
ON SOME POLYNOMIALS ALLEGEDLY RELATED TO

THE ABC CONJECTURE
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1. Introduction

The main goal of this paper is to bring your attention to the following
family of polynomials.

De�nition 1.1. For every a = b+c, where a, b, c are coprime natural
numbers the abc-polynomial

fabc(x) =
bxa � axb + c

(x� 1)2
:

I discovered these polynomials when pursuing a rather naive ap-
proach to the Masser-Oesterl�e's abc conjecture. The following argu-
ment describes the idea. It's extremely vague and I would be very
happy to hear any comments on how to make it more precise or why
it is doomed to fail.

Argument. Although the arithmetic abc conjecture is a great mys-
tery, its algebraic counterpart is a rather easy theorem. It looks like
it was �rst noticed by W. W. Stothers (cf [21]). Later on it was gen-
eralized and rediscovered independently by several people, including
R.C. Mason (cf. [12]) and J. Silverman (cf. [19]). This list might be
incomplete and I would appreciate any amendments to it.

Theorem. Suppose a+ b+ c = 0; where a; b; c are coprime, not all
constant, polynomials with coe�cients in a �eld K; charK = 0:
Suppose R(x) 2 K[x] is the product of all irreducible monic
polynomials from K[x] that divide abc: Then

degR � max(deg a;deg b;deg c) + 1:

There are several proofs of this theorem, all involving derivatives or
di�erential forms. I will discuss two of them, probably the easiest ones
and then try to translate them into the arithmetical setting.
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2 A.BORISOV, ABC-POLYNOMIALS

Proof 1. (Oesterl�e, cf. [14], Thm 2) Let's di�erentiate the equality
a(x) + b(x) + c(x) = 0 with respect to x: Then we get two equalities.�

a+ b+ c = 0
a0 + b0 + c0 = 0

Together they imply that���� a b
a0 b0

���� =
���� b c
b0 c0

���� =
���� c a
c0 a0

����
If we denote the above determinant by D(x); then we have the fol-

lowing.
1) If D(x) = 0; this would imply that ab0 = a0b; so aja0b; so aja0; so

a0 = 0 (because deg a0 < deg a:) Therefore, because charK = 0; a(x)
is a constant. As the same can be done for b and c and because we
assumed that a; b; c are not all constants, we conclude that D(x) 6= 0:
2) If, say, deg a = deg b = n � m = deg c; then

degD � deg(bc0 � cb0) � n+m� 1:

3) Suppose p 2 K[x] is a monic irreducible divisor of a(x). Sup-
pose k is the biggest integer such that pkja: Then pk�1ja0; so pk�1jD:
Considering this for all pjabc; we get that abc

R
jD: Therefore

n + n+m� degR � degD � n+m� 1;

so degR � n+ 1; the theorem is proven.

Remark 1.1. One can generalize the above theorem (with some extra
condition imposed) and the above proof to charK > 0:

Proof 2.(Stothers [21], Mason [12], Silverman [19] )
First of all, we may assume that K is algebraically closed. Suppose

as before that deg a = deg b = n � m = deg c: Consider the map

' : P 1 ! P 1 given by a(x)
c(x) : It has degree n: The total number of

points in '�1(fo;�1;�1g) is degR or degR+1 (if m < n:) Therefore
if D is the rami�cation divisor of ' (i.e. KP 1 = '�KP 1 + D) then
degD � 3n � (degR+ 1):
On the other hand, degD = 2(n�1) by the Hurwitz theorem. There-

fore
3n � degR � 1 � 2n� 2;

so degR � n+ 1; the theorem is proven.

Remark 1.2. The above proof can also be generalized to charK > 0
with the assumption that ' is separable. Also, the �rst P 1 can be
replaced by any other �xed curve, which means that one can prove a
similar result for a; b; c in any �nite extension of K[x]: (cf. [12].)
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What we did above was 100% rigorous, here comes the vague part
of the argument.
Both of the above proofs are hard to follow in the arithmetic case.

The reason is that there is no such map ' and no non-zero di�erenti-
ation. This is related to the fact that the set of integers is naturally
discrete so they don't have any non-trivial deformations. However, the
integers have QUANTUM deformations: for any positive integer a;
one denotes [a]q = qa�1 + : : :+ q + 1 where q is quantum parameter.
Other people call the same thing q�expansion. The classical integers
are obtained by specializing q to 1.
Let's try therefore to \quantize" the abc conjecture. In order to deal

with positive integers we will rewrite a+ b+ c = 0 as a = b + c; with
a; b; c positive, possibly switching a; b; and c and changing some signs.
The equality a = b+ c can then be quantized as [a]q = [b]q + [c]q � qb.
Another way to go is [a]q = [b]q � qc + [c]q. They yield basically the

same. Unfortunately, the extra q-factor can not be avoided.
Following Proof 1, consider

D =

������
b a

[b]q [a]q

������ =
b(qa � 1)� a(qb � 1)

q � 1
=
bqa � aqb + c

q � 1
:

Then D is obviously divisible by q � 1; which is actually something
similar to the geometric case, because there we didn't just deform, but
actually di�erentiated. And if we deformed, i.e. considered a(x+") etc.,

we would have had to divide by " at some point. So D(q)
q�1 corresponds

somehow to the determinant in the Proof 1. Note now that this is
exactly the abc-polynomial fabc(q):
This abc-polynomial also arises if one tries to follow Proof 2 as a

non-trivial factor of the derivative of [a]q
[c]q

:

�[a]q
[c]q

�0
=
qc�1

[c]2q

�bqa � aqb + c

(q � 1)2
�
:

So this is how these polynomials appear. The exact comparison
with the geometric case is de�nitely lost at this point. However the
abc-polynomials do satisfy some really nice properties.
First of all, it looks like they are always irreducible. This question

is naturally invariant under the switch of b and c because fabc(x) is
reciprocal to facb(x): In the case when it is irreducible, it is natural to
call the corresponding �eld the abc-�eld . It only depends on the triple
a = b + c and not on the order of b and c. It has degree a � 2 and is
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unrami�ed outside of abc, which follows from the direct calculation of
the discriminant of fabc(x) (Lemma 2.1.)
Although the author has no knowledge of any previous investigations

on abc-polynomials in the general case, the particular case c = 1 (or
b = 1) was studied before. First of all, Schinzel and Nicolas studied

the distribution of roots of fn;1;(n�1)(x) =
xn�nx+(n�1)

(x�1)2 in the complex

plane and obtained some remarkably precise results on it (cf. [13] ).
Also, M. Filaseta conjectured that f(n+1);n;1(x) = (xn + xn�1 + :::+

x+1)0 is always irreducible. He proved it for n being prime power (cf.
Theorem 3.1). T.Y. Lam conjectured that all the higher derivatives
(xn + xn�1 + :::+ x + 1)(k) are also irreducible. Using the methods of
this paper (with some signi�cant modi�cations) for any �xed k one can
prove the irreducibility for almost all (in the sense of density) n. These
results will appear elsewhere in a joint paper with Filaseta and Lam.
In this paper we prove that fabc(x) are irreducible for the density one
set of coprime triples (a = b+c):We also prove the same result for any
�xed b. And for \good" b that is if there is a prime p; such that pjjb;
we prove that all but �nitely many abc-polynomials are irreducible. To
be more precise, it su�ces to assume that c� b ln b:
I should mention here that the irreducibility results of this paper can

be viewed as a part of a more general problem of irreducibility of the
kernels of trinomials. It was extensively studied by Schinzel (cf. [16].)
From the older results on this topic I should mention that of Selmer
(cf. [18]).
The paper is organized as follows. Section 2 contains the results

about the distribution of roots of abc-polynomials in usual and p�adic
complex numbers. The key Section 3 is devoted to the irreducibility
results which rely heavily on the results of Section 2. Section 4 con-
tains some miscellaneous remarks and heuristics that I have gathered
in the unsuccessful attempt to link the abc-polynomials closer to the
abc conjecture from which they originated.
Notations. Throughout the paper if we write g(x)jfabc(x) we as-

sume that g 2 Z[x] and fabc(x)
g(x) 2 Z[x]: All signs \ � " and \ � "

assume absolute constants unless speci�ed otherwise. The notation
mjjn means, as usual, that mjn and gcd(m; n

m
) = 1:

Acknowledgments. I am taking this opportunity to thank my
Penn State adviser Yuri Zarhin for his interest and support of this re-
search in its embryonic stage. I also thank A. Schinzel for the reference
to Filaseta and Lam's work. I am especially thankful to M. Filaseta
whose numerous helpful comments and interest in this study helped
me push it a lot farther than what I originally thought possible. In



A.BORISOV, ABC-POLYNOMIALS 5

particular, Lemma 3.1 for k > 1 and the current version of Theorem
3.7 are due to him.

2. Distribution of Roots

First of all, let's calculate the discriminant of the abc-polynomial.

Lemma 2.1. The discriminant of fabc(x) is equal to 2aa�3ba�4ca�4:

Proof. First of all, fabc(1) =
1
2
� �bxa � axb + c

�00
(1) = abc

2
: Denote

by (u; v) the resultant of polynomials u and v: Then the discriminant
of fabc(x) is calculated as follows.

1

b
(f; f 0)=

1

b

�bxa � axb + c

(x� 1)2
;
abxb�1(xc � 1)(x� 1) � 2(bxa � axb + c)

(x� 1)3
�
=

=
1

b

�bxa � axb + c

(x� 1)2
;
abxb�1(xc � 1)(x� 1) � 2(bxa � axb + c)

(x� 1)2
� 2

abc
=

=
1

b

�bxa � axb + c

(x� 1)2
;
abxb�1(xc � 1)

(x� 1)

� 2

abc
=

=
2

a2c

�b(xc � 1)xb � c(xb � 1)

(x� 1)2
;
(xc � 1)

(x� 1)

�
cb�1 � (ab)a�2 =

=
2

ab2c
cb�1 � (ab)a�2

�b(xc � 1)xb

(x� 1)
� c

(xb � 1)

(x� 1)
;
(xc � 1)

(x� 1)

�1
c
=

= 2aa�3ba�4cb�3 � �c(xb � 1)

(x� 1)
;
(xc � 1)

(x� 1)
=

= 2aa�3ba�4cb�3cc�1 = 2aa�3ba�3ca�4:

Remark 2.1. The Mahler measure M of fabc(x) is at most 2a; which
can be shown by applying Mahler's result [10] to the corresponding
trinomial. Therefore the Mahler's estimate for the discriminant (cf.
[11]) implies that D(fabc(x)) � (a� 2)a�2 � (2a)2a�6 which is of about
the same magnitude as the exact value, especially if b is about the same
as c: This means that the roots are more or less uniformly distributed
around the unit circle. In Theorem 2.1 we make it much more precise
using the result of P. Erd}os and P. Tur�an. (cf. [5]).

Let's prove now that fabc(x) is the kernel of the corresponding trino-
mial (i.e. it has no roots on the unit circle.)

Lemma 2.2. 1) If bxa � axb + c = 0 and jxj = 1; then x = 1:
2)fabc(1) =

abc
2 :
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Proof. 1) If jxj = 1 then jbxaj = b; jaxbj = a; jcj = c: So in order for
x to be the root the above three numbers have to lie on the same ray. So
xb and xa have to be 1: This implies that x = 1 because gcd(a; b) = 1:
2) We actually proved it in the beginning of Lemma 2.1.

Remark 2.2. For any a = b + c with gcd(a; b; c) = d the same argu-

ment as above show that bxa�axb+c
(xd�1)2 is the kernel of the corresponding

trinomial. Probably these polynomials also deserve to be studied.

Lemma 2.3. For a = b + c; coprime, fabc(x) has exactly b � 1 roots
inside and c� 1 outside of the unit circle.

Proof. Instead of fabc(x) it's easier to consider the trinomial bxa �
axb + c itself. It has besides the roots of fabc(x) the double root at 1:
If we deform c by a very small negative real number, (�"); then the
polynomial g"(x) = bxa � axb + (c � ") will have simple roots close to
the roots of fabc(x) as well as two simple real roots near 1; one less and
one bigger than 1: This follows from the fact that

bxa � axb + c� " = �"+ abc

2
(x� 1)2 +O(x� 1)3

when x ! 1: As a result, for " small enough the number of roots of
g"(x) inside of the unit circle is exactly one plus the number of roots
of fabc(x) in there. Let's notice now that when jxj = 1; then

jaxbj = a = b+ c > b+ c� " = jbxaj+ jc� "j � jbxa + c� "j:
So, when x makes one revolution around 0 on the unit circle, axb makes
b revolutions and so does g"(x):
Therefore, g"(x) has b roots inside of the unit circle, and fabc(x) has

b�1: The remaining c�1 roots of fabc(x) are outside of the unit circle.

Lemma 2.4. If a is even then fabc(x) has no real roots. If a is odd it
has exactly one real root which is always negative.

Proof. If a is even, then b and c are odd (since a; b; and c are pair-
wise coprime) and Descartes' Rule of Signs implies that the polynomial
bxa � axb + c has at most and, hence, exactly two positive real roots
corresponding to the two roots at 1; and no negative real roots. Simi-
larly, if a is odd, then Descartes' Rule of Signs implies that bxa�axb+c
has the two positive roots at 1 and no other positive roots and exactly
one negative real root. The lemma follows.

The following lemma is a trivial observation that will be needed in
Theorem 3.7.
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Lemma 2.5. If a � 4 then for every root x = rei' of fabc(x) we have
r = jxj < 2:

Proof. First of all, if fabc(x) = 0 then

bxa � axb + c = 0;

so
xc =

a

b
� c

bxb
:

If r > 1 then

rc � a

b
+
c

b
= 1 +

2c

b
:

If c < b then we estimate r < 1 + 2
b
; as�

1 +
2

b

�c
= 1 +

2c

b
+R;

where the remainder term R is obviously positive. In this case, because
b > a

2 ; r < 1 + 4
a
� 2:

If c > b; then we estimate

r � �1 + 2c

b

�1
c � �2c+ 1

� 1
c < 2

because c � 3 for a � 4:

Lemma 2.6. For every " > 0 there exists some positive constant A(");
such that for every x = rei'; which is a root of fabc(x); its absolute value
r satis�es the inequality jr � 1j < (1 + ") � 2

a
ln(2a) if a � A("):

Proof. It's clearly enough to prove the upper bound due to the
symmetry of the problem. We proceed as in the previous lemma, so
we get

r � �1 + 2c

b

� 1
c :

If c < b the bound is even better than what we need.

If c > b; r � �1 + 2c
b

� 1
c implies

ln r � 1

c
ln
�
1 +

2c

b

� � 1

c
ln(2c+ 1):

So if c� 1 (\�" depends on ") we have

r < 1 + (1 +
"

3
) � 1
c
ln(2c + 1) < 1 + (1 +

"

2
) � 1
c
ln(2c);

So if a� 1 (\�" depends on ") then

r < 1 + (1 + ") � 2
a
ln(2a);

which proves the lemma.
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The following result is due to P. Erd}os and P. Tur�an.

Theorem. (P. Erd}os { P. Tur�an, [5]) Suppose the roots of the
polynomial f(x) = anx

n + :::+ a1x+ a0 are denoted by xk = rke
i'k ;

k = 1; 2; :::; n:
For every 0 � ' �  � 2� denote by Nf ('; ) the number of xk such
that ' � 'k �  : Then

��Nf('; )�  � '

2�
n
�� < 16

s
n ln

ja0j+ ja1j+ :::+ janjp
ja0anj

:

Remark 2.3. Instead of the Erd}os-Tur�an theorem one can also use a
somewhat similar result of Bilu ([2]), which in the case of abc�poly-
nomials gives a little bit worse and ine�ective bound.

Now we apply the above theorem to fabc(x).

Theorem 2.1. In the above notations for any ';  ��Nfabc('; )�
 � '

2�
n
�� � 12

p
n ln(n+ 1);

where n = a� 2 = deg fabc(x).

Proof. By the Erd}os-Tur�an theorem applied to bxa � axb + c we
have

��Nfabc('; )�
 � '
2�

n
�� � ��Nbxa�axb+c('; )�

 � '

2�
(n+ 2)

��+ 2 <

< 16

s
n ln

2ap
a� 1

+ 2:

One can easily check that, say, for n � 100

16

s
n ln

2ap
a� 1

+ 2 < 12
p
n ln(n + 1);

when a = n+ 2: And for n < 100 the theorem is true anyway because
12
p
n ln(n + 1) > n:

Remark 2.4. In the case b = 1 there is a much more precise result of
Schinzel and Nicolas (cf. [13]). It would be very interesting to extend
it to the general case.
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Let's consider now the distribution of roots of fabc(x) in p�adic com-
plex �elds for pjabc: First of all, let's decompose fabc(x) modulo primes
that divide either a; b; or c:

Lemma 2.7. 1) For every pja

fabc(x) � b
�xa1 � 1

x� 1

�q � (x� 1)q�2 mod p;

where q = pk is the maximum power of p dividing a and a1 =
a
q
:

2) For every pjb

fabc(x) � �c
�xb1 � 1

x� 1

�q � (x� 1)q�2 mod p;

where, similar to above, q = pk; b = qb1; (b1; p) = 1:
3) For every pjc

fabc(x) � bxb
�xc1 � 1

x� 1

�q � (x� 1)q�2 mod p;

where q = pk; c = qc1; (c1; p) = 1:

Proof. The proofs of all three statements are straightforward. Let's
prove just one of them, say (3). The A � B below means that A�B =
p �U(x); where U(x) is a rational function with integer coe�cients and
monic denominator.

fabc(x) =
bxa � axb + c

(x� 1)2
� bxa � axb

(x� 1)2
� bxb

xc � 1

(x� 1)2
=

= bxb � x
c1q � 1

(xq � 1)
� x

q � 1

(x� 1)2
� bxb � �xc1 � 1

x� 1

�q � (x� 1)q�2:

This proves the desired formula.
Because of the above decomposition, it's very natural to consider

the roots in p-adic complex �eld as coming in clusters around the a1-th
(or b1-th, c1-th) roots of unity and 0 (for pjc) and \1" (for pjb). The
p�adic distance between the above roots of unity is obviously equal to
1; so the clusters don't have common roots.

Lemma 2.8. Suppose pja; a = qa1; (p; a1) = 1; q = pk: Suppose we
�x a p-adic complex �eld with valuation v, v(p) = 1. Then for every
� 6= 1; �a1 = 1; we have exactly p roots xi of fabc(x) with v(xi � �) =
1
p
; exactly p2 � p roots with v(xi � �) = 1

p2�p ; exactly p3 � p2 roots

with v(xi � �) = 1
p3�p2 ; and so on, until exactly pk � pk�1 roots with

v(xi � �) = 1
pk�pk�1 :
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Proof. The roots of fabc(x) that are inside of the unit ball with
the center � 6= 1; �a1 = 1; are the roots of bxa � axb + c; because
v(�� 1) = 0: Consider the polynomial g(x) = b(� +x)a� a(� +x)b+ c:
Its roots are exactly the di�erences between roots of fabc(x) and �.

g(x) = (b�a � a�b + c) +

aX
j=1

xj
�
b

�
a

j

�
�a�j � a

�
b

j

�
�b�j

�
So

g(x) = a(1� �b) +
aX

j=1

xj
�
b

�
a

j

�
�a�j � a

�
b

j

�
�b�j

�
So, if g(x) = u0 + u1x+ u2x

2 + � � �+ uax
a; then v(u0) = k:

For 1 � j � a if v(uj) < k or v
��

a
j

��
< k then v(uj) = v

��
a
j

��
It's a standard and easy to check fact that
v
��

a
j

��
= v
�
a
j

�
for 1 � j � pk:

So, for any 0 � n < k the least j such that v(uj) � n is j = pk�n:
Combined with the Newton Polygon method (cf. N. Koblitz, [9],

Chapter 4) this proves the lemma.

Lemma 2.9. Suppose pja; a = pka1; (a1; p) = 1: Then there are
exactly p � 2 roots xi of fabc(x) with v(xi � 1) = 1

p�2 (no such roots

if p = 2), also exactly p2 � p roots with v(xi � 1) = 1
p2�p ; : : : exactly

pk � pk�1 roots with v(xi � 1) = 1
pk�pk�1 :

Proof. Similar to the lemma above, consider

g(x)= fabc(1+x)=
b(1 + x)a � a(1 + x)b + c

x2
=

aX
j=2

xj�2
�
b

�
a

j

�
�a
�
b

j

��
If g(x) = u0 + u1x+ u2x

2 + � � �+ ua�2x
a�2; then for 1 � j � pk � 2

v(uj) = v
�
b

�
a

j + 2

��
= v(

a

j + 2
);

whenever at least one (consequently all) of the above three numbers is
less than k:
Notice also that v(u0) = k if p 6= 2 and v(u0) = k � 1 if p = 2:
The rest of the proof is absolutely similar to that of the above lemma.

Lemma 2.10. Suppose pjc; c = pkc1; (c1; p) = 1: Then there are
exactly b roots xi of fabc(x) such that v(xi) =

k
b
: The remaining c � 2

roots are located in clusters around c1-th roots of unity, exactly as for
pja:
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Proof. When we look for xi; such that v(xi) > 0 it's enough to
consider g(x) = bxa � axb + c:
We have v(c) = k; v(a) = 0; and the �rst statement follows easily

from the Newton Polygon method. The proof of the second one is
completely parallel to the two lemmas above and is omitted for brevity.

Lemma 2.11. Suppose pjb; b = pkb1; (b1; p) = 1: Then there are ex-
actly c roots with v(xi) = �k

c
: The remaining b� 2 roots are located in

the same way as for pja:
Proof. Let's just recall that the roots of fabc are reciprocal to the

roots of facb: Then everything follows from the previous lemma.

Remark 2.5. One can make some more precise statements regarding
the distribution of xi in p-adic complex numbers. For instance, if one
looks at the roots not from �; but from any a�th (b�th, c�th) root of
unity, or one of xi-s, the picture will be about the same. I don't want
to go into the details because I haven't found any applications for it
yet.

3. Irreducibility results.

We start with some relatively simple irreducibility results and pro-
ceed gradually to the harder and stronger ones.

Theorem 3.1. Suppose c = 1 and b = pk; where p is a prime. Then
fabc(x) is irreducible.

Proof. In p-adic complex plane there is just one root xi of fabc(x)
with v(x) < 0: For all the rest v(x) = 0: So if fabc(x) = g1(x)�g2(x) then
one of gi; say g1; has the leading coe�cient �1: But this is impossible
as all the roots lie strictly inside of the unit circle (Lemma 2.3).

Remark 3.1. This result is due to M. Filaseta. Together with the
�rst part of the next theorem is probably all that was known about the
irreducibility of abc-polynomials prior to this paper. It is interesting
that I don't know how to generalize it to the arbitrary c because the
methods of this paper work well only if a, b; and c are not too far from
being square-free.

Theorem 3.2. For any a = b + c; coprime, fabc(x) is irreducible if
a = p or a = 2p; where p is an odd prime.

Proof. If a = p then fabc(1 + x) is Eisenstein, so we are left with
the case a = 2p: In p-adic complex plane, we have p roots xi of fabc(x)
with v(xi+1) = 1

p
and p� 2 roots xi of fabc(x) with v(xi� 1) = 1

p�2: If

f(x) = g(x) � h(x) then, obviously, one of the polynomials g; h has to
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contain all roots from one cluster and one has to contain all roots from
another one. This implies that, say, deg g = p; deg h = p� 2: But by
Lemma 2.4 for even a fabc(x) has no real roots. So deg g; deg h have
to be even, contradiction.

Theorem 3.3. For any a = b + c; coprime, the abc-polynomial is ir-
reducible if a = pl, where p and l are distinct primes and the order of
p in (Z=lZ)� doesn't divide the number N; which is the integer from 1
to l de�ned by the property N � �2

p
mod l:

Proof. Consider the roots of fabc(x) in p-adic complex �eld. They
come in clusters around l-th roots of unity �l: If �l 6= 1 then there
are exactly p roots around it, on equal distance, v(xi � �) = 1

p
: If

fabc(x) = g(x)h(x); g; h are with integer coe�cients, then v(g(�l)) is
integer, because p is unrami�ed in Z(�l): Therefore if g contains one
root from the cluster of �l it contains all of them. The same is true if
�l = 1: Therefore, either deg g � 0 mod p; deg h � �2 mod p or the
other way around. The same is obviously true for l instead of p:
As deg g; deg h are both less than a� 2; we can assume that

deg g � 0 mod p; deg g � �2 mod l;

deg h � �2 mod p; deg h � 0 mod l:

This clearly leaves just one choice for deg g : deg g = pN; where
N is the number from the statement of this theorem.
Now let's notice that we can actually be a little bit more precise. As

g(x) doesn't contain the roots around 1; and contains all or none of
the roots from any of the clusters, its reduction modulo p has to be of
the form u(x)p; where u(x) is some polynomial dividing xl�1

x�1 : But it is

an elementary fact from the theory of cyclotomic �elds that xl�1
x�1 splits

modulo p into the product of prime factors of same degree k; where k
is the order of p in (Z=lZ)�: As deg u = N; k must divide N: But we
assumed that it doesn't, so the theorem is proven.

Remark 3.2. It looks like for most pairs (p; l) either (p; l) or (l; p)
satis�es that extra condition from the above theorem. However, it
is not the case, say, for p = 5; l = 31: So the above theorem is not
applicable for a = 155:

Theorem 3.4. If c = 2; then fabc(x) is irreducible.

Proof. By Lemma 2.10, in 2-adic �eld we have b roots xi of fabc(x)
with v2(xi) =

1
b
: So fabc(x) is irreducible (actually, Eisenstein).
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Theorem 3.5. If c = p; p is odd prime, a is even, then fabc(x) is
irreducible.

Proof. In p-adic complex �eld we have b roots xi of fabc(x) with
vp(xi) = 1

b
and p � 2 roots with vp(xi � 1) = 1

p�2
: So if fabc(x) =

g(x) � h(x) then deg g = b; deg h = p � 2 or the other way around.
But, as in Theorem 3.2, for even a the degrees of g and h have to be
even, contradiction.

Remark 3.3. The above theorems are just the examples of irreducibil-
ity results that one can get from knowing the p-adic distribution of roots
of fabc(x) for pjabc: So far it was just a density zero set of really good
triples. The following theorem proves the irreducibility for the positive
density set of triples abc:

Theorem 3.6. If b and c are both square-free and greater than 1; then
fabc(x) is irreducible.

Proof. By the obvious symmetry of the problem, we can assume
that b > c: Then consider any prime pjc: In p-adic complex numbers
there are exactly b roots of fabc(x) with p�adic valuation 1

b
: If f(x) =

g(x)h(x); deg g � deg h; then g has to contain all these roots. As this
is true for any pjc; h has constant term �1: Consider now any prime
pjb: There are, again, exactly c roots of fabc(x) with p-adic valuation
�1

c
: Either g or h must contain them all. If this is h; then deg h � c

which contradicts the equality deg g+deg h = a� 2 (< b+ c): So, it is
g again. As this is true for all pjb; h(x) is monic. As h(x) only contains
roots with 0 p-adic valuations for all pjbc; we can apply the argument
of the Theorem 3.3 to show that the residue of deg h(x) modulo any
such p is 0 or �2: This implies that

bc
��deg h � (deg h + 2):

Therefore deg h � (deg h + 2) � bc > c2; so deg h > c � 2: But this
contradicts to the fact that

deg h(x) = a� 2� deg g(x) � a� 2� b = c � 2:

Remark 3.4. Unfortunately, the above argument doesn't work in the
case c = 1 as we have to have at least one prime dividing c to conclude
that deg g(x) � b:

Before going any further let's prove the following three lemmas.

Lemma 3.1. As always, we have a = b + c, coprime. Suppose pja
(or pjb or pjc) and � 6= 1 is a nontrivial a1�th (or b1�th or c1�th)
root of unity (in the notations of Lemmas 2.8-2.11.) Consider its clus-
ter of roots of fabc(x) in p�adic complex numbers. Suppose now that
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g(x)jfabc(x). Then the number of roots of g(x) from the cluster of � is
always divisible by p.

Proof. We will consider the case pja; because the same proof works
in the other two cases as well. Suppose a = pk � a1. It follows from the
proof of Lemma 2.8 that the Newton Polygon for F (x) = fabc(�+x) has
k non-horizontal edges of length p and pi(p� 1), i = 1; 2; :::; k� 1 with
the slopes 1

p
and 1

pi(p�1)
correspondingly. Because the corresponding

cyclotomic �eld is unrami�ed at p, the Newton Polygon for G(x) =
g(� + x) has only integral vertices. Because G(x)jF (x), all edges of
G are edges or parts of edges of F: But there are no integral points
inside of the non-horizontal edges of the Newton Polygon for F so the
non-horizontal part of the Newton Polygon for G consists of the whole
edges of the one for F . Therefore the number of roots of g(x) near � is
a sum of some numbers from the set fp; pi(p�1)ji = 1; 2; :::; k�1g: All
of them are divisible by p; which completes the proof of the lemma.

Remark 3.5. One can also formulate and prove a similar result for
the cluster of 1: We are not going to do it here because we are not
going to use it.

Lemma 3.2. Suppose a = b + c is a coprime triple and g(x)jfabc(x):
Then we have the following.

1) If pjjb (or, more, generally, if pkjjb; gcd(k; c) = 1) then g(x)
contains all or no roots xi of fabc(x) with vp(xi) < 0:

2) If pkjjb and deg g(x) < c
gcd(k;c)

then g(x) contains no roots xi with

vp(xi) < 0: As a result, if deg g(x) < c
log2 b

then g(x) is monic. (If b = 1

we treat c
log2 b

as +1; so the above condition is always satis�ed).

Proof. If pkjjb; k � 1; then there are c such roots xi of fabc(x) with
vp(xi) = �k

c
: If N of them are the roots of g(x) then Nk

c
2 Z: This

implies that in (1) N is 0 or c and that in (2) N = 0: The second
conclusion in (2) is because gcd(k; c) � k � log2 b:

Lemma 3.3. Suppose g(x) is a polynomial with integral coe�cients
which divides fabc(x). We denote by Al the following rational number
associated with g(x).

Al =
X

g(xi)=0

(1 � xi)xli:

a) Suppose pja. Then for every integer l � 0 we have pjAl (i.e.
vp(Al) > 0).

b) 1) Suppose pjjb. Then for every integer l; such that 1 � l � c� 2;
we have pjAl:
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2) Suppose fabc(x) = g(x) � h(x), pjjb (or, more generally, pkjjb;
gcd(k; c) = 1.) Then p always divides at least one of the two numbers
A0(g) and A0(h):

c) 1) Suppose pjc. Then for any integer l > 0 we have pjAl:
2) Suppose fabc(x) = g(x) � h(x), pjjc (or, more generally, pkjjc;

gcd(k; b) = 1.) Then for each l � 0; p always divides at least one of
the two numbers A0(g) and A0(h):

Proof. a) By Lemma 3.1 the number of roots of g(x) in every cluster
of � 6= 1 is divisible by p: Therefore

Al =
X
� 6=1

X
g(xi)=0

vp(xi��)>0

(1� xi)x
l
i +

X
g(xi)=0

vp(xi�1)>0

(1 � xi)x
l
i �

�
X
� 6=1

#fxi : vp(xi � �) > 0g � (1 � �)� l � 0;

where \� � �" means that vp(� � �) > 0:
b) 1) By Lemma 3.2 g(x) contains all or no roots xi with vp(xi) < 0:

If it contains no such roots then as in (a) vp(Al) > 0: If it contains all

such roots then vp(Al(fabc(x))�Al(g)) > 0 because fabc(x)
g(x) contains no

such roots. Let's notice now that

Al(fabc(x)) =
X

fabc(xi)=0

(1 � xi)x
l
i =

X
bxai�axbi+c=0

(1 � xi)xli:

This last number is equal to 0 for 1 � l � c � 2 because all the
elementary symmetric functions �1; :::; �c�1 are zeroes and so are the
sums of the powers

P
xli and

P
xl+1
i for 1 � l � c� 2:

2) Again, by Lemma 3.2 either g(x) or h(x) contains no roots xi with
vp(xi) < 0: So either Al(g) or Al(h) is divisible by p as in (a).
c) 1) The roots xi with vp(xi) > 0 cause no trouble for l � 1 because

vp
�
(1� xi)xli

�
> 0: So we can prove that pjAl as in (a).

2) Lemma 3.2 applied to facb(x) and reciprocals of g(x) and h(x)
implies that either g(x) or h(x) contains no roots with vp(x) > 0: The
rest is as in (a).

Theorem 3.7. Suppose b = 1 and a � 3 is square-free. Then fabc(x) =
fa;1;a�1(x) is irreducible.

Proof. Suppose f(x) = g(x) � h(x): Consider two numbers, A =
A0(g) and B = A0(h): Because b = 1 they are both integers. By the
Lemma 3.3 and because a is square-free they are both divisible by a:
By Lemma 2.5 for every root xi of fabc(x) jxij < 2:
Therefore Re(xi) < 2; Re(1 � xi) > �1:
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So,

A =
X

g(xi)=0

(1 � xi) > �deg g > �a

and the same for B:
Because

A+B = A0(fabc(x)) =
X

bxai�axbi+c=0

(1 � xi) = a;

the only possibility (up to the switch of g and h) is that A = a;B = 0:
Because b = 1; for every prime pjc we have just one root of fabc(x)

in p�adic complex numbers with vp(xi) > 0: If g(x) doesn't contain
it then as in the proof of Lemma 3.3(a) we have pjA: Because A = a
and a � 1 mod p we conclude that for every pjc g(x) contains the
corresponding root. But this implies that h(x) doesn't contain it, so
the constant term of h(x) is �1: This is impossible because by Lemma
2.3 all the roots of fabc(x) are outside of the unit circle on the complex
plane.

Remark 3.6. The above theorem proves irreducibility for a positive
density set of a: I �rst proved it under the additional assumption that
c = a � 1 is also square-free). By arguing as in the beginning of the
next theorem, one can also prove that fabc(x) is irreducible if b = 1 and

�Y
pja
p
�2 � Y

pja�1

p > 9a2

with 9 being a really lazy constant.
One can also prove that the right hand side of the above inequality

can be replaced by C �a log2 a where C is some small e�ective constant.
This can be done by considering the sums of xi � 1

xi
instead of 1� xi:

This will be included in our joint paper with M. Filaseta and T.Y. Lam
which is currently in preparation.
The remaining part of this paper is in fact motivated by this joint

work. In particular, Theorem 3.10 and its Corollary may be viewed as
generalizations of the special case b = 1 which was �rst obtained as
part of this joint work.

Remark 3.7. The following theorem is our main result. It proves that
fabc(x) is irreducible for the set of coprime triples having density one
(which will be justi�ed in Theorem 3.9.)
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Theorem 3.8. We consider all coprime triples a = b+ c, b < c: Then
for every " > 0 if a is big enough, and�Y

pja
p
�2�Y

pjjb
p
��Y

pjjc
p
�
> (4 + ")a2b(1)

then fabc(x) is irreducible.

Proof. We will assume in the proof that " < 1.
Suppose fabc(x) = g(x) � h(x): Consider A = A0(g) and B = A0(h)

(in the notations of Lemma 3.3). Then if the leading coe�cient of g(x)
is b1 and the leading coe�cient of h(x) is b2 then b1 � b2 = b and A
and B are rational numbers with the denominators dividing b1 and b2
correspondingly. Also, by Lemma 3.3 if pja then pjA and pjB and if
pjjb or pjjc then p divides at least one of the numbers A;B. Therefore,

b � A � B 2 Zand it is divisible by
�Q
pja
p
�2� Q

pjjb
p
�� Q

pjjc
p
�
: On the other

hand, by Lemma 2.6 if a� 1 then

jAj � deg(g) � (1 + max(jxij)) � (2 +
"

5
) � deg(g):

The same is true for h. Because deg(g) and deg(h) are both less than
a;

b �A �B < (2 +
"

5
)2 � a2b < (4 + ") � a2b

The condition (1) now implies that AB = 0: We may and will assume
that A = 0: To complete the proof of the theorem we �rst prove the
following proposition which says that if A = 0 then deg(g) is small.

Proposition 3.1. In the above notation if A = 0 then for a� 1

deg(g) < 28
p
a ln a:

Proof. The basic idea is that the roots xi of fabc(x) are somewhat
uniformly distributed around the unit circle so Re(1 � xi) is almost
always positive and when it is negative it's rather small in absolute
value. To be more precise, Lemma 2.6 implies that for a big enough
ri < 1 + 3 ln a

a
; where xi = ri � e'i; �� < 'i � �:

Therefore Re(1 � xi) > �3 ln a
a
:

Also, it follows from this that if j'ij > 4
p
lnap
a

then for a� 1 cos'i <

(1� 7 lna
a

): In this case

Re(1� xi) = 1� ri cos'i > 1 � (1 +
3 ln a

a
)(1 � 7 ln a

a
):

This is greater than 3 lna
a

for a� 1.
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By the Theorem 2.1 the number of roots of fabc(x) with j'ij � 4
p
lnap
a

is bounded by

8
p
ln a

2�
p
a
n+ 12

p
n ln(n + 1) < 14

p
a ln a:

So if deg g(x) � 28
p
a ln a then for more than half of the roots of

g(x) we have j'ij > 4
p
ln ap
a

and by the above calculations A = Re(A) is

positive. Because we assumed that A = 0; the proposition is proven.

Let's now continue to prove the theorem. Because of the above
proposition, fabc(x) is divisible by a polynomial g(x) of degree less

than 28
p
a ln a: By taking an irreducible divisor of g(x) we may and

will assume that this g(x) is irreducible. By doing this we may loose
the A = 0 condition but we don't care about it anymore.
There are at least two di�erent ways to prove that this is impossi-

ble. One is to use some results on Lehmer's conjecture as in Theorem
3.11. Instead of doing this let me propose a self-contained proof using
Lemmas 3.2 and 3.3 above.
By Lemma 3.2 g(x) is monic, because for a� 1

deg(g) � a

3 log2 a
<

c

log2 b
:

Consider Al = Al(g) as in Lemma 3.3 for l = 1; 2; :::;deg(g): Because
g(x) is monic, Al is an integer for every l. Also, for every l as above
Lemma 3.3 implies that Al is divisible by

�Q
pja
p
�
and by

�Q
pjc
p
�
. It is

also divisible by
� Q
pjjb
p
�
because deg(g) + 1 < a

3
� c� 2 for a� 1:

The condition (1) implies that�Y
pja

p
��Y

pjjb
p
��Y

pjc
p
�
>
p
(4 + ")a2b > 2a:

On the other hand,

Al � deg(g) � �max(rl+1) + max(rl)
� �

� 2 deg(g) � (1 + 2c

b
)
l+1
c � 56

p
a ln a(1 + 2a)

M ln ap
a ;

whereM is some constant. The second inequality here comes from the
estimate in the proof of Lemma 2.5.
Because

ln(1 + 2a)
M ln ap

a =M � ln a � ln(1 + 2a)p
a

� 1;



A.BORISOV, ABC-POLYNOMIALS 19

we have that

Al �
p
a ln a:

This implies that for a� 1 allAl = 0 for those l which we are interested
in now. But this means that if x is the (abstract) root of g(x) and
K = Q[x] we have Tr

�
(1� x) � xl� = 0 for all l = 1; 2; :::;deg(g): This

implies that (1� x) is in the kernel of the trace form of K because xl;
l = 1; 2; :::;deg(g) form a Q�basis of K: Because this form is always
non-degenerate (cf., e.g. [1]), 1 � x = 0; x = 1: As this is clearly
impossible, the theorem is proven.

Remark 3.8. The constant (4 + ") in the above theorem can be im-
proved to (2 + ") by noticing that deg(g) + deg(h) = a� 2 and that A
and B cannot be too negative as a corollary of Theorem 2.1. One can
also make the a� 1 condition above explicit, for any �xed ", but I am
not sure that it's worth the work and it would probably hide the basic
ideas of the proof.

Theorem 3.9. The number of coprime triples a = b + c; b < c; with
a � A which satisfy �Y

pja
p
�2�Y

pjjb
p
��Y

pjjc
p
�� a2b(2)

is bounded by C �A 20
11 lnA where C is some constant independent of A:

Proof. Let's decompose a = a1 � a22; where a1 is square-free. ThenQ
pja
p � a1: Also, we can decompose (not uniquely) b = b1 � b22 � b33 and

c = c1 � c22 � c33; where b1 =
Q
pjjb
p and c1 =

Q
pjjc
p: Then

a2bc = a21 � a42 � b1 � b22 � b33 � c1 � c22 � c33
and because by (2) a21b1c1 � a2b; we get

a42 � b22 � b33 � c22 � c33 � c� a:

It follows that either a2b2 � a2=11, a2c2 � a2=11, or b3c3 � a1=11. The
argument for the �rst two of these situations is similar, so we only give
here the argument when a2b2 � a2=11 and b3c3 � a1=11. Suppose �rst
that a2b2 � a2=11. Then the number of triples (a; b; c) with a = b + c
is bounded by

X
1�a2�A1=2

#fa 2 [1; A] : a22jag
X

1�b2�A1=2

#fb 2 [1; A] : b22jb; b� (a2b2)
11=2g �
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�
X

1�a2�A1=2

A

a22

� X
1�b2�A2=11=a2

(a2b2)11=2

b22
+

X
A2=11=a2<b2�A1=2

A

b22

�
�

�
X

1�a2�A1=2

A

a22
�A1�(2=11)a2 �

X
1�a2�A1=2

A2�(2=11)

a2
� A20=11 lnA:

For b3c3 � a1=11 the number of triples (a; b; c) with a = b + c is
bounded by

X
1�b3�A1=3

#fb 2 [1; A] : b33jbg
X

1�c3�A1=3

#fc 2 [1; A] : c33jc; c� (b3c3)
11g �

�
X

1�b3�A1=3

A

b33

� X
1�c3�A1=11=b3

(b3c3)11

b33
+

X
A1=11=b3<c3�A1=3

A

b33

�
�

�
X

1�b3�A1=3

A

b33
�A1�(2=11)b23 �

X
1�b3�A1=3

A2�(2=11)

b3
� A20=11 lnA:

Combining the above, we get that the number of coprime triples
(a; b; c) as in the theorem is O(A20=11 lnA).

Corollary 3.1. The set of coprime triples where fabc(x) is reducible
has density zero in the set of all coprime triples.

Proof. It follows from Theorems 3.8 and 3.9 and the well-known
fact that the number of coprime pairs (a; b) where a > b with a � A

is asymptotically equivalent to 6
�
� A2

2 : According to Donald Knuth (cf.
[8], p. 324) this fact is due to L. Dirichlet.

Now let's consider what happens if one �xes b: When b = 2 then
fabc(x) is always irreducible by Theorem 3.4. Also, Theorem 3.5 gives
a partial result for b being an odd prime. The following theorem (with
the corollary after it) shows that for any �xed b the abc-polynomial is
irreducible for the set of a's having density one. Please note that in
the following theorem and its corollary some of the implied constants
in \� " and \� " depend on b:

Theorem 3.10. If b is �xed, then the number of coprime triples a =
b+ c with a < A and �Y

pja
p
�2�Y

pjjc
p
�� a2(3)

is at most C(b) �A 13
15 ; where C(b) is some constant depending on b:
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Proof. As in Theorem 3.9, let's decompose a = a1a
2
2 and c = c1c

2
2c

3
3.

Because a2c = a21a
4
2c1c

2
2c

3
3 and (3) implies that a21c1 � a2; we get

a42c
2
2c

3
3 � c� a:

It follows that either a2 � a
2
15 ; c2 � a

2
15 ; or c3 � a

1
15 : The argument

for the �rst two of these situations is similar so we only give here the
argument when a2 � a

2
15 and c3 � a

1
15 : Suppose �rst that a2 � a

2
15 :

Then the number of triples (a; b; c) with a = b+ c is bounded by

X
1�a2�A

#fa : (a22ja; a� a
15
2
2 ; a � A)g �

�
X

1�a2�A
2
15

�a 15
2
2

a22

�
+

X
A

2
15�a2�A

�A
a22

�� A
13
15

For c3 � a
1
15 the number of triples (a; b; c) with a = b+ c is bounded

by

X
1�c3�A

#fc : (c33jc; c� c
1
5
3 ; c � A)g �

�
X

1�c3�A
1
15

c123 +
X

A
1
15�c3�A

�A
c33

�� A
13
15

Combining together all the estimates, the theorem is proven.

Corollary 3.2. For any �xed b fabc(x) is irreducible for a set of natural
numbers a coprime to b having density one.

Proof. It follows from Theorems 3.8 and 3.10 and a trivial obser-
vation that #fa : a < A; gcd(a; b) = 1g � A:

If b is good in the sense that there is a prime p which divides it in
exactly the �rst power, then the following theorem proves that all but
�nitely many abc-polynomials are irreducible. It also provides a rather
small bound for the possible exceptions. I should also mention that
almost all (in the sense of density) b's are good in the above sense.

Theorem 3.11. Suppose p is a prime, pjjb: Suppose also that c �
b � max(�; log2 b), where � = 11:21685874::: is such that �� = 1 + 2�;
where �3 � � � 1 = 0: Then fabc(x) is irreducible.

Proof. Suppose fabc(x) = g(x) � h(x): Then as in Lemma 3.2 one of
the polynomials g(x), h(x) contains none of c roots xi of fabc(x) with
vp(xi) < 0: We may assume this is g(x): Then deg g(x) � b� 2:
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Now for every other prime ljb g(x) also contains no roots xi with
vl(xi) < 0 because by our assumption deg g � b � 2 < b < c

log2 b
:

Therefore g(x) is a monic polynomial. If its constant term is not �1
then at least one of its roots has absolute value of at least 2

1
d ; where

d = deg(g): If its constant term is �1 one can still conclude that one of

its roots has absolute value of at least �
1
d ; with � as above by applying

the Smyth's result on the Lehmer's conjecture (cf. [20]). To apply this
result we just need to check that g(x) is not reciprocal. (As far as I
know for the reciprocal polynomials the Lehmer's conjecture is not yet
proven although there are some (just a little bit) weaker bounds (cf.
[4], [15])). If g(x) was reciprocal this would have meant that for some
x 6= 1 both bxa� axb+ c and cxa� axc+ b are equal to zero. Therefore

a(xb � 1)(xc � 1) = (bxa � axb + c) + (cxa � axc + b) = 0

Therefore jxj = 1 which is impossible by Lemma 2.2.
As a result, we get a root x of g(x) and therefore of fabc(x) with

jxj � �
1
d > �

1
b But by the estimate in the proof of Lemma 2.5

jxj � �1 + 2c

b

� 1
c :

Combining the above, we get that

�
c
b <

�
1 +

2c

b

�
:

Therefore for � as in the theorem c
b
< �: The theorem follows.

4. Miscellaneous and Heuristics

First of all, combining the results of Chapter 3 one can easily check
that fabc(x) is always irreducible for all a � 24 except of f9;5;4 (and f9;4;5;
of course) and f16;15;1: Let us prove separately their irreducibility.

Theorem 4.1. The polynomial f9;5;4(x) is irreducible.

Proof. Suppose f9;5;4(x) = g(x) � h(x): In 5�adic complex �eld we
have 4 roots xi of f9;5;4 with v5(xi) = �1

4 and 3 roots with v5(xi�1) = 1
3 :

So, deg g = 3 or deg g = 4: On the other hand, in 2-adic complex �eld
we have 5 roots of f9;5;4 with v2(xi) =

2
5 and 2 roots with v2(xi�1) = 1

2 :
This implies that deg g = 5 or deg g = 2; contradiction.

Theorem 4.2. The polynomial f16;15;1(x) is irreducible.

Proof. Suppose f16;15;1(x) = g(x) � h(x): Then in 3-adic complex
�eld we have 1 root xi with v3(xi) = �1; 1 root with v3(xi � 1) =
1 and 3 roots around each of nontrivial �fth roots of unity, �; with
v3(xi � �) = 1

3: If g contains one of the last 12 roots, it contains all its
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cluster and also all other 9 roots because x5�1
x�1

is irreducible in Z3[x]:
So, if deg g � deg h; then deg h � 2: Because 16 is even, by Lemma 2.4
deg h = 2; g doesn't contain the root with v3(xi) = �1:
The same argument in 5-adic complex �eld shows that g doesn't

contain the root with v5(xi) = �1; because, again, x3�1
x�1

is irreducible
in Z5[x]: But this implies that the roots of g(x) are units which is
impossible as all xi are inside of the the unit circle in C :

One can also check the irreducibility conjecture numerically for the
triples up to a couple of hundreds using the general irreducibility test
of Maple. One can de�nitely try to do more in our particular case
because, e.g. one can get tough restrictions on the degree of any divisor
polynomial as in the proofs of Theorems 3.6 and 3.11.
This is more or less all I know about the irreducibility of fabc(x): I

don't know if it's related in any way to the abc conjecture. It is however
an experimental fact that it takes longer for a computer to verify the
irreducibility when the triple a; b; c is kind of marginal in the sense
of abc conjecture. (e.g. 169 = 144 + 25) It's also true that the results
of Chapter 3 are mostly about the triples that are not interesting from
the point of view of abc conjecture. But this may be just the nature of
the methods we used there and not of the problem itself.
Let's now discuss a little the hypothetical approaches to the abc

conjecture using the abc-polynomials. The �rst idea would be to try
something similar to the geometric case, i.e. to construct a second
polynomial, gabc(x); such that (f; g) is globally bounded but locally
big. By this I mean that it has to be on the one hand divisible by a
(big) power of any p dividing abc and, on the other hand, be bounded
by some inequalities on the complex plane. I tried to cook up such
g(x) without any success. Of course, it most probably doesn't exist,
because it's extremely unlikely that the conjecture as deep as abc could
be proven by such primitive methods. But maybe some weaker results
could be obtained. Technically, the main problem is to capture the
rather subtle dependence of the distribution of the roots of fabc(x)
inside the clusters upon k (in the notation of Lemmas 2.8-2.11) without
making the degree or coe�cients of g(x) too large.
Three other things one can try are the following.
1) One can try to study Arakelov geometry of some curves related to

fabc(x); e.g. hyperelliptic curve over Q y2 = fabc(x) and elliptic curve
over the abc-�eld y2 = x(x � 1)(x � �); where fabc(�) = 0: As far as
hyperelliptic curves are concerned there is a recent result of I. Kausz
(cf. [7]) on !2 of semistable hyperelliptic curves. I should note however
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that y2 = fabc(x) is not a semistable model and it actually has pretty
bad singularities over pjabc: Also, its genus depends on a and Kausz`s
estimates \at in�nity" depend heavily on the genus as they involve a
choice of a metric on the relative dualizing sheaf of the \universal stable
curve" of given genus.
2) Modulo the irreducibility conjecture, one can try to investigate

some invariants of abc-�elds , like Galois group, regulator, or ��function.
One thing which is quite obvious is that there are lots of abc�units
hanging around. (By abc�units I mean elements of the abc-�eld which
have zero valuations for all primes not dividing abc.) Namely, x; xa�1;
xb � 1; xc � 1 and all divisors of the last three polynomials evaluated
at the root of abc-polynomial are abc�units. For instance, we have a
lot of solutions of the equation x+ y = 1 in abc�units. The theory of
S�units and S�unit equations is well developed (cf., e.g. [3], [6], [17]).
I don't know, however, if it is better to apply the theory to the roots
of fabc(x) instead of just to b

a
+ c

a
= 1:

3) One can look at the mutual position of the abc-�eld and some
cyclotomic �elds. One can check, for instance, that if Kabc is the de-
composition �eld of the abc-polynomial (which one can call the big
abc��eld) then Kabc[�abc

R
] is unrami�ed over Kabc; where R is the prod-

uct of all primes dividing abc: I don't know however if this is of any
interest because Kabc is very big.
Finally, I personally would be interested to see an extensive computer

investigation of the invariants of abc-�elds .
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