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Abstract. We study the resolutions of rational self-maps of the
projective plane that come from hypothetical counterexamples to
the two-dimensional Jacobian Conjecture and establish several strong
restrictions on its structure, in particular, its Stein factorization.
We prove that all curves at infinity there go through a single point,
and that the di-critical log-ramification divisor is ample. As a sim-
ple corollary, we prove that the Stein factorization of a counterex-
ample to the JC must be singular.

1. Introduction

Suppose f(x, y) and g(x, y) are two polynomials with complex coef-
ficients. The classical Jacobian Conjecture (due to Keller, [8]) asserts
the following.

Conjecture. (Jacobian Conjecture in dimension two) If the Jaco-
bian of the pair (f, g) is a non-zero constant, then the map (x, y) 7→
(f(x, y), g(x, y)) is invertible. Note that the opposite is clearly true, be-
cause the Jacobian of any polynomial map is a polynomial, and, when
the map is invertible, it must have no zeroes, so it is a constant.

This paper initiates an approach to this conjecture, that the au-
thor considers to be the most natural from the point of view of modern
biratonal geometry. It should be noted that many excellent mathemati-
cians attempted to solve the Jacobian conjecture, including a number
of birational geometers, beginning with Keller himself. See an excellent
survey of Miyanishi [10] for some references. Fro the more algebraic
approaches see the survey of van den Essen [7]. The term “Jacobian
Conjecture” was coined by Abhyakar (cf. [1]).

This paper is written primarily for the algebraic geometers, by an
algebraic geometer. So we take for granted the properties of canonical
divisors on normal surfaces, while working out carefully some elemen-
tary combinatorial results. All varieties in this paper are over complex
numbers, even though many results hold true in broader generality.

The research of the author was supported in part by the NSA grants H98230-
08-1-0129, H98230-06-1-0034 and H98230-11-1-0148.
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From the point of view of a birational geometer, the most natural
approach to the two-dimensional Jacobian Conjecture is the following.
Suppose a counterexample exists. It gives a rational map from X = P2

to Y = P2. After a sequence of blow-ups of points, we can get a surface
Z with two morphisms: π : Z → X (projection onto the origin P 2)
and ϕ : Z → Y. (the lift of the original rational map).

Note that Z contains a Zariski open subset isomorphic to A2 and its
complement, π∗((∞)), is a tree of smooth rational curves. We will call
these curves exceptional, or curves at infinity. The structure of this
tree is easy to understand inductively, as it is built from a single curve
(∞) on P2 by a sequence of two operations: blowing up a point on
one of the curves or blowing up a point of intersection of two curves.
However, a non-inductive description is probably impossible, which is
the first difficulty in this approach. Another difficulty comes from the
fact that the exceptional curves on Z may behave very differently with
respect to the map ϕ. More precisely, there are four types of curves E.

type 1) ϕ(E) = (∞)
type 2) ϕ(E) is a point on (∞)
type 3) ϕ(E) is a curve, different from (∞)
type 4) ϕ(E) is a point not on (∞)
From a first glance, the situation appears almost hopeless. The

curves of type 3 are especially cubersome, they are known as di-critical
components (cf., e.g. [11], [2]). One of the goals of this paper is to
bring new life to this naive approach by showing that this a priori
intractable collection of data has some very rigid structure. In partic-
ular, for a given graph of curves on Z, one can essentially always tell
which curves are of which type, and there is a fairly restrictive family of
graphs that can potentially appear in a counterexample to the Jacobian
Conjecture. Our main tools are the basic tools of algebraic geometry of
surfaces: the intersection pairing and the adjunction formula. We are
guided by some of the ideas of the log Minimal Model Program, but
most of the proofs are relatively elementary and self-contained. This
paper is a beginning of a bigger investigaton, see the preprint [4] for
further developments.

Our first new tool is not exactly new: we label the exceptional curves
by the coefficients of the log canonical class in the basis of exceptional
curves. We use this labeling in Section 2 to obtain some preliminary
results on the graph of the exceptional curves on Z. In section 3 we
use slightly more subtle arguments, with inequalities in the spirit of the
paper [3], to study the Stein factorization of the morphism ϕ. Our main
result is the following theorem, which is a combination of Theorems 3.4
through 3.8.
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Theorem. Suppose τ : Z −→ W, ρ : W −→ Y is the Stein factor-
ization of ϕ, for a counterexample to the Jacobian Conjecture. Suppose
Ei are images of the exceptional curves on W (the curves of types 1
and 3). Then the following are true.

1) W \ (
⋃

iEi) is isomorphic to the affine plane.
2) All curves Ei pass through the point A = τ(π−1(∞)), where (∞)

is the line at infinity on X, and have no other points of intersection.
3) All curves Ei of type 1 are smooth outside of A.
4) Each curve Ei of type 3 is either smooth outside of A or contains

exactly one point Ai 6= A so that it is smooth outside of A and Ai.
5) The surface W is singular at A and is nonsingular outside of A

and Ai. Each Ai is (complex analytically) a cyclic quotient singularity.
6) For each Ei denote by ρi the map between normalizations of Ei

and ρ(Ei), induced by ρ. Then for each Ei that does not contain Ai,
the map ρi is an isomorphism. For each curve Ei that contains Ai,
Ei \ {A,Ai} is isomorphic to the algebraic torus (i.e. Spec(C[x, x−1]))
and ρi is isomorphic to a map x 7→ xfi for some fi ∈ N.

7) Suppose ri is the ramification index of ρ at Ei. Denote by R̄ =∑
type(Ei)=3 riEi the di-critical log-ramification divisor on W. Then R̄ is

ample.
Acknowledgments. This paper is dedicated to the memory of V.A.

Iskovskikh, who introduced the author to the beauty of birational ge-
ometry. The author is also indebted to David Wright and Ed Formanek
for stimulating discussions related to the Jacobian Conjecture.

2. Preliminary Observations and Definitions

We follow the notation from the Introduction.
Suppose X = P2, Y = P2 and ϕX

Y : X −−− > Y is a rational map.
Suppose further that on an open subset A2 ⊂ P2 = X the map ϕX

Y

is defined, unramified, and ϕX
Y (A2) ⊆ A2 ⊂ P2 = Y. By a sequence

of blow-ups at smooth points, we get a surface Z with a birational
map π : Z → X and a generically finite map ϕZ

Y : Z → Y such that
ϕZ
Y = ϕX

Y ◦ π. We will denote ϕ = ϕZ
Y .

The blow-ups that lead to Z can be done outside of A2 ⊂ X. So
Z = A2∪(∪Ei), where Ei are rational curves. The following proposition
collects some straightforward observations.

Proposition 2.1. 1) The curves Ei form a tree.
2) One of Ei is π−1(∞), all others are mapped to points by π.
3) The classes of Ei form a basis of the Picard group of Z.

The structure of Z is to a large extent determined by the graph
of intersections of Ei. The vertices of this graph correspond to Ei-s
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and are usually labeled by E2
i . The edges correspond to the points of

intersections of two different Ei-s. The graph is a tree.
This graph is not so easy to deal with because blowing up a point

changes the self-intersections of the curves passing through it. Inspired
by the Minimal Model Program, we consider a different labeling of
this graph. We consider the augmented canonical class of Z, K̄Z =
KZ +

∑
iEi. It can be uniquely written as a linear combination of Ei,

K̄Z =
∑

i aiEi. We label the vertices of the intersection graph by these
numbers ai.

With this labeling we now describe what happens when a point is
blown up, in any of the intermediate steps in getting from X to Z.

Proposition 2.2. When a point is blown up, going from Z ′ to Z ′′,
one of the following two operations is performed to the graph of the
exceptional curves:

1) A new vertex is added to the graph, connected to one of the ver-
tices. It is labeled ai+1, where ai is the label of the vertex it is connected
to.

2) A new vertex is introduced on the edge connecting two vertices,
“breaking” the edge into two edges. The new vertex gets labeled with
ai +aj, where ai and aj are the labels of the two vertices it is connected
to.

Proof. The first case corresponds to blowing up a point on one
of the curves. The second case corresponds to blowing up an inter-
section of two curves. The augmented canonical class calculations are
straightforward and are left to the reader. �

Notice that once a vertex is created, its label never changes, which
is in sharp contrast with the traditional labeling.

The following observation is true for any Z, unrelated to the map ϕ.
It is easily proven by induction on the number of exceptional curves,
using the above proposition.

Proposition 2.3. For any two adjacent vertices Ei, Ej of the graph
of Z, gcd(ai, aj) = 1. In particular, no two adjacent vertices have even
labels.

For most of the exceptional curves, one can easily recover their self-
intersection from this K̄-labeled graph, using the adjunction formula:

(KZ + Ei)Ei = −2, so K̄Z · Ei = −2 + #(Ej adjacent to Ei)
Thus, if K̄Z =

∑
aiEi, we have

aiE
2
i +

∑
Ej adj. Ei

aj = −2 + #(Ej adjacent to Ei)
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So if ai 6= 0, E2
i can be easily calculated.

However, when ai = 0, it is not that easy. In fact, the graph in the
example below can be obtained from the graph of P2 by a sequence of
blowups described above. In this symmetric graph, π−1(∞) is the third
curve from the left; the self-intersection of the left curve is (−1), while
the self-intersection of the right curve is (−2). See [4] for the detailed
construction.

Example

◦−−−−◦−−−−◦−−−−◦−−−−◦−−−−◦−−−−◦
0 − 1 − 2 − 1 − 2 − 1 0

Note that the subgraph of vertices with negative labels is connected.
It is separated from the “positive” vertices by the “zero” vertices.
Moreover, the “zero” vertices are only connected to vertices with labels
(−1) or 1.

Now we are going to make use of the map ϕ. The main idea is to use
the adjunction formula for ϕ to get a formula for K̄Z .

Recall from the Introduction the four types of curves Ei. For every
curve of type 1 or 3 denote by fi the degree of the map onto its image
and by ri the ramification index. Denote by L the class of the line on
Y = P2.

Proposition 2.4. There exist integers bi for the curves Ei of types 2
and 4 such that

K̄Z = ϕ∗(−2L) +
∑

type(Ei)=3

riEi +
∑

type(Ei)=2or4

biEi

Proof. Consider the differential 2-form ω on Y = P2 that has the
pole of order 3 at (∞) and no other poles or zeroes. Because ϕ is
unramified on the A2 ⊂ X, there is a differential form on Z, such that
its divisor of zeroes and poles is ϕ∗(−3L) +

∑
i ciEi, where ci can be

calculated locally at a general point of each Ei.
Notice that for the curves Ei of types 1 and 3, ci = ri − 1, and

ϕ∗(L) =
∑

type(Ei)=1

riEi +
∑

type(Ei)=2

eiEi

for some ei. Thus,

K̄Z = KZ+
∑

Ei = ϕ∗(−3L)+
∑

type(Ei)=1or3

riEi+
∑

type(Ei)=2or4

(ci+1)Ei =

= ϕ∗(−2L) +
∑

type(Ei)=3

riEi +
∑

type(Ei)=2or4

biEi

�
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Note that because Ei are independent in the Picard group of Z, the
above representation of K̄Z is unique and must match with the labeling
of the graph of Ei. As a corollary, we have the following observation.

Proposition 2.5. 1) Any curve of type 1 has a negative even label.
2) Any curve of type 3 has a positive label.

Proof. Note that ϕ∗(−2L) only involves curves of type 1 and 2. �
Additionally, the union of curves of type 1 and 2 must be connected,

as a specialization (set-theoretically) of a pullback of a generic L on
Y = P2. This means that the corresponding subgraph is connected.

Every curve of type 3 must intersect with one of the curves of type
1 or 2, while the curves of type 4 do not intersect with curves of type
1 or 2. (This follows from the projection formula of the intersection
theory: if E is a curve on Z, E · ϕ∗(L) = (ϕ∗E) · L.)

On the other hand, a type 3 curve cannot intersect a type 1 curve,
because negative and positive labels are never adjacent. Because the
graph of the exceptional curves on Z is a tree, no two curves of type 3
intersect with each other. Putting this all together, we must have the
following. The tree of curves on Z has a connected subtree containing
all curves of type 1 and 2. Some of the vertices of this subtree may
have one or more curves of type 3 connected to them. Then some of
these type 3 curves may have trees of type 4 curves connected to them.
Additionally, no two curves of type 1 are adjacent, and the subtree of
curves of type 1 and 2 contains the connected subtree of curves with
negative labels.

Proposition 2.6. π−1(∞) is of type 1 or 2.

Proof. One can prove it using the above description of the graph
of exceptional curves, but there is also the following direct geometric
argument. The pullbacks of lines on X = P2 form a family of rational
curves C on Z that intersect π−1(∞) at a generic point and do not
intersect any other exceptional curves. Consider ϕ(C) for a generic C.
If π−1(∞) is of type 3 or 4 then ϕ(C) ⊆ A2 ⊂ Y. The curve C is proper
and A2 is affine, so ϕ(C) is a point, which is impossible. �

Until now, the variety Z was an arbitrary resolution at infinity of the
original rational map. But we can put an additional restriction on it, to
avoid unnecessary blow-ups. In what follows we abuse the terminology
slightly by identifying curves on birationally equivalent surfaces, that
correspond to the same divisorial valuation.

Definition 2.1. If a curve is obtained by blowing up the intersection
of two curves, we call these curves its parents. If a curve is obtained by
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blowing up a point on one of the curves, this curve is called its parent.
The original line at infinity has no parents. Note that other curves
may be created afterwards that separate the curve from one or both of
its parents.

Definition 2.2. For a given curve E, the set of its ancestors A(E) is
the smallest set S of the exceptional curves that contains its parent(s)
and has the property that it contains the parents of every curve in S.
Note that this set is empty if E is the original line at infinity. Other-
wise, it consists of the original line at infinity and all curves that have
to be created before E.

Definition 2.3. A curve Ei on Z is called final if there is a sequence
of blow-ups from X to Z such that Ei is blown up last. Equivalently, a
curve is final if it is not a parent to any exceptional curve on Z.

Note that there may be more than one final curve, and π−1(∞) is
never final. In what follows, Ei is one of the exceptional curves on Z.

Proposition 2.7. Suppose that when Z was created, Ei was created
after all of its neighbors in the graph (i.e. all adjacent vertices). Then
Ei is a final curve.

Proof. Instead of creating Ei at its due time, we can change the
order of blow-ups and create it at the last step of the process, without
changing anything else. �

Proposition 2.8. Suppose ai = a(Ei) ≥ 2 and it is the largest label
among all its neighbors. Then Ei is final.

Proof. We will prove that Ei was created after all its neighbors.
First of all, no neighbor of Ei can be a blow-up of a point on Ei,
because its label would have been ai +1. If it were a blow-up of a point
of intersection of Ei and some Ej, then Ei and Ej were adjacent before
the blow-up. Negative curves are never adjacent to the positive curves
and zero curves are only adjacent to curves with labels 1 of −1. Thus,
aj ≥ 1. So the label of the new curve is ai + aj ≥ ai + 1 > ai. �

Note that no two curves with the same label ai ≥ 2 can be adjacent,
by Proposition 3. So every local maximum ai ≥ 2 is strict.

Proposition 2.9. If ai = 1, then Ei is final if and only if it either has
only one neighbor, with label 0, or exactly two neighbors, with labels 1
and 0.

Proof. A curve with label 1 can be created either by a blow-up of
a point on a curve with label 0 or by a blow-up of an intersection of a
curve with label 0 and a curve with label 1. Once created, it will be
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final if and only if no other curve is blown up as its neighbor. The rest
is easy and is left to the reader. �

The above two propositions allow us to easily spot the final curves in
the positive part of the graph of curves. Our interest in the final curves
stems from the following. If one of the final curves on Z is of type 2 or
4, then it can be contracted, using the ϕ−relative MMP, to get another
Z, with two maps to X and Y and a smaller Picard number.

Definition 2.4. We call Z minimal if all of its final curves are of
type 1 or 3.

Proposition 2.10. If a counterexample to the Jacobian Conjecture
exists, it can be obtained using a minimal Z.

Proof. Take Z with smallest possible Picard number. If it is not
minimal, it can be created in such a way so that some curve of type
2 or 4 is blown-up last. Using MMP relative to ϕ, it can be blown
down, maintaining the morphisms, and creating a counterexample to
the Jacobian Conjecture with smaller Picard number. �

From now on, Z will always be minimal.

Proposition 2.11. Suppose E is a curve of type 3 on Z. Suppose E0

is the curve of type 2 it is adjacent to. Then the tree on the other side
of E is a line E − E1 − ...− Ek, where E1, ...Ek are of type 4.

Proof. The label of E is positive. All curves E1, ...Ek “on the other
side” of E are of type 4. They must be ancestors of some curve of type
3, so they are all ancestors of E. If the connected component of the
graph obtained from Γ by removing E is not a line, there would have
to be another final curve curve there, which is impossible. �

3. Other Varieties and Further Analysis

We start with the theorem that shows that type 3 curves must exist
in a counterexample to the Jacobian Conjecture. Note that the type
3 curves are called “di-critical components” in [5], [6], and this fact is
well known and can be easily proven by a topological argument. So
the main purpose of our proof is to show an easy application of our
method before proceeding to the more intricate questions.

Theorem 3.1. Suppose Z and ϕ provide a counterexample to the Ja-
cobian Conjecture. Then Z contains a curve of type 3, where ϕ is
ramified.

Proof. Consider a generic line L on the target variety Y = P2. The
curve C = ϕ−1(L) is smooth and irreducible (“Bertini’s theorem”).
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Moreover, we can assume that for all but finitely many lines L′ that
only intersect L “at infinity”, C ′ = ϕ−1(L′) is smooth and irreducible.
We can also assume that L does not pass through the images of the
exceptional curves of types 2 and 4, so C does not intersect these curves
on Z. Suppose that the genus of C is g, the map H = ϕ|CC → L has
degree n and the number of points of C “at infinity” is k. (There is
a special point ∞ on L, the only one not lying in A2. The number k
is the number of points of C mapped to it, in a set-theoretic sense.)
Because the map ϕ is only ramified at the exceptional curves of X, the
map H could only by ramified at these k points at infinity. By Hurwitz
formula, we have

2g − 2 = −2n+ r,

where r is the total ramification at infinity. We have g ≥ 0, n ≥ 1 and
r ≤ n− k. So

−2 ≤ 2g − 2 ≤ −2n+ n− k = −n− k ≤ −2

Thus all the inequalities above are equalities, g = 0, n = 1, and k = 1.
Because n = 1, the map ϕ is birational. For the birational maps the
Jacobian Conjecture is well known (see, e.g. [1]). �

Now we want to make further use of the morphism ϕ : Z → Y.
We decompose it into a composition of two morphisms, birational and
finite (Stein factorization):

Z −→ W −→ Y

Here the first morphism is birational and denoted τ , and the second
one is finite and denoted ρ.

The surface W is normal. In what follows, we use the intersection
theory for normal surfaces due to Mumford. Suppose KW is its canon-
ical class, as the Weil divisor class modulo numerical equivalence. We
define the augmented canonical class K̄W = KW +

∑
Ei.

Proposition 3.1. In the situation and notation described above,

K̄W = ρ∗(−2L) +
∑

type(Ei)=3

riEi.

Proof. The curves Ei on W are exactly the images of curves of
types 1 and 3 on Z. By adjunction, we have:

KW = ρ∗KY +
∑

(ri − 1)Ei,
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where ri is the ramification index, and Ei are the images of the curves
Ei of types 1 and 3 on Z.

K̄W = ρ∗(−3L) +
∑

riEi = ρ∗(−2L) +
∑

type(Ei)=3

riEi.

�

Note that if one denotes by K̄Y the class of KY +(∞), then ρ∗(−2L)
in the above Proposition is ρ∗(K̄Y ). The next theorem is very impor-
tant. It will be further strengthened in Theorem 3.7.

Theorem 3.2. (Big Ramification Theorem)
Suppose Z is a counterexample to the Jacobian Conjecture. Then on

W the “di-critical log-ramification divisor”

R̄ =
∑

Ei⊂W,type(Ei)=3

riEi

intersects positively with all exceptional curves of type 3. As a corollary,
R̄2 > 0.

Proof. Suppose that C = Ei is a curve of type 3 on W. Suppose di
is the degree of ρ(C). Suppose τ : Y2 → W is a minimal resolution of
singularities of W . Then

K̄WEi = (KW + Ei)Ei +
∑
j 6=i

EiEj,

where Ej are curves of type 1 or 3. Note that because Ei intersects at
least one curve of type 1, K̄WEi > (KW + Ei)Ei. Lifting up to Y2, we
get

(KW+Ei)Ei = (τ ∗(KW )+τ ∗(Ei))τ
−1(Ei) ≥ (KY2+τ

−1(Ei))τ
−1(Ei) ≥ −2.

So for all i K̄WEi > −2.
Therefore,

R̄ · Ei = 2ϕ∗(L) · Ei + K̄W · Ei > 2fidi − 2 ≥ 0

�

Corollary 3.1. The curve π−1(∞) is of type 2.

Proof. By Proposition 2.6, it is of type 1 or 2. If it is of type 1,
then it is not included in

∑
type(Ei)=3

riτ
∗Ei. So

∑
type(Ei)=3

riτ
∗Ei consists

of curves contractible by π. But

(
∑

type(Ei)=3

riτ
∗Ei)

2 = (
∑

type(Ei)=3

riEi)
2 > 0,
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contradiction. �
Note that every curve of type 3 on Z intersects the union of curves

of type 2 at exactly one point, and does not intersect curves of type 1.
When the curves of type 2 are contracted, on W, every curve of type 3
intersects the union of curves of type 1 at exactly one point.

Proposition 3.2. For every curve Ei of type 3 on W the point above
is τ(π−1(∞)).

Proof. Suppose there is a point w ∈ W on the union of type 1
curves, which is not τ(π∗(∞)) and which has some type 3 curves passing
through it. Define

R̄w =
∑

w∈Ei,type(Ei)=3

riEi

Because the curves of type 3 not passing through y cannot intersect
any components of R̄w, we have R̄2

w = R̄w · R̄. By Theorem 3.2, this
implies that R̄2

w > 0. Like in the proof of Corollary 3.1, τ ∗(R̄w) consists
of curves contractible by π, which is impossible. �

Proposition 3.3. On W, all exceptional curves contain τ(π−1(∞))
and there are no other points of intersection.

Proof. By the proposition above, every curve of type 3 contains
τ(π−1(∞)) and this is its only point of intersection with other excep-
tional curves. Now consider a curve Ei of type 1. Suppose it does not
contain τ(π−1(∞)). Then it does not intersect any of the curves of
type 3 on W.

On W we have:

K̄W · Ei ≥ (KW + Ei)Ei ≥ −2

On the other hand,

K̄W · Ei = (−2ρ∗(L) + R̄) · Ei = −2ρ∗(L) · Ei ≤ −2

The inequalities above become equalities only if Ei intersects no other
curves and is smooth. This would make it the only curve of type 1 on
W , which would then have to intersect with some curves of type 3,
contradiction. �

Thus, we know that every curve of type 1 on W contains τ(π−1(∞)).
We now look at the graph of curves on Z. The curves of type 2 that are
mapped to τ(π−1(∞)) form a connected subgraph, containing π−1(∞).
Every curve of type 1 or 3 is attached to this subgraph. On “the other
side” of each curve of type 3 there may be a single chain of curves
of type 4, and on “the other side” of each curve of type 1 there may
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be a single chain of curves of type 2. Note that all of these ”other
side” curves must be created before the corresponding type 3 or type
1 curves. When mapped to W, the curves of type 1 and 3 intersect at
τ(π−1(∞)) and nowhere else.

One can restrict the structure of the possible counterexamples even
further.

Theorem 3.3. In any counterexample to the Jacobian Conjecture there
are no curves on “the other side” of the curves of type 1.

Proof. Consider a curve of type 1, E, on Z. Suppose the ram-
ification index at E is r. Then the coefficient of ϕ∗(L) in E is r,
and the coefficient of K̄Z is (−2r). Consider the divisor class D =
K̄Z + 2ϕ ∗ (L) = ...+ 0 ·E + x1E1 + ...+ xkEk, where E1, ...Ek are the
curves on Z “on the other side” of E. We know that D intersects by
zero with E1, ..., Ek−1. It intersects by −1 with Ek. We formally add
another vertex to the graph, ”Ek+1” and set the coefficient of D at it to
be 1. (Note that we are not blowing up any points and Ek+1 does not
have any geometric meaning). We now have a chain E,E1, ..., Ek, Ek+1

and a divisor D′ = 0 · E + x1E1 + ... + xkEk + 1 · Ek+1, such that D′

intersects by zero with all E1, E2, ..., Ek. Because the self-intersections
of all Ei, 1 ≤ i ≤ k, are less than or equal to −2, the coefficients xi
must form a concave up chain between 0 and 1, contradicting their
integrality. (Here is a more formal argument. Suppose at least one of
the xi, 1 ≤ i ≤ k, is not positive. Then consider the minimum of xi,
obtained at xj, such that xj+1 > xj, where formally x0 = 0, xk+1 = 1.
Then D′ ·Ej ≥ xj−1 +xj+1 + 2xj > 0, contradiction. Suppose the max-
imum of xi, 1 ≤ i ≤ k, is greater than or equal 1 and is obtained at xj,
where xj−1 < xj. Then D′ ·Ej ≤ xj−1 + xj+1 − 2xj < 0, contradiction.
Thus all xi are strictly between 0 and 1, which is impossible because
they are integers.) �

As a corollary of these observations, we get a rather detailed descrip-
tion of the structure of W.

Theorem 3.4. Suppose W is defined as above for a counterexample to
the Jacobian Conjecture, Ei are images of the exceptional curves on it.
Then W \ ∪iEi is isomorphic to the affine plane. There exist distinct
points A = τ(π−1(∞)) and Ai ∈ Ei (at most one for each Ei of type 3)
so that W is smooth outside of them, A is a normal singularity, Ai are
cyclic quotient singularities, all the curves Ei pass through A, do not
intersect elsewhere and are smooth in the nonsingular part of W . For
all exceptional curves Ei that do not contain Ai, Ei \{A} is isomorphic
to the affine line. For al curves Ei that contain Ai, Ei \ {A,Ai} is
isomorphic to the algebraic torus (affine line with a removed point).
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Proof. Most of the statements have already been proven. To finish
the proof, note the following. The map τ from Z to W contracts all
curves of types 2 and 4, and no curves of types 1 and 3. The curves
of type 2 form a subtree on Z, so they are contracted to one singular
point A. Note that all curves of type 1 and 3 on Z intersect this subtree
at exactly one point. Some curves of type 3 have one chain of curves
of type 4 attached to them, that get contracted into a cyclic quotient
singularity. �

Note that the above theorem restricts greatly the restriction of the
map ϕ to the exceptional curves of types 1 and 3.

Theorem 3.5. 1) For all curves Ei of type 1, fi = 1.
2) For all curves Ei of type 3 either fi = 1 or the restriction to Ei

of the map from Z to Y is isomorphic to the composition of a map
(x 7→ xfi) : P 1 → P 1 and a generically one-to-one map from P 1 to a
possibly singular rational curve (the normalization map for ϕ(Ei)).

Proof. This follows from the fact that the restriction to Ei of the
map from Z to Y can only be ramified at the points of intersections of
Ei and other exceptional curves, and the classification of self-maps of
the projective line that are ramified at one or two points. �

For the following theorem, we need to introduce additional notation.

Definition 3.1. Suppose Z,W, Y and ϕ : W → Y are as above. For a
type 3 curve Ei, denote by Fi its image on Y , as a reduced irreducible
divisor (a possibly singular rational curve). Then

ρ∗(Fi) = riEi +Gi,

where Gi is an effective Weil divisor. Its irreducible components are
curves in A2 that are mapped to Fi. We will call these curves coexcep-
tional.

Theorem 3.6. Suppose Ei ⊂ W is a type 3 curve that contains a
cyclic quotient singularity Ai. Then some coexceptional curve from Gi

contains Ai.

Proof. The proof is very similar to the proof of Theorem 3.3. Sup-
pose the support of Gi does not contain Ai. To simplify the notation,
denote Ei by E; suppose E1, E2, ..., Ek are the curves of type 4 that
are mapped to Ai, with E1 intersecting E. Suppose ϕ : Z → Y is our
map. Consider on Z the divisor D = K̄Z − ϕ∗(Fi). We can write D
as a linear combination of exceptional curves and the strict pullbacks
of the coexceptional curves. Because the coefficient of E in this linear
combination is zero, and the only curves that contribute to the inter-
section of D with E1, ..., Ek are E1, ...Ek, we get a linear combination
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with integer coefficients x1E1 + ...+ xkEk that intersects by zero with
E1, ..., Ek−1 and by (−1) with Ek. We can now follow verbatim the
argument in Theorem 3.3 to get a contradiction. �

The following is a strengthening of Theorem 3.2.

Theorem 3.7. (Ample Ramification Theorem)
Suppose Z is a counterexample to the Jacobian Conjecture. Then on

W the “di-critical log-ramification divisor”

R̄ =
∑

Ei⊂W,type(Ei)=3

riEi

is ample.

Proof. The surface W is rational and, therefore, Q-factorial. So
the Weil divisor R̄ is Q-Cartier. It is effective and by Theorem 3.2 it
intersects positively with all of its irreducible components. So by the
Nakai-Moishezon criterion it is enough to show that it intersects posi-
tively with all irreducible curves C on W that are not the exceptional
curves of type 3.

If C is a curve of type 1 on W , then it intersects the support of R̄
at A = ϕ(π−1(∞)), so C · R̄ > 0.

If C is any other curve on W , that does not intersect positively with
R̄, it does not intersect with any curves of type 3 and it must intersect
with at least one curve of type 1 (because it cannot be contained en-
tirely in the affine plane). By the Hodge Index Theorem and Theorem
3.2, C2 < 0. Note also that C does not pass through A, so it intersects
with at least one curve of type 1 at a smooth point. Because the K̄-
labels of all curves of type 1 are at most −2, KW ·C ≤ −3. Therefore,
(KW + C) · C ≤ −3 < −2, which is impossible.�

We end the paper with an observation that in any counterexample
to the JC the surface W must be singular at the point A.

Theorem 3.8. In the above notation, the surface W must be singular
at A. Moreover, for some (possibly equal) curves Ei and Ej of type 1
on W, their intersection Ei · Ej is not an integer.

Proof. For any Ei of type 1 on W , denote by E ′i the corresponding
curve on Z. We can choose Z to be minimal, so E ′i is a final curve,
(E ′i)

2 = −1. Note that in the Picard group of Z we have E ′i = τ ∗(Ei)−
∆i, where ∆i is an effective linear combination of curves of type 2. So
(E ′i)

2 = E2
i + ∆2

i , therefore E2
i > (E ′i)

2. If E2
i ∈ Z, then E2

i ≥ 0.
Now consider Ei · ρ∗L. On the one hand, because fi = 1, it equals

L2 = 1. On the other hand, it equals Ei ·
∑

type(Ej)=1 rj(Ei · Ej). If all

Ei · Ej are integers, from the argument above E2
i ≥ 0 and for j 6= i
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Ei · Ej ≥ 1. So there are at most two curves of type 1 on W . Note
additionally that

∑
type(Ej)=1 rj = d, where d is the degree of the map

ρ. If there are two curve of type 1, say E1 and E2, then either r1 or
r2 is at least d/2. Since there are no counterexamples to the JC of
degree 1 or 2, we get a contradiction for the other Ei. Thus, there is
only one curve of type 1 on W, call it E1. This implies that r1 = d and
1 = E1 · ρ∗L = d · E2

1 . Thus d = 1, which is impossible. �
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