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1. INTRODUCTION. We discuss a class of problems about the congruence or sim-
ilarity of three-dimensional polyhedra. The basic format is the following:

Problem 1.1. Given two polyhedra in R3 which have the same combinatorial struc-
ture (e.g., both are hexahedra with four-sided faces), determine whether a given set of
measurements is sufficient to ensure that the polyhedra are congruent or similar.

We will make this more specific by specifying what sorts of measurements will
be allowed. For example, in much of the paper, allowed measurements will include
distances between pairs of vertices, angles between edges, angles between two inter-
secting face diagonals (possibly on different faces with a common vertex) or between
a face diagonal and an edge, and dihedral angles (that is, angles between two adjoin-
ing faces). One motivation for these choices is given below. Sometimes we are more
restrictive, for example, allowing only distance measurements.

In two dimensions this was a fundamental question answered by Euclidean ge-
ometers, as (we hope) every student who takes geometry in high school learns. If the
lengths of the corresponding sides of two triangles are equal, then the triangles are
congruent. The SAS, ASA, and AAS theorems are equally well known. The extension
to other shapes is not often discussed, but we will have some remarks about the pla-
nar problem as well. It is surprising to us that beyond the famous theorem of Cauchy
discussed below, we have been unable to find much discussion of the problems we con-
sider in the literature, though we think it is almost certain that they have been studied
in the past. We would be appreciative if any reader can point us to relevant results.

Our approach will usually be to look at the problem locally. If the two polyhedra
are almost congruent, and agree in a certain set of measurements, are they congruent?
At first glance this looks like a basic question in what is known as rigidity theory, but
a little thought shows that it is different. In rigidity theory, attention is paid to relative
positions of vertices, viewing these as connected by inextensible rods which are hinged
at their ends and so can rotate relative to each other, subject to constraints imposed by
the overall structure of rods. In our problem there is the additional constraint that in
any movement of the vertices, the combinatorial structure of the polyhedron cannot
change. In particular, any vertices that were coplanar before the movement must be
coplanar after the movement. This feature seems to us to produce an interesting area
of study.

Our original motivation for considering this problem came from a very practical
question encountered by one of us (SPH). If one attempts to make solid wooden models
of interesting polyhedra, using standard woodworking equipment, it is natural to want
to check how accurate these models are.1 As a mathematician one may be attracted
first to the Platonic solids, and of these, the simplest to make appears to be the cube.
(The regular tetrahedron looks harder, because non-right angles seem harder to cut
accurately.)

doi:10.4169/000298910X480081
1The usual method of constructing a polyhedron is by folding a paper shell.
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It is possible to purchase lengths of wood with a square cross section, called “turn-
ing squares” because they are mostly used in lathes. To make a cube, all one has to do
is use a saw to cut off the correct length piece from a turning square. Of course, one
has to do so in a plane perpendicular to the planes of sides of the turning square. It is
obvious that there are several degrees of freedom, meaning several ways to go wrong.
The piece cut off could be the wrong length, or you could cut at the wrong angle, or
perhaps the cross section wasn’t square to begin with. So, you start measuring to see
how well you have done.

In this measurement, though, it seems reasonable to make some assumptions. The
basic one of interest here is that the saw cuts off a planar slice. You also assume that
this was true at the sawmill where the turning square was made. So you assume that
you have a hexahedron—a polyhedron with six faces, all of which are quadrilaterals.
Do you have a cube? At this point you are not asking a question addressed by standard
rigidity theory.

One’s first impulse may be to measure all of the edges of the hexahedron, with the
thought that if these are equal, then it is indeed a cube. This is quickly seen to be false,
because the faces could be rhombi. Another intriguing possibility that we considered
early on is that measuring the twelve face diagonals might suffice. However, we found
some examples showing that this was not the case, and David Allwright [2] gave a
short and elegant quaternion-based classification of all hexahedra with equal face di-
agonals. See also an earlier discussion of this problem in [13].2 Clearly some other
configuration of measurements, perhaps including angles, is necessary. It did not take
long to come up with several sets of 12 measurements which did the job, but a proof
that this number was necessary eluded us.

In our experience most people, even most mathematicians, who are presented with
this problem do not see an answer immediately. Apparently the cube is harder than
it looks, and so one would like a simpler problem to get some clues. The tetrahedron
comes to mind, and so one asks how many measurements are required to establish that
a polyhedron with four triangular faces is a regular tetrahedron.

Now we turn to Cauchy’s theorem.

Theorem 1.2 (Cauchy, 1839). Two convex polyhedra with corresponding congruent
and similarly situated faces have equal corresponding dihedral angles.

If we measure the six edges of our triangular-faced object, and find them equal, then
we have established congruence of the faces of our object to those of a tetrahedron.
Cauchy’s theorem tells us that the dihedral angles are the same and this implies the
desired congruence.

For a tetrahedron this result is fairly obvious, but for the two other Platonic solids
with triangular faces, namely the octahedron and the icosahedron, it is less so. Hence
Cauchy’s theorem is of practical value to the (extremely finicky) woodworker, and
shows that for these objects, the number of edges is at least an upper bound on the
number of measurements necessary to prove congruence. From now on we will denote
the number of edges of our polyhedron by E , the number of vertices by V , and the
number of faces by F . We will only consider simply connected polyhedra, so that
Euler’s formula, V + F = E + 2, holds.

It is not hard to give an example showing the necessity of convexity in Cauchy’s
result, but it is one where the two polyhedra being compared are, in some sense, far

2The face diagonals of a hexahedron are equal when these diagonals form two congruent regular tetrahedra
whose edges intersect in pairs. As it turns out, this arrangement is not unique. We have included Allwright’s
analysis of the possibilities as Appendix A in the posting of this paper to www.arXiv.org.
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apart. It was not easy to determine if convexity was necessary for local congruence.
Can a nonconvex polyhedron with all faces triangular be perturbed smoothly through
a family of noncongruent polyhedra while keeping the lengths of all edges constant?
The answer is yes, as was proved in a famous and important paper by R. Connelly in
1979 [4].

Cauchy’s result also gives us an upper bound for the number of measurements nec-
essary to determine a unit cube: triangulate the cube by dividing each square face into
a pair of triangles. Then we have a triangular-faced object with eighteen edges, and by
Cauchy’s theorem those eighteen edge measurements suffice to determine the cube up
to congruence.

However, we can do better. Start by considering a square. We can approach this
algebraically by assuming that one vertex of the square is at (0, 0) in the plane. Without
loss of generality we can also take one edge along the x-axis, going from (0, 0) to
(x1, 0) for some x1 > 0. The remaining vertices are then (x2, x3) and (x4,x5) and this
leads to the conclusion that to determine five unknowns, we need five equations, and
so five measurements. For example, we could measure the four sides of the square and
one vertex angle, or we could measure a diagonal instead of the angle.

We then use this to study the cube. Five measurements show that one face is a square
of a specific size. Only four more are needed to specify an adjacent face, because of
the common edge, and the three more for one of the faces adjoining the first two. The
requirement that this is a hexahedron then implies that we have determined the cube
completely, with twelve measurements. This is a satisfying result because it shows that
E measurements suffice for a cube as well as for the triangular-faced Platonic solids.

However, as remarked earlier, at this stage we have not proved the necessity of
twelve measurements, only the sufficiency. One of the most surprising developments
for us in this work was that in fact, twelve are not necessary. It is possible to determine
a cube (including its size) with nine measurements of distances and face angles. The
reason, even more surprisingly, is that only four measurements are needed to determine
the congruence of a quadrilateral to a specific square, rather than five as seemed so
obvious in the argument above.

We will give the algorithm that determines a square in four measurements in the
final section of the paper, which contains a number of remarks about congruence of
polygons. For now, we proceed with developing a general method for polyhedra. This
method will also handle similarity problems, where the shape of the polyhedron is
specified up to a scale change. In determining similarity, only angle measurements are
involved. As the reader might expect, in general E − 1 measurements suffice, with one
additional length required to get congruence.

2. E MEASUREMENTS SUFFICE. In this section we prove that for a convex poly-
hedron P with E edges, there is a set of E measurements that, at least locally, suffices
to determine P up to congruence.

We restrict to convex polyhedra mostly for reasons of convenience: many of the
results below should be true in greater generality. (One problem with moving beyond
convex polyhedra is determining exactly what the term ‘polyhedron’ should mean: for
a recent attempt to give a general definition of the term ‘nonconvex polyhedron,’ see
the beautiful paper [9].) To avoid any ambiguity we begin with a precise definition of
convex polyhedron.

Definition 2.1. A closed half-space is a subset of R3 of the form { (x, y, z) ∈ R3 |
ax + by + cz + d ≥ 0 } with (a, b, c) �= (0, 0, 0). A convex polyhedron is a subset P
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of R3 which is bounded, does not lie in any plane, and can be expressed as an intersec-
tion of finitely many closed half-spaces.

The vertices, edges, and faces of a convex polyhedron P can be defined in terms
of intersections of P with suitable closed half-spaces. For example, a face of P is a
subset of P of the form P ∩ H , for some closed half-space H , such that P ∩ H lies
entirely within some plane but is not contained in any line. Edges and vertices can be
defined similarly.

The original problem refers to two polyhedra with the same ‘combinatorial struc-
ture,’ so we give a notion of abstract polyhedron which isolates the combinatorial
information embodied in a convex polyhedron.

Definition 2.2. The underlying abstract polyhedron of a convex polyhedron P is the
triple (VP,FP ,IP), where VP is the set of vertices of P , FP is the set of faces of P ,
and IP ⊂ VP × FP is the incidence relation between vertices and faces; that is, (v, f )

is in IP if and only if the vertex v lies on the face f .

Thus to say that two polyhedra P and Q have the same combinatorial structure is
to say that their underlying abstract polyhedra are isomorphic; that is, there are bi-
jections βV : VP → VQ and βF : FP → FQ that respect the incidence relation: (v, f )

is in IP if and only if (βV (v), βF( f )) is in IQ . Note that there is no need to record
information about the edges; we leave it to the reader to verify that the edge data and
incidence relations involving the edges can be recovered from the incidence struc-
ture (VP,FP ,IP). The cardinality of the set IP is twice the number of edges of P ,
since

|IP | =
∑
f ∈FP

(number of vertices on f ) =
∑
f ∈FP

(number of edges on f )

and the latter sum counts each edge of P exactly twice.
For the remainder of this section, we fix a convex polyhedron P and write V , E , and

F for the numbers of vertices, edges, and faces of P , respectively. Let � = (V,F ,I)

be the underlying abstract polyhedron. We are interested in determining which sets
of measurements are sufficient to determine P up to congruence. A natural place to
start is with a naive dimension count: how many degrees of freedom does one have in
specifying a polyhedron with the same combinatorial structure as P?

Definition 2.3. A realization of � = (V,F ,I) is a pair of functions (αV , αF ) where
αV : V → R3 gives a point for each v in V , αF : F → {planes in R3} gives a plane for
each f in F , and the point αV(v) lies on the plane αF ( f ) whenever (v, f ) is in I .

Given any convex polyhedron Q together with an isomorphism β : (VQ,FQ,IQ) ∼=
(V,F ,I) of incidence structures we obtain a realization of �, by mapping each vertex
of P to the position of the corresponding (under β) vertex of Q and mapping each face
of P to the plane containing the corresponding face of Q. In particular, P itself gives
a realization of �, and when convenient we’ll also use the letter P for this realiza-
tion. Conversely, while not every realization of � comes from a convex polyhedron in
this way, any realization of � that’s sufficiently close to P in the natural topology for
the space of realizations gives—for example, by taking the convex hull of the image
of αV —a convex polyhedron whose underlying abstract polyhedron can be identified
with �. So the number of degrees of freedom is the dimension of the space of realiza-
tions of � in a neighborhood of P .
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Now we can count degrees of freedom. There are 3V degrees of freedom in speci-
fying αV and 3F in specifying αF . So if the |I| = 2E ‘vertex-on-face’ conditions are
independent in a suitable sense then the space of all realizations of � should have di-
mension 3V + 3F − 2E or—using Euler’s formula—dimension E + 6. We must also
take the congruence group into account: we have three degrees of freedom available
for translations, and a further three for rotations. Thus if we form the quotient of the
space of realizations by the action of the congruence group, we expect this quotient to
have dimension E . This suggests that E measurements should suffice to pin down P
up to congruence.

In the remainder of this section we show how to make the above naive dimen-
sion count rigorous, and how to identify specific sets of E measurements that suf-
fice to determine congruence. The main ideas are: first, to use a combinatorial lemma
(Lemma 2.7) to show that the linearizations of the vertex-on-face conditions are lin-
early independent at P , allowing us to use the inverse function theorem to show that the
space of realizations really does have dimension E + 6 near P and to give an infinites-
imal criterion for a set of measurements to be sufficient (Theorem 2.10), and second,
to use an infinitesimal version of Cauchy’s rigidity theorem to identify sufficient sets
of measurements.

The various measurements that we’re interested in can be thought of as real-valued
functions on the space of realizations of � (defined at least on a neighborhood of P)
that are invariant under congruence. We single out one particular type of measure-
ment: given two vertices v and w of P that lie on a common face, the face distance
associated to v and w is the function that maps a realization Q = (αV , αF ) of � to the
distance from αV(v) to αV(w). In other words, it corresponds to the measurement of
the distance between the vertices of Q corresponding to v and w. The main result of
this section is the following theorem.

Theorem 2.4. Let P be a convex polyhedron with underlying abstract polyhe-
dron (V,F ,I). Then there is a set S of face distances of P such that (i) S has
cardinality E, and (ii) locally near P, the set S completely determines P up to con-
gruence in the following sense: there is a positive real number ε such that for any
convex polyhedron Q and isomorphism β : (V,F ,I) ∼= (VQ,FQ,IQ) of underlying
abstract polyhedra, if

1. each vertex v of P is within distance ε of the corresponding vertex βV(v) of Q,
and

2. m(Q) = m(P) for each measurement m in S,

then Q is congruent to P.

Rephrasing:

Corollary 2.5. Let P be a convex polyhedron with E edges. Then there is a set of E
measurements that is sufficient to determine P up to congruence amongst all nearby
convex polyhedra with the same combinatorial structure as P.

We’ll prove this theorem as a corollary of Theorem 2.10 below, which gives con-
ditions for a set of measurements to be sufficient. We first fix some notation. Choose
numberings v1, . . . , vV and f1, . . . , fF of the vertices and faces of �, and write
(xi (P), yi (P), zi (P)) for the coordinates of vertex vi of P . We translate P if nec-
essary to ensure that no plane that contains a face of P passes through the origin.
This allows us to give an equation for the plane containing f j in the form a j (P)x +
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b j (P)y + c j (P)z = 1 for some nonzero triple of real numbers (a j (P), b j (P), c j (P));
similarly, for any realization Q of � that’s close enough to P the i th vertex of Q is
a triple (xi (Q), yi (Q), zi (Q)) and the j th plane of Q can be described by an equa-
tion a j (Q)x + b j (Q)y + c j (Q)z = 1. Hence the coordinate functions (x1, y1, z1,

x2, y2, z2, . . . , a1, b1, c1, . . . ) give an embedding into R3V +3F of some neighborhood
of P in the space of realizations of �.

For every pair (vi , f j ) in I a realization Q should satisfy the ‘vertex-on-face’ con-
dition

a j (Q)xi (Q) + b j (Q)yi (Q) + c j (Q)zi (Q) = 1.

Let φi, j be the function from R3V +3F to R defined by

φi, j (x1, y1, z1, . . . , a1, b1, c1, . . . ) = a j xi + b j yi + c j zi − 1,

and let φ : R3V +3F → R2E be the vector-valued function whose components are the
φi, j as (vi , f j ) runs over all elements of I (in some fixed order). Then a vector in
R3V +3F gives a realization of � if and only if it maps to the zero vector under φ.

We next present a combinatorial lemma, Lemma 2.7, that appears as an essential
component of many proofs of Steinitz’s theorem characterizing edge graphs of poly-
hedra. (See Lemma 2.3 of [9], for example.) We give what we believe to be a new proof
of this lemma. First, we make an observation that is an easy consequence of Euler’s
theorem.

Lemma 2.6. Suppose that � is a planar bipartite graph of order r . Then there is an
ordering n1, n2, . . . , nr of the nodes of � such that each node ni is adjacent to at most
three preceding nodes.

Proof. We give a proof by induction on r . If r ≤ 3 then any ordering will do. If r >

3 then we can apply a standard consequence of Euler’s formula (see, for example,
Theorem 16 of [3]), which states that the number of edges in a bipartite planar graph
of order r ≥ 3 is at most 2r − 4. If every node of � had degree at least 4 then the
total number of edges would be at least 2r , contradicting this result. Hence every
nonempty planar bipartite graph has a node of degree at most 3; call this node nr .
Now remove this node (and all incident edges), leaving again a bipartite planar graph.
By the induction hypothesis, there is an ordering n1, . . . , nr−1 satisfying the conditions
of the theorem, and then n1, . . . , nr gives the required ordering.

Lemma 2.7. Let P be a convex polyhedron. Consider the set V ∪ F consisting of all
vertices and all faces of P. It is possible to order the elements of this set such that
every vertex or face in this set is incident with at most three earlier elements of V ∪ F .

Proof. We construct a graph � of order V + F as follows. � has one node for each
vertex of P and one node for each face of P . Whenever a vertex v of P lies on a face f
of P we introduce an edge of � connecting the nodes corresponding to v and f . Since
P is convex, the graph � is planar; indeed, by choosing a point on each face of P , one
can draw the graph � directly on the surface of P and then project onto the plane. (The
graph � is known as the Levi graph of the incidence structure � = (V,F ,I).) Now
apply the preceding lemma to this graph.

We now show that the functions φi, j are independent in a neighborhood of P . Write
Dφ(P) for the derivative of φ at P; as usual, we regard Dφ(P) as a 2E-by-(3V + 3F)

matrix with real entries.
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Lemma 2.8. The derivative Dφ(P) has rank 2E.

In more abstract terms, this lemma implies that the space of all realizations of � is,
in a neighborhood of P , a smooth manifold of dimension 3V + 3F − 2E = E + 6.

Proof. We prove that there are no nontrivial linear relations on the 2E rows of Dφ(P).
To illustrate the argument, suppose that the vertex v1 lies on the first three faces and no
others. Placing the rows corresponding to φ1,1, φ1,2, and φ1,3 first, and writing simply x1

for x1(P) and similarly for the other coordinates, the matrix Dφ(P) has the following
structure:

Dφ(P) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

a1 b1 c1 0 . . . 0 x1 y1 z1 0 0 0 0 0 0 0 . . . 0
a2 b2 c2 0 . . . 0 0 0 0 x2 y2 z2 0 0 0 0 . . . 0
a3 b3 c3 0 . . . 0 0 0 0 0 0 0 x3 y3 z3 0 . . . 0

0 0 0
...

...
... ∗ ∗ ∗

0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

Here the vertical double bar separates the derivatives for the vertex coordinates from
those for the face coordinates. Since the faces f1, f2, and f3 cannot contain a common
line, the 3-by-3 submatrix in the top left corner is nonsingular. Since v1 lies on no other
faces, all other entries in the first three columns are zero. Thus any nontrivial linear
relation of the rows cannot involve the first three rows. So Dφ(P) has full rank (that
is, rank equal to the number of rows) if and only if the matrix obtained from Dφ(P) by
deleting the first three rows has full rank—that is, rank 2E − 3. Extrapolating from the
above, given any vertex that lies on exactly three faces, the three rows corresponding to
that vertex may be removed from the matrix Dφ(P), and the new matrix has full rank if
and only if Dφ(P) does. The dual statement is also true: exchanging the roles of vertex
and face and using the fact that no three vertices of P are collinear we see that for any
triangular face f we may remove the three rows corresponding to f from Dφ(P),
and again the resulting matrix has full rank if and only if Dφ(P) does. Applying this
idea inductively, if every vertex of P lies on exactly three faces (as in for example the
regular tetrahedron, cube, or dodecahedron), or dually if every face of P is triangular
(as in for example the tetrahedron, octahedron, or icosahedron) then the lemma is
proved. For the general case, we choose an ordering of the faces and vertices as in
Lemma 2.7. Then, starting from the end of this ordering, we remove faces and vertices
from the list one-by-one, removing corresponding rows of Dφ(P) at the same time.
At each removal, the new matrix has full rank if and only if the old one does. But after
removing all faces and vertices we’re left with a 0-by-2E matrix, which certainly has
rank 0. So Dφ(P) has rank 2E .

We now prove a general criterion for a set of measurements to be sufficient. Given
the previous lemma, this criterion is essentially a direct consequence of the inverse
function theorem.

Definition 2.9. A measurement for P is a smooth function m defined on an open
neighborhood of P in the space of realizations of �, such that m is invariant under
rotations and translations.

Given any such measurement m, it follows from Lemma 2.8 that we can extend m
to a smooth function on a neighborhood of P in R3V +3F . Then the derivative Dm(P)
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is a row vector of length 3V + 3F , well-defined up to a linear combination of the rows
in Dφ(P).

Theorem 2.10. Let S be a finite set of measurements for � near P. Let ψ : R3V +3F →
R|S| be the vector-valued function obtained by combining the measurements in S, and
write Dψ(P) for its derivative at P, an |S|-by-(3V + 3F) matrix whose rows are the
derivatives Dm(P) for m in S. Then the matrix

D(φ, ψ)(P) =
(

Dφ(P)

Dψ(P)

)

has rank at most 3E, and if it has rank exactly 3E then the measurements in S are
sufficient to determine congruence: that is, for any realization Q of �, sufficiently
close to P, if m(Q) = m(P) for all m in S then Q is congruent to P.

Proof. Let Q(t) be any smooth one-dimensional family of realizations of � such
that Q(0) = P and Q(t) is congruent to P for all t . Since each Q(t) is a valid realiza-
tion, φ(Q(t)) = 0 for all t . Differentiating and applying the chain rule at t = 0 gives
the matrix equation Dφ(P)Q′(0) = 0 where Q′(0) is thought of as a column vector
of length 3V + 3F . The same argument applies to the map ψ : since Q(t) is congru-
ent to P for all t , ψ(Q(t)) = ψ(P) is constant and Dψ(P)Q′(0) = 0. We apply this
argument first to the three families where Q(t) is P translated t units along the x-axis,
y-axis, or z-axis respectively, and second when Q(t) is P rotated by t radians around
the x-axis, y-axis, or z-axis. This gives six column vectors that are annihilated by both
Dφ(P) and Dψ(P). Writing G for the (3V + 3F)-by-6 matrix obtained from these
column vectors, we have the matrix equation

(
Dφ(P)

Dψ(P)

)
G = 0.

It’s straightforward to compute G directly; we leave it to the reader to check that the
transpose of G is

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 1 0 0 . . . −a2
1 −a1b1 −a1c1 −a2

2 −a2b2 −a2c2 . . .

0 1 0 0 1 0 . . . −a1b1 −b2
1 −b1c1 −a2b2 −b2

2 −b2c2 . . .

0 0 1 0 0 1 . . . −a1c1 −b1c1 −c2
1 −a2c2 −b2c2 −c2

2 . . .

0 −z1 y1 0 −z2 y2 . . . 0 −c1 b1 0 −c2 b2 . . .

z1 0 −x1 z2 0 −x2 . . . c1 0 −a1 c2 0 −a2 . . .

−y1 x1 0 −y2 x2 0 . . . −b1 a1 0 −b2 a2 0 . . .

⎞
⎟⎟⎟⎟⎟⎟⎠

For the final part of this argument, we introduce a notion of normalization on the
space of realizations of �. We’ll say that a realization Q of � is normalized if
v1(Q) = v1(P), the vector from v1(Q) to v2(Q) is in the direction of the positive x-
axis, and v1(Q), v2(Q), and v3(Q) all lie in a plane parallel to the xy-plane, with
v3(Q) lying in the positive y-direction from v1(P) and v2(P). In terms of coordi-
nates we require that x1(P) = x1(Q) < x2(Q), y1(P) = y1(Q) = y2(Q) < y3(Q),
and z1(P) = z1(Q) = z2(Q) = z3(Q). Clearly every realization Q of � is congru-
ent to a unique normalized realization, which we’ll refer to as the normalization
of Q. Note that the normalization operation is a continuous map on a neighborhood
of P . Without loss of generality, rotating P around the origin if necessary, we may
assume that P itself is normalized. The condition that a realization Q be normal-
ized gives six more conditions on the coordinates of Q, corresponding to six extra
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functions χ1, . . . , χ6, which we use to augment the function (φ, ψ) : R3V +3F →
R2E+|S| to a function (φ, ψ, χ) : R3V +3F → R2E+|S|+6. These six functions are sim-
ply χ1(Q) = x1(Q) − x1(P), χ2(Q) = y1(Q) − y1(P), χ3(Q) = z1(Q) − z1(P),
χ4(Q) = y2(Q) − y1(P), χ5(Q) = z2(Q) − z1(P) and χ6(Q) = z3(Q) − z1(P).

Claim 2.11. The 6-by-6 matrix Dχ(P)G is invertible.

Proof. The matrix for G was given earlier; the product Dχ(P)G is easily verified to
be

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 0 z1 −y1

0 1 0 −z1 0 x1

0 0 1 y1 −x1 0
0 1 0 −z2 0 x2

0 0 1 y2 −x2 0
0 0 1 y3 −x3 0

⎞
⎟⎟⎟⎟⎟⎠

which has nonzero determinant (y3 − y1)(x2 − x1)
2.

As a corollary, the columns of G are linearly independent, which proves that the
matrix in the statement of the theorem has rank at most 3E . Similarly, the rows of
Dχ(P) must be linearly independent, and moreover no nontrivial linear combination
of those rows is a linear combination of the rows of D(φ, ψ)(P). Hence if D(φ, ψ)(P)

has rank exactly 3E then the augmented matrix

⎛
⎝Dφ(P)

Dψ(P)

Dχ(P)

⎞
⎠

has rank 3E + 6. Hence the map (φ, ψ, χ) has injective derivative at P , and so by the
inverse function theorem the map (φ, ψ, χ) itself is injective on a neighborhood of P
in R3V +3F . Now suppose that Q is a polyhedron as in the statement of the theorem.
Let R be the normalization of Q. Then φ(R) = φ(Q) = φ(P) = 0, ψ(R) = ψ(Q) =
ψ(P), and χ(R) = χ(P). So if Q is sufficiently close to P , then by continuity of the
normalization map R is close to P and hence R = P by the inverse function theorem.
So Q is congruent to R = P as required.

Definition 2.12. Call a set S of measurements sufficient for P if the conditions of the
above theorem apply: that is, the matrix D(φ, ψ)(P) has rank 3E .

Corollary 2.13. Given a sufficient set S of measurements, there’s a subset of S of
size E that’s also sufficient.

Proof. Since the matrix D(φ, ψ)(P) has rank 3E by assumption, and the 2E rows
coming from Dφ(P) are linearly independent by Lemma 2.8, we can find E rows
corresponding to measurements in S such that Dφ(P) together with those E rows has
rank 3E .

The final ingredient that we need for the proof of Theorem 2.4 is the infinitesimal
version of Cauchy’s rigidity theorem, originally due to Dehn, and later given a simpler
proof by Alexandrov. We phrase it in terms of the notation and definitions above.

240 c© THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 117



Theorem 2.14. Let P be a convex polyhedron, and suppose that Q(t) is a continuous
family of polyhedra specializing to P at t = 0. Suppose that the real-valued function
m ◦ Q is stationary (that is, its derivative vanishes) at t = 0 for each face distance m.
Then Q′(0) is in the span of the columns of G above.

Proof. See Chapter 10, Section 1 of [1]. See also Section 5 of [7] for a short self-
contained version of Alexandrov’s proof.

Corollary 2.15. The set of all face distances is sufficient.

Proof. Let S be the collection of all face distances. Then Theorem 2.14 implies that
for any column vector v such that D(φ, ψ)(P)v = 0, v is in the span of the columns
of G. Hence the kernel of the map D(φ, ψ)(P) has dimension exactly 6 and so by the
rank-nullity theorem together with Euler’s formula the rank of D(φ, ψ)(P) is 3V +
3F − 6 = 3E .

Now Theorem 2.4 follows from Corollary 2.15 together with Corollary 2.13.
Finding an explicit sufficient set of E face distances is now a simple matter of turn-

ing the proof of 2.13 into a constructive algorithm. First compute the matrices Dφ(P)

and Dψ(P) (the latter corresponding to the set S of all face distances). Initialize a
variable T to the empty set. Now iterate through the rows of Dψ(P): for each row, if
that row is a linear combination of the rows of Dφ(P) and the rows of Dψ(P) corre-
sponding to measurements already in T , discard it. Otherwise, add the corresponding
measurement to T . Eventually, T will be a sufficient set of E face distances.

We have written a program in the Python programming language to implement
this algorithm. This program is attached as Appendix B of the online version of this
paper, available at www.arXiv.org. We hope that the comments within the program are
sufficient explanation for those who wish to try it, and we thank Eric Korman for a
number of these comments.

The algorithm works more generally. Given any sufficient set of measurements (in
the sense of Definition 2.12), which may include angles, it will extract a subset of
E measurements which is sufficient. It will also find a set of angle measurements
which determines a polyhedron up to similarity. As an example we consider a similar-
ity calculation for a dodecahedron. Our allowed measurements will be the set of angles
formed by pairs of lines from a vertex to two other vertices on a face containing that
vertex. In Figure 1 we show a set of 29 such angles which the program determined to
characterize a dodecahedron up to similarity.

Figure 1. A set of 29 angles which locally determine a dodecahedron up to similarity.

There is no restriction of the method to Platonic solids. Data for a number of other
examples can be found in the program listing. Among these examples are several
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which are nonconvex. The program appears to give a result for many of these, but
we have not extended the theory beyond the convex case.

2.1. Related Work. The results and ideas of Section 2 are, for the most part, not new.
The idea of an abstract polyhedron represented by an incidence structure, and its re-
alizations in R3, appears in Section 2 of [14]. In Corollary 15 of that paper, Whiteley
proves that the space of realizations of a ‘spherical’ incidence structure (equivalent to
an incidence structure arising from a convex polyhedron) has dimension E . The essen-
tial combinatorial content of the proof of Lemma 2.8 is often referred to as ‘Steinitz’s
lemma,’ and a variety of proofs appear in the literature ([10], [8]); we believe that the
proof above is new.

3. HOW MANY MEASUREMENTS ARE ENOUGH? Theorem 2.4 provides an
upper bound for the number of distance/angle measurements needed to describe a
polyhedron with given combinatorial structure. But it turns out that many interest-
ing polyhedra can be described with fewer measurements. In particular, a cube can
be determined by 9 distance or angle measurements instead of 12. Also, 10 distance
measurements (no angles used) suffice.

This phenomenon appears already in dimension two. Much of this section deals
with polygons and sets of points in the plane. In this simpler setting one can often
find precisely the smallest number of measurements needed. Extending these results
to polyhedra, with or without fixing their combinatorial structure, certainly deserves
further study.

So, we turn our attention to polygons. Unlike polyhedra, their combinatorial struc-
ture is relatively simple, especially if we restrict to the case of convex polygons. One
can argue about the kinds of measurements that should be allowed, but the following
three seem the most natural to us.

Definition 3.1. Suppose that A1 A2 · · · An is a convex polygon. (More generally, sup-
pose {A1, A2, . . . , An} is a sequence of distinct points on the plane). Then the follow-
ing are called simple measurements:

1. distances
∣∣Ai A j

∣∣ , i �= j,

2. angles � Ai A j Ak for i, j, k distinct,

3. ‘diagonal angles’ between Ai A j and Ak Al .

Other quantities might also be considered, like the distance from Ai to A j Ak , but in
practice these would require several measurements.

It is natural to ask how many simple measurements are needed to determine a poly-
gon up to isometry. In the case of a triangle the answer is 3. As mentioned earlier, there
are a few ways to do it. We note that two sides of a triangle and an angle adjacent to
one of the sides do not always determine the triangle uniquely, but they do determine
it locally (as in part (ii) of Theorem 2.4).

It is easy to see that for any n-gon P = A1 · · · An the following (2n − 3) mea-
surements suffice: the n − 1 distances |A1 A2|, |A2 A3|, . . . , |An−1 An|, together with
the n − 2 angles � A1 A2 A3, . . . , � An−2 An−1 An . Observe also that instead of us-
ing distances and angles, one can use only distances, by substituting |Ai−1 Ai+1| for
� Ai−1 Ai Ai+1.

The following theorem implies that for most polygons one cannot get away with
fewer measurements. To make this rigorous, we will assume that A1 = (0, 0) , and
that A2 = (x2, 0) for some x2 > 0. It then becomes obvious that to each polygon
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we can associate a point in R2n−3, corresponding to the undetermined coordinates
x2, x3, y3, . . . , xn, yn with (xi , yi ) �= (

x j , y j

)
for i �= j .

Theorem 3.2. Denote by S the set of all points in R2n−3 obtained by the procedure
above from those polygons that can be determined up to isometry by fewer than 2n − 3
measurements. Then S has measure zero.

Proof. Observe that any set of 2n − 3 specific measurements is a smooth map from
R2n−3 to itself. There are only a finite number of such maps, with measurements chosen
from the types 1, 2, and 3. At a noncritical point, the map has an inverse. The result is
then a consequence of Sard’s theorem (Chapter 2, Theorem 8 of [12]).

The above theorem is clearly not new, and we claim no originality for its statement
or proof. For n = 3 it implies that for a generic triangle one needs at least three simple
measurements. This is true for any triangle, because two measurements are clearly not
enough. For n = 4 the theorem implies that a generic convex quadriateral requires five
measurements. One can be tempted to believe that no quadrilateral can be described by
fewer than five measurements. In fact, the first reaction of most mathematicians seems
to be that if a general case requires five measurements, all special cases do so as well.
The following example seems to confirm this intuition.

Example 3.3. Suppose P = A1 A2 A3 A4 is a quadrilateral. Suppose � A2 A1 A4 = α1,
� A3 A4 A1 = α2, |A1 A2| = d1, |A3 A4| = d2, and � A1 A2 A3 = α3. For most polygons
P these five measurements are sufficient to determine P up to congruence. However
for some P they are not sufficient. For example, if P is a square, there are infinitely
many polygons with the same measurements: all rectangles with the same |A1 A2|.

The above example suggests that the special polygons require at least as many mea-
surements as the generic ones. So (2n − 3) should be the smallest number of simple
measurements required for any n-gon. This reasoning is reinforced by the argument in
Section 1 that a square is determined by five unknowns, and so we need five measure-
ments.

The simplest way to raise doubt about this is to observe that the single equation
x2 + y2 = 0 determines both x and y. (Algebraic geometers should note that we are
dealing here with real, not complex, varieties.) In fact, the intuition that 2n − 3 is the
minimum number of required measurements in all cases is very far from the truth:
many interesting n-gons can be determined by fewer than (2n − 3) simple measure-
ments.

The simplest example in this direction is not usually considered a polygon. Suppose
A1 A2 A3 A4 is a set of four points in the plane that lie on the same line, in the natural
order. Then the four distances |A1 A4|, |A1 A2|, |A2 A3|, and |A3 A4| determine the con-
figuration up to isometry. This means that any subset of four points in the plane with
the same corresponding measurements is congruent to A1 A2 A3 A4. The proof of this
is, of course, a direct application of the triangle inequality:

|A1 A4| ≤ |A1 A3| + |A3 A4| ≤ |A1 A2| + |A2 A3| + |A3 A4|.
One can think of A1 A2, A2 A3, A3 A4, and A1 A4 as rods of fixed length. When
|A1 A4| = |A1 A2| + |A2 A3| + |A3 A4|, the configuration allows no room for wiggling;
all rods must be lined up. This degenerate example easily generalizes to n points and
n distance measurements. More surprisingly, it generalizes to some convex polygons.
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Definition 3.4. A polygon is called exceptional if it can be described locally by fewer
than 2n − 3 measurements.

Obviously, no triangles are exceptional, in the above sense. But already for quadri-
laterals, there exist some exceptional ones that could be defined by four rather than
five measurements. The biggest surprise for us was the following observation.

Proposition 3.5. All squares are exceptional! Specifically, for a square ABCD the fol-
lowing four measurements distinguish it among all quadrilaterals:

|AB|, |AC |, |AD|, � BCD.

Proof. Suppose A′ B ′C ′ D′ is another quadrilateral with |A′ B ′| = |AB|, |A′C ′| =
|AC |, |A′ D′| = |AD|, and � B ′C ′ D′ = � BCD. If |AB| = d, this means that |A′ B ′| =
|A′ D′| = d, |A′C ′| = d

√
2, and � B ′C ′ D′ = π

2 . We claim that the quadrilateral
A′ B ′C ′ D′ is congruent to the square ABCD. Indeed, consider A′ fixed. Then B ′
and D′ lie on the circle of radius d centered at A′, while C ′ lies on the circle of radius
d
√

2 centered at A′. Then π

2 is the maximal possible value of the angle B ′C ′ D′ and it
is achieved when � A′ B ′C ′ = � A′ D′C ′ = π

2 , making A′ B ′C ′ D′ a square, with the side
|A′ B ′| = d.

The idea of showing that a particular polygon occurs when some angle or length is
maximized within given constraints, and that there is only one such maximum, is at the
heart of all of the examples in this section. It is related to the notion of second-order
rigidity of tensegrity networks; see [6] and [11].

One immediate generalization of this construction is the following 3-parameter fam-
ily of exceptional quadrilaterals.

Proposition 3.6. Suppose that ABCD is a convex quadrilateral with � ABC = � CDA
= π

2 . Then ABCD is exceptional. It is determined up to congruence by the following
four measurements: |AB|, |AD|, |AC|, and � BCD.

Proof. Consider an arbitrary quadrilateral ABCD with the same four measurements as
the quadrilateral that we are aiming for (note that we are not assuming that � ABC =
� CDA = π

2 ). We can consider the points A and C fixed in the plane. Then the points B
and D lie on two fixed circles around A, with radius |AB| and radius |AD|. Among all
such pairs of points on these circles, on opposite sides of AC, the maximum possible
value of � BCD is obtained for only one choice of B and D. This is the choice which
makes CB and CD tangent to the circles at B and D, and so � ABC and � ADC are right
angles, and the quadrilateral ABCD is congruent to the one we are aiming for.

This family of quadrilaterals includes all rectangles. In a sense it is the biggest
possible: one cannot hope for a four-parameter family requiring just four measure-
ments. Another such family is given below. Note that it includes all rhombi that are
not squares.

Proposition 3.7. For given points B and D, and given acute angles θ1 and θ2, choose
A and C so that � DAB = θ1, � DCB = θ2, and |AC| is as large as possible. Then this
determines a unique quadrilateral ABCD, up to congruence, and this quadrilateral
has the property that |AB| = |AD| and |CB| = |CD|.
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We leave the proof to the reader. It implies that for the set of quadrilaterals ABCD
such that AC is a perpendicular bisector of B D, and the angles � DAB and � DCB
are acute, the measurements |BD| , |AC|, � DAB, and � DCB are sufficient to determine
ABCD.

As David Allwright pointed out to the authors, one can further extend this example
to the situation when � DAB + � DCB < π .

The existence of so many exceptional quadrilaterals suggests that for bigger n it
may be possible to go well below the (2n − 3) measurements. This is indeed correct:
for every n there are polygons that can be defined by just n measurements.

Proposition 3.8. Suppose that A1 A2 · · · An is a convex polygon, with

� A1 A2 A3 = � A1 A3 A4 = · · · = � A1 Ak Ak+1 = · · · = � A1 An−1 An = π

2
.

Then A1 A2 · · · An is exceptional; moreover the distances |A1 A2|, |A1 An| and the
angles � Ak Ak+1 A1, 2 ≤ k ≤ n − 1 determine the polygon. Note that many such poly-
gons exist for every n.

Proof. Suppose � Ak Ak+1 A1 = αk, 2 ≤ k ≤ (n − 1). Then because of the law of sines
for the triangles �A1 Ak Ak+1, we obtain the following sequence of inequalities:

|A1 An| ≤ |A1 An−1|
sin αn−1

≤ |A1 An−2|
sin αn−1 · sin αn−2

≤ · · · ≤ |A1 A2|
sin αn−1 · · · · · sin α2

.

Equality is achieved if and only if all angles A1 Ak Ak+1 are right angles, which implies
the result.

One can ask whether an even smaller number of measurements might work for
some very special polygons. The following theorem shows that in a very strong sense
the answer is negative.

Theorem 3.9. For any sequence of distinct points A1, A2, . . . , An in the plane, with
n ≥ 3, one needs at least n simple measurements to determine it up to plane isometry.

Proof. The result is obvious if n = 3, so assume that n > 3. At least one distance
measurement is needed, and we can assume that it is |A1 A2|. We assume that A1 A2 is
fixed, so the positions of the other n − 2 points determine the set up to isometry. We
identify the ordered set of coordinates of these points with a point in R2(n−2) = R2n−4.
The set of all sequences of distinct points then corresponds to an open set U ⊂ R2n−4.
Each measurement of type 1, 2, or 3 determines a smooth submanifold V ⊂ U . The
following observation is the main idea of the proof.

Lemma 3.10. Suppose that x ∈ V . Then there exists an affine subspace W of R2n−4,

of dimension at least 2n − 6, which contains x and is such that for some open ball B
containing x we have W ∩ B ⊂ V .

Proof. The proof of this lemma involves several different cases, depending on the
kind of measurement used and whether A1 and/or A2 are involved. We give some ex-
amples, the other cases being similar. First suppose that the polygon is the unit square,
with vertices at A1 = (0, 0), A2 = (1, 0), A3 = (1, 1), and A4 = (0, 1). Suppose that
the measurement is the angle � A2 A1 A3. With A1 and A2 fixed, we are free to move
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A3 along the line y = x , and A4 arbitrarily. In this case, then, W could be three di-
mensional, one more than promised by the lemma. Second, again with the unit square,
suppose that the measurement is the distance from A3 to A4. In this case, we can move
A3 and A4 the same distance along parallel lines. Thus,

W = {(1 + c, 1 + d, c, 1 + d)}
is the desired two-dimensional affine space. Finally, suppose that n ≥ 5 and that the
measurement is the angle between A1 Ak and Al Am where 1, 2, k, l, m are distinct. In
this case we can move Al arbitrarily, giving two free parameters, and we can move
Am so that Al Am remains parallel to the original line containing these points. Since
the length |Al Am | can be changed, this gives a third parameter. Then the length A1 Ak

can be changed, giving a fourth, and the remaining n − 5 points can be moved, giving
2n − 10 more dimensions. In this case, W is 2n − 6 dimensional. We leave other cases
to the reader.

Continuing the proof of Theorem 3.9, we first show that k ≤ n − 3 additional mea-
surements are insufficient to determine the points A1, . . . , An . Recall that one mea-
surement, |A1 A2|, was already used. Suppose that a configuration x ∈ R2n−4 lies in
V = ∩k

i=1Vi , where Vi is the submanifold defined by the i th measurement. We will
prove that x is not an isolated point in V .

Denote the affine subspaces obtained from Lemma 3.10 corresponding to Vi and
x by Wi . Let W = W1 ∩ · · · ∩ Wk . Since each Wi has dimension at least 2n − 6, its
codimension in R2n−4 is less than or equal to 2.3 Hence

codimW ≤ codim W1 + · · · + codim Wk ≤ 2k ≤ 2 (n − 3)

so W must have dimension at least 2. Some neighborhood of x in W is contained in all
of the submanifolds V1, . . . , Vk . This neighborhood is then contained in V, showing
that x is not isolated.

The case k = n − 2 is trickier, because the dimensional count does not work in such
a simple way. If W = W1 ∩ · · · ∩ Wk �= {x}, then W has dimension at least 1, and we
can argue as before that x is not isolated in V . Now suppose that W = {x}. Then since
W ′ = W2 ∩ · · · ∩ Wk has dimension at least 2, it must be a two-dimensional affine
subspace intersecting the codimension-2 affine subspace W1 at the point x .

We now consider this situation in more detail. Denote the measurement defining
V1 by f1 : R2n−4 → R. The linearization of f1 at x is its derivative, D f1 (x) . For
measurements of types 1, 2, or 3 above it is not hard to see that D f1 (x) �= 0. If X is
the null space of the 1 × (2n − 4) matrix D f1 (x), then the tangent space of V1 at x
can be defined as the affine subspace Tx (V1) = x + X . This has dimension 2n − 5.
Since W1 has codimension 2, it is a codimension-1 subspace of Tx (V1). W ′ is not
contained in Tx (V1) , because W ′ and W1 span the entire R2n−4. Thus, the intersection
W ′ ∩ Tx (V1) is one-dimensional.

We wish to show that x is not isolated in V1 ∩ W ′. We consider the map g1 = f1|W ′ .
Because W ′ is not contained in Tx (V1) , Dg1(x) �= 0. So the implicit function theorem
implies that x is not an isolated zero of g1 in W ′, proving the theorem.

Similar ideas can be used to construct other interesting examples of exceptional
polygons and polyhedra. The following are worth mentioning.

3If V is an affine subspace of Rm , then it is of the form x + X , where X is a subspace of Rm . If the
orthogonal complement of X in Rm is Y , then the codimension of V is the dimension of Y .
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1. There exist tetrahedra determined by just five measurements, instead of the
generic six. In particular, if measurement of dihedral angles is permitted, the
regular tetrahedron can be determined using five measurements. It seems un-
likely that four would ever work.

2. There exist 5-vertex convex polyhedra that are characterized by just five mea-
surements. Moreover, four of the vertices are on the same plane, but, unlike in
the beginning of the paper, we do not have to assume this a priori! To construct
such an example, we start with an exceptional quadrilateral ABCD as in Propo-
sition 3.6, with |AD| < |AB|. We then add a vertex E outside of the plane of
ABCD so that � ADE = � AEB = π

2 . There are obviously many such polyhedra.
Now notice that the distances |AD|, |AC| and angles � AED, � ABE, � BCD com-
pletely determine the configuration.

3. As pointed out earlier, using four measurements for a square, one can deter-
mine the cube with just nine distance or angle measurements. Interestingly, one
can also use 10 distance measurements for a cube. If A1 B1C1 D1 is its base and
A2 B2C2 D2 is a parallel face, then the six distances between A1, B1, D1, and
A2 completely fix the relative position of these vertices. Then |A1C2|, |B2C2|,
|D2C2|, and |C1C2| determine the cube, because

|A1C2|2 ≤ |B2C2|2 + |D2C2|2 + |C1C2|2,
with equality only when the segments B2C2, D2C2, and C1C2 are perpendicular
to the corresponding faces of the tetrahedron A1 B1 D1 A2.

The last example shows that the problem is not totally trivial even when we only
use distance measurements. It is natural to ask for the smallest number of distance
measurements needed to fix a nondegenerate n-gon in the plane. We have the following
theorem.

Theorem 3.11. Suppose A1, A2, . . . , An is a sequence of points in the plane, with
no three of them on the same line. Then one needs at least min(2n − 3, 3n

2 ) distance
measurements to determine it up to a plane isometry.

Proof. We use induction on n. For n = 1 and n = 2 the statement is trivial. Sup-
pose that n ≥ 3 and that the statement is true for all sets of fewer than n points, and
that there is a nondegenerate configuration of n points, A1, A2, . . . , An, that is fixed
by k measurements where k < 2n − 3 and k < 3n

2 . Because k < 3n
2 , there is some

point Ai which is being used in less than three measurements. If it is only used in
one measurement, the configuration is obviously not fixed. So we can assume that it
is used in two distance measurements, |Ai A1| and |Ai A2|. Because A1, A2, and Ai

are not on the same line, the circle with radius |Ai A1| around A1 and the circle with
radius |Ai A2| around A2 intersect transversally at Ai . Now remove Ai and these two
measurements. By the induction assumption, the remaining system of (n − 1) points
admits a small perturbation. This small perturbation leads to a small perturbation of
the original system.

For n ≤ 7 the above bound coincides with the upper bound (2n − 3) for the minimal
number of measurements (see note after Theorem 1). One can show that for n ≥ 8,

� 3n
2 � is the optimal bound, with the regular octagon being the simplest ‘distance-

exceptional’ polygon. In fact there are at least two different ways to define the regular
octagon with 12 distance measurements.
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Example 3.12. Suppose A1 A2 A3 · · · A8 is a regular octagon. Its eight sides and the di-
agonals |A1 A5|, |A8 A6|, |A2 A4|, and, finally, |A3 A7| determine it among all octagons.
A proof is elementary but too messy to include here; its main idea is that |A3 A7| is the
biggest possible with all other distances fixed. In fact, one can show that the distance
between the midpoints of A1 A5 and A6 A8 is maximal when � A5 A1 A8 = � A6 A5 A1 =
3π

8 .

Example 3.13. Suppose A1 A2 A3 · · · A8 is a regular octagon. Its 8 sides and the four
long diagonals determine it among all octagons. This follows from [5], Corollary 1
to Theorem 5. In fact, this example can be generalized to any regular (2n)-gon: a
tensegrity structure with cables for the edges and struts for the long diagonals has a
proper stress due to its symmetry and thus is rigid. This provides an optimal bound for
the case of an even number of points, and one can get the result for an odd number
of points just by adding one point at a fixed distance to two vertices of the regular
(2n)-gon. We should note that tensegrity networks and their generalizations have been
extensively studied; see for example [6].

There are many open questions in this area, some of which could be relatively easy
to answer. For example, we do not know whether either of the results for the cube (9
measurements, or 10 distance measurements) is best possible. Also, it is relatively easy
to determine a regular hexagon by 7 measurements, but it is not known if 6 suffice.

One can also try to extend the general results of this section to the three-dimensional
case. The methods of Theorem 3.11 produce, for any sufficiently large n, a lower es-
timate of 2n for the number of distance measurements needed to determine a set of
n points, no four of which lie on the same plane. One should also note that many of
the exceptional polygons that we have constructed, for instance the square, are unique
even when considered in three-dimensional space: the measurements guarantee their
planarity. The question of determining the smallest number of measurements for a
polyhedron, using distances and angles, with planarity conditions for the faces, seems
to be both the hardest and the most interesting. But even without the planarity condi-
tions or without the angles the answer is not known.

ACKNOWLEDGMENTS. The authors wish to thank David Allwright for many valuable comments on a
previous version of the manuscript. We also thank Joseph O’Rourke and the anonymous referee for their ex-
ceptionally thorough and detailed reviews and for pointing out a number of relevant references to the literature.

REFERENCES

1. A. D. Alexandrov, Convex Polyhedra (trans. from 1950 Russian edition by N. S. Dairbekov, S. S. Kutate-
ladze, and A. B. Sossinsky), Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2005.

2. D. Allwright, Quadrilateral-faced hexahedrons with all face-diagonals equal (preprint).
3. B. Bollobás, Modern Graph Theory, vol. 184, Graduate Texts in Mathematics, Springer-Verlag, New

York, 1998.
4. R. Connelly, A counterexample to the rigidity conjecture for polyhedra, Inst. Hautes Études Sci. Publ.

Math. 47 (1977) 333–338. doi:10.1007/BF02684342
5. , Rigidity and energy, Invent. Math. 66 (1982) 11–332. doi:10.1007/BF01404753
6. R. Connelly and W. Whiteley, Second-order rigidity and prestress stability for tensegrity frameworks,

SIAM J. Discrete Math. 9 (1996) 453–491. doi:10.1137/S0895480192229236
7. H. Gluck, Almost all simply connected closed surfaces are rigid, in Geometric Topology—Park City 1974,

Lecture Notes Math., vol. 438, Springer-Verlag, New York, 1975, 225–239.
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