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Abstract We give an almost complete classification of empty lattice simplices
in dimension 4 using the conjectural results of Mori-Morrison-Morrison, later
proved by Sankaran and Bober. In particular, all of these simplices correspond
to cyclic quotient singularities, and all but finitely many of them have width
bounded by 2.

Keywords: Lattice polytopes, terminal singularities, width.

Acknowledgments: The research of the first author has been co-financed by
the Italian Ministry of Education, University and Research (PRIN “Algebra
Commutativa, Combinatoria e Computazionale”. The research of the third
author has been supported by NSA, grant H98230-08-1-0129.

1MSC 2010: 14B05 (14M25, 52B20)
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1 Introduction

Lattice polytopes have been extensively studied in recent years. Their study
shows strong connections with algebraic geometry and with number theory. For
example, the classical Flatness Theorem of Kronecker concerns the arithmetic
width of compact convex sets, in particular lattice polytopes. It has many ap-
plications to the study of diophantine equations. The program of classification
of general algebraic varieties of Mori and others gave an important role to sin-
gularities which are associated with empty simplices, i.e., lattice simplices with
no lattice points other than their vertices. In dimension 3 the complete classi-
fication of such simplices is known, see [16] and [10]. Here we study the case
of dimension 4. We give an almost complete classification (complete up to a
finite number) of empty lattice simplices in dimension 4, by showing that all
of them are cyclic. By the general result of [2] and the classification theorem
of Sankaran [12] and Bober [1] this implies that all but finitely many of them
belong to the families first discovered empirically by Mori-Morrison-Morrison
[9]. As an application, we show that all but finitely many of the empty lattice
simplices in dimension 4 have width bounded by 2 (see also [6], [8], and [15]).

2 Preliminaries

Let ID be a d-lattice which is a subgroup of CQd, and let σ be a d-dimensional
rational convex cone spanned by d linearly independent elements of ID in IRd.
Let ID′ be the lattice spanned by the intersections of the edges of σ with ID.
Let e1, . . . , ed be the canonical basis of IRd. Then the quotient group G =
ID/ID′ is isomorphic to the direct sum ⊕di=1ZZ/miZZ for some positive integers
m1, . . . ,md. According to the construction described, e.g., in [5], Chapter 2, the
affine toric variety Uσ associated with σ can be viewed as the (CQ-factorial toric)
quotient singularity ICd/G, where the action of G on ICd is defined as follows: for
all r1 . . . , rd ∈ ZZ, and all (z1, . . . , zd) ∈ ICd,

(r̄1, . . . , r̄d)(z1, . . . , zd) = (ρr11 z1, . . . , ρ
rd

d zd),

and, for all i = 1, . . . , d, ρi is a primitive mith root of unity. This quotient
singularity is called cyclic if G is a cyclic group.

Example 1 (Cyclic case) Suppose ID =
∑d
i=1 ZZei and let σ be the d-dimensional

rational convex cone spanned by v1 = −a1e1, . . . , vd−1 = −ad−1ed−1, vd =
−a1e1 + . . . − ad−1ed−1 + aded, where a1, . . . , ad are non-zero integers such
that gcd(a1, . . . , ad) = 1. Then ID′ is the lattice spanned by e1, . . . , ed−1, vd.
Let φ : IRd → IRd be the CQ-linear mapping such that φ(ei) = ei for all
i = 1, . . . , d−1 and φ(ed) = 1

ad
(a1e1 + · · ·+ad−1ed−1 +ed). Then φ(vd) = ed, so

that ĨD
′

= φ(ID′) =
∑d
i=1 ZZei and ĨD = φ(ID) = ĨD

′
+ 1
ad

ZZ(v1 + . . .+ vd−1− ed).
Hence G is cyclic of order ad, and the affine toric variety Uσ associated with σ
can be viewed as the quotient singularity ICd/G, where G is the group of complex
adth roots of unity and its action on ICd is defined as follows: for all ρ ∈ G,

ρ(z1, . . . , zd) = (ρa1z1, . . . , ρ
adzd),
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where ρad = 1. According to [11], this quotient singularity is terminal if and
only if the simplex

∆̃ = {(x1, . . . , xd) ∈ IRd|0 ≤ xi, for all i = 1, . . . , n,
d∑
i=1

xi ≤ 1}

meets ĨD only in its vertices. But ∆̃ = φ(∆), where ∆ is the simplex spanned
by e1, . . . , ed−1, vd. Hence the previous condition is equivalent to requiring that
∆ is an empty lattice simplex.

3 Cyclicity

In this section we show that, in dimension 4, every terminal quotient singularity
is cyclic.
We first prove some results on good representatives of subspaces of finite vector
spaces.
Let p be a positive prime number. For every x ∈ ZZp, let s(x) ∈ {0, 1, . . . , p− 1}
be such that x is the residue class of s(x) modulo p. For all x = (x1, x2, . . . , xn) ∈
ZZnp we also set s(x) =

∑n
i=1 s(xi). For every linear subspace F of ZZnp , we

consider the number
m(F ) = min

x∈F\{0}
s(x).

White’s Lemma (see, e.g., Corollary 1.4 in [10]) can then be formulated as
follows.

Lemma 1 Let L be a line of ZZ3
p and let (a, b, c) be a direction vector of L. Then

m(L)
{

= p+ 1 if abc 6= 0 and (a+ b)(a+ c)(b+ c) = 0;
≤ p otherwise.

From this lemma we can deduce a similar result in dimension two:

Lemma 2 Let L be a line of ZZ2
p, (where p 6= 2) and let (a, b) be a direction

vector of L. Then

m(L)


= p if a+ b = 0;
= p+1

2 if (a+ 2b)(b+ 2a) = 0;
≤ p−1

2 otherwise.

Proof .-We apply Lemma 1 to the vector (a, a+b, b). If (a+b)(a+2b)(2a+b) 6= 0,
we have m(ZZp(a, a + b, b)) ≤ p. Hence there is some non-zero element x ∈ ZZp
such that s(xa) + s(xb) + s(x(a+ b)) ≤ p. But then s(xa) + s(xb) < p, whence
we deduce that s(x(a+ b)) = s(xa) + s(xb), so that s(xa) + s(xb) ≤ p

2 .
We can now prove the statement corresponding to White’s Lemma in dimension
four.

Lemma 3 If P is a plane in ZZ4
p, then m(P ) ≤ p.
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Proof .-For all i ∈ {1, 2, 3, 4} let Hi be the hyperplane of ZZ4
p defined by xi = 0.

First assume that P is contained in one of these hyperplanes, say P ⊂ H1. Let
u = (0, a, b, c) and v = (0, d, e, f) be the elements of a basis of P . If a+b+c = 0,
then m(P ) ≤ m(ZZpu) ≤ p by Lemma 1. Otherwise, if we set

w = (a+ b+ c)v − (d+ e+ f)u,

we have m(P ) ≤ m(ZZpw) ≤ p. We now suppose that all intersections Li =
P ∩Hi are lines. Possibly rearranging the coordinates, we may assume that L1

is spanned by u = (0, 1, a, c). Then L2 is spanned by v = (b, 0, e, f), for some
a, b, c, e, f in ZZp. Then by application of Lemma 1 to these lines, we may assume
that c = −a and one of b and e is equal to 1, so that b = 1 and e+f = 0, or e = 1
and b + f = 0. Then u = (0, 1, a,−a) and v = (1, 0, b,−b) or v = (b, 0, 1,−b),
where ab 6= 0. If v = (1, 0, b,−b), then w = bu − av = (−a, b, 0, 0) satisfies
s(w) ≤ p or s(−w) ≤ p. Now suppose that v = (b, 0, 1,−b). The vector

w = u− av = (−ab, 1, 0, a(b− 1))

is a direction vector of L3. According to Lemma 1, we may assume that b 6= 1
and a 6= 1 and that either ab = 1 or a(1− b) = 1. The vector

x = bu− av = (−ab, b, a(b− 1), 0)

is a direction vector of L4. According to Lemma 1, we may assume that b 6= a
and ab + b − a = 0. We deduce that ab = 1, whence a2 − a − 1 = 0 and
b = a − 1. In the latter case (which is impossible if p ≡ ±2 (mod 5)), we thus
have v = (a−1, 0, 1, 1−a). We set y = (1−a)u+ (1 +a)v = (a, 1−a, a, 1−a).
We then apply Lemma 2 to the line generated by (a, 1−a) in ZZ2

p. Since a 6= −1
and a 6= 2, it contains a non-zero vector (h, k) such that s(h) + s(k) ≤ p−1

2 and
then the vector t = (h, k, h, k) belongs to P and we have s(t) ≤ p.
We can now prove the following

Theorem 1 Every CQ-factorial toric terminal 4-dimensional singularity is a
cyclic quotient.

Proof .-Suppose we have a CQ-factorial toric terminal 4-dimensional singularity
which is not a cyclic quotient. As above, denote by G the quotient group of
the “big” lattice ID by the “small” lattice ID′. By the classification of the finite
abelian groups, there is a prime p such that G contains a subgroup G1 which
is isomorphic to ZZp × ZZp (see [7], Theorem 3.3.3). The intermediate lattice
that corresponds to this subgroup again defines a CQ-factorial toric terminal 4-
dimensional singularity. Thus we can assume that G is isomorphic to ZZp × ZZp.
If we identify the lattice ID′ with ZZ4, G is a subgroup of 1

pZZ4/ZZ4. Multiplying
the coordinates of all points by p, we get a subgroup P of (ZZp)4 isomorphic
to ZZp × ZZp. By Lemma 3 we can get a point A = (x1, x2, x3, x4) ∈ ZZ4 such
that all xi ≥ 0, x1 + x2 + x3 + x4 ≤ p, and modulo p A is a non-zero element
of P . Hence, the point 1

pA ∈ ID belongs to the simplex ∆̃. This contradiction
completes the proof.
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Remark 1 The result does not extend to higher dimensions. We give a coun-
terexample in dimension 5. Let ĨD

′
= ZZ5 and ĨD = ZZ5 + ZZ 1

p (1,−1, 0, 0, a) +

ZZ 1
p (0, 0, 1,−1, b), where a and b are integers not divisible by p. Then ĨD/ĨD

′ '
ZZp × ZZp is not cyclic. We show that it gives rise to a terminal singularity. The
lattice points of ĨD are those of the form

Q = (x1, x2, x3, x4, x5) = (α1 +
β

p
, α2 −

β

p
, α3 +

γ

p
, α4 −

γ

p
, α5 +

aβ + bγ

p
),

where αi ∈ ZZ for i = 1, . . . , 5 and β, γ ∈ ZZ. We show that if Q ∈ ∆̃, then
Q ∈ ĨD

′
. Set x =

∑5
i=1 xi =

∑5
i=1 αi + aβ+bγ

p , and suppose that xi ≥ 0 for all
i = 1, . . . , 5. Note that x1 ∈ ZZ iff x2 ∈ ZZ and x3 ∈ ZZ iff x4 ∈ ZZ. If xi 6∈ ZZ for
i = 1, . . . , 4, then β and γ are non-zero, so that one of α1, α2 and one of α3, α4

must be positive, that is, at least 1. Then x ≥ 2, so that Q 6∈ ∆̃. If xi ∈ ZZ for
i = 1, 2 and xi 6∈ ZZ for i = 3, 4, then p divides β but not γ, so that γ 6= 0 and,
once again, α3 + α4 ≥ 1. Moreover, p does not divide aβ + bγ, so that x5 > 0.
Hence x > 1. Finally, suppose that xi ∈ ZZ for i = 1, . . . , 4. Then p divides both
β and γ, and x5 ∈ ZZ. Hence Q ∈ ĨD

′
.

4 Width

In this section we prove the following result.

Theorem 2 Up to possibly a finite number of exceptions, every empty simplex
in dimension 4 has width 1 or 2.

Proof .-Like in Example 1 and the proof of Theorem 1, we identify the lattice
ID′ with ZZ4 so that that our simplex is the standard simplex ∆. Then the
lattice ID is obtained from ID′ by adding multiples of one rational point, with
coordinates 1

N (a1, a2, a3, a4). Here ai are integers, and N is a nonzero integer.
By the general result of [2] cyclic terminal quotients form a finite number

of families (see [2] for a precise definition of a family). All positive-dimensional
families have been found empirically in [9]. They are those associated with the
vectors U that are obtained by applying the jth projection to the integer vectors
U ′ of the following types:

(i) U ′ = (x,−x, y, z,−y − z), or

(ii) U ′ = (x,−2x, y,−2y, x+ y), or

(iii) belonging to the ones listed in Table 1.9 in [9], which we reproduce
below.
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Stable Quintuple Linear Relations
(9, 1,−2,−3,−5) (0, 2, 1, 0, 0), (1, 1, 0, 0, 2), (2, 0, 1, 2, 2)
(9, 2,−1,−4,−6) (0, 1, 2, 0, 0), (0, 2, 0, 1, 0), (2, 0, 2, 1, 2)
(12, 3,−4,−5,−6) (0, 2, 0, 0, 1), (1, 0, 0, 0, 2), (1, 2, 2, 2, 0)
(12, 2,−3,−4,−7) (0, 2, 0, 1, 0), (1, 1, 0, 0, 2), (2, 0, 2, 1, 2)
(9, 4,−2,−3,−8) (0, 1, 2, 0, 0), (0, 2, 0, 0, 1), (2, 0, 2, 2, 1)
(12, 1,−2,−3,−8) (0, 2, 1, 0, 0), (1, 2, 0, 2, 1), (2, 0, 1, 2, 2)
(12, 3,−1,−6,−8) (0, 2, 0, 1, 0), (1, 0, 0, 2, 0), (1, 2, 2, 0, 2)
(15, 4,−5,−6,−8) (0, 2, 0, 0, 1), (2, 0, 2, 2, 1)
(12, 2,−1,−4,−9) (0, 1, 2, 0, 0), (0, 2, 0, 1, 0), (2, 0, 2, 1, 2)
(10, 6,−2,−5,−9) (0, 2, 1, 2, 0), (1, 0, 0, 2, 0), (1, 2, 2, 0, 2)
(15, 1,−2,−5,−9) (0, 2, 1, 0, 0), (2, 0, 1, 2, 2)
(12, 5,−3,−4,−10) (0, 2, 0, 0, 1), (0, 2, 2, 1, 0), (2, 0, 2, 2, 1)
(15, 2,−3,−4,−10) (0, 2, 0, 1, 0), (2, 0, 2, 1, 2)
(6, 4, 3,−1,−12) (0, 2, 2, 2, 1), (2, 0, 0, 0, 1)
(7, 5, 3,−1,−14) (0, 2, 2, 2, 1), (2, 0, 0, 0, 1)
(9, 7, 1,−3,−14) (0, 2, 0, 0, 1), (2, 0, 2, 2, 1)
(15, 7,−3,−5,−14) (0, 2, 0, 0, 1), (2, 0, 2, 2, 1)
(8, 5, 3,−1,−15) (0, 2, 2, 1, 1), (2, 0, 0, 1, 1)
(10, 6, 1,−2,−15) (0, 0, 2, 1, 0), (2, 2, 0, 1, 2)
(12, 5, 2,−4,−15) (0, 0, 2, 1, 0), (2, 2, 0, 1, 2)
(9, 6, 4,−1,−18) (0, 2, 2, 2, 1), (2, 0, 0, 0, 1)
(9, 6, 5,−2,−18) (0, 2, 2, 2, 1), (2, 0, 0, 0, 1)
(12, 9, 1,−4,−18) (0, 2, 0, 0, 1), (2, 0, 2, 2, 1)
(10, 7, 4,−1,−20) (0, 2, 2, 2, 1), (2, 0, 0, 0, 1)
(10, 8, 3,−1,−20) (0, 2, 2, 2, 1), (2, 0, 0, 0, 1)
(10, 9, 4,−3,−20) (0, 2, 2, 2, 1), (2, 0, 0, 0, 1)
(12, 10, 1,−3,−20) (0, 2, 0, 0, 1), (2, 0, 2, 2, 1)
(12, 8, 5,−1,−24) (0, 2, 2, 2, 1), (2, 0, 0, 0, 1)
(15, 10, 6,−1,−30) (0, 2, 2, 2, 1), (2, 0, 0, 0, 1)

The linear relations on the right are the linear relations of the entries in the
corresponding quintuple with coefficients 0,1 and 2. The original interest in
these relations comes from algebraic geometry (cf. [9]). The fact that they
exist for each quintuple is of utmost importance to us. Note also that in each
quintuple the sum of the entries is zero. For any integer j between 1 and 5, the
jth projection is the operation of omitting the jth coordinate.

For example, the quintuple (9, 1,−2,−3,−5) with the 5th projection pro-
duces the singularity generated by the extra point k

n (9, 1,−2,−3). One can
actually choose k to be 1, and there are natural restrictions on n, but we will
not need the detailed analysis of these families. The families (i) and (ii) give a
singularity when one specifies x and y to be any rational numbers and chooses a
coordinate to drop. Once again, there are certain restrictions on x and y for the
lattice ID not to contain any points in ∆, but we will not need these restrictions.

The completeness of this empirical classification of [9] was first established
by Sankaran in [12]. A conceptually different proof was recently obtained by
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Bober [1]. It also follows from a result of Vasyunin [14]. Because the total
number of families is finite, all but finitely many terminal cyclic quotients are
obtained in the way described above.

To prove that the corresponding simplex has width at most two, we will
produce a linear map from ID to ZZ that sends vertices of ∆ to the set {0, 1, 2}
or {−1, 0, 1}. In all cases this map will have integer coefficients and will send the
extra point to 0. For example, for the singularity defined by adding the point
k
n (9, 1,−2,−3), we define the map by 2x2 + x3. This can be traced to the first
linear relation in the above table, given by the coefficients (0, 2, 1, 0, 0). This
works because we dropped the 5th coordinate, and the corresponding entry in
the relation was 0. Note that the vertex (0, 0, 0, 0) is sent to 0, together with
the vertices (1, 0, 0, 0) and (0, 0, 0, 1). The vertex (0, 1, 0, 0) is sent to 2, and the
vertex (0, 0, 1, 0) is sent to 1. This will work for each quintuple when we drop a
coordinate with entry 0 for one of the relations in the table. Fixing any relation,
if the entry is not 0, but 2, we can get another relation by subtracting the given
one from (2, 2, 2, 2, 2), and then do the same. Finally, if the entry is 1, we can
subtract from the relation (1, 1, 1, 1, 1) and get a relation with coefficients −1,
0, and 1. The same construction then produces a map from ID to ZZ that maps
the vertices of ∆ to {−1, 0, 1}.

The same idea works for the cases i and ii. In fact, for the case i the width
is 1, using the relation (1, 1, 0, 0, 0, ) and for the case ii we can use one of the
relations (2, 1, 0, 0, 0) and (0, 0, 2, 1, 0). This completes the proof.

Remark 1 The above theorem cannot be extended to all 4-dimensional
empty lattice simplices. Consider the simplex with vertices (0, 0, 0, 0), (1, 0, 0, 0),
(0, 1, 0, 0), (0, 0, 1, 0), and (6, 14, 17, 65). It has width 4, and is the only simplex
of width 4 among simplices of determinant at most 1000 (cf. [6]).

Remark 2 Even though dropping one of the five coordinates from a given
quintuple gives five different cyclic quotient singularities, the corresponding
empty simplices are the same. Indeed, this simplex can be described as sitting
in the affine subspace of IR5 of points with sum of coordinates 1, with vertices
(1, 0, 0, 0, 0), (0, 1, 0, 0, 0), (0, 0, 1, 0, 0), (0, 0, 0, 1, 0), and (0, 0, 0, 0, 1). The lat-
tice is the restriction to this affine subspace of a lattice in IR5 that is obtained
from ZZ5 by adding multiples of k

n (a1, a2, a3, a4, a5), where (a1, a2, a3, a4, a5) is
the given quintuple. When we drop a coordinate, we project to IR4, sending one
of the vertices of the simplex to (0, 0, 0, 0). This projection is an isomorphism
between the lattice described above and the lattice described in the proof of
Theorem 2.
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