat counter-intuitive.

Lemma 9. Suppose a ∈ a1+d1Z≥0 and b ∈ a2+d2Z≥0, where these arithmetic pro-

gressions intersect, and a 6= b. Then the intersection of these progressions intersects

infinitely with the progression generated by a and b (a+(b−a)Z≥0 or b+(a−b)Z≥0).

Proof. Suppose a = a1 + m1d1 and b = a2 + m2d2. We can assume that a < b.

From the previous lemma, gcd(d1, d2) divides a1 − a2. So it also divides b − a. If

the intersection of the progressions is a3 + d3Z≥0, we get that a3 = a + n1d1 =

b + n2d2 for some integer n1 and n2. So a3 − a is a multiple of d1. It also equals

a3 − b + (b − a) = n2d2 + (b − a), thus it is a multiple of gcd(b − a, d2). So it

is a multiple of gcd(b − a, lcm(d1, d2)). The result now follows from the previous

lemma.

Corollary 6. Suppose U1 and U2 are intersecting infinite arithmetic progressions

in N. Suppose f : U1 ∪ U2 → Z is a function, whose restrictions to U1 and U2 are

LIP. Then f ∈ LIP (U1 ∪ U2).

Proof. This is a combination of the previous lemma and Theorem 9.

One would like to extend the above corollary to prove that every locally LIP

function on a connected Kirch-open subset of N is LIP. However, it is unclear if this

is true. As a weaker version, one can hope that this is true for all basic arithmetic
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progressions, or, at least, for N itself. Most generally, we would like to know for

what connected Kirch-open sets U every locally LIP function on U is LIP on U . At

the moment, this question is wide open: we have no set U for which the answer,

positive or negative, is known.
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