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SINGULAR TORIC FANO VARIETIES

A. A. BORISOV AND L. A. BORISOV

ABSTRACT. The authors prove that the number of types of toric Fano varieties with
certain constraints on the singularities is finite.

INTRODUCTION

A toric variety of dimension η over an arbitrary algebraically closed field A: is a
normal variety X that is an equivariant compactification of the «-dimensional torus
Τ ^ (k*)n , where k* is the multiplicative group of the field k . Let Μ S Z" be the
character lattice of the torus Τ. Then every toric variety X is given by a fan Σ in
the space Ν <8> Q, where Ν is the lattice dual to Μ (see [5]).

A Fano variety is a normal projective variety X such that some positive inte-
ger multiple of the anticanonical divisor — Kx is an ample Cartier divisor. This
definition imposes the Q-Gorenstein property for the singularities of a Fano variety.

Let X be the toric variety given by a fan Σ in Ν ® Q. Let A\ be the closest
points to 0 of the one-dimensional cones of the fan Σ. Then X is a Fano variety if
and only if the Aj are the vertices of a convex polyhedron Ρ in the lattice Ν (see
[5])·

Definition. A Fano variety X is called a variety with log-terminal singularities if for
an arbitrary resolution of singularities π: Υ —> X all the a,- in the formula

(1) Κγ = π*Κχ

relating the classes of the canonical divisors Κχ, KY and the exceptional divisors
Ei, are bigger than - 1 .

One can show that any toric Fano variety is a variety with log-terminal singularities.
In this paper we prove the following result.

Theorem. For any η and ε > 0 there exist only a finite number of types of n-
dimensional toric Fano varieties X such that for any resolution of singularities π: Υ —»
X the inequality a, > - 1 + ε holds for all i, where the a, are defined in (1).

In §1 this theorem is reformulated in the language of convex polyhedra in n-
dimensional space. In §§2-4 it is proved in the special case of simplices, which
corresponds to the case of varieties with Picard number 1. In §5, using the results
proved earlier, we finish the proof in the general case.

From the proof of this theorem we can extract an algorithm that allows us, with the
help of a computer, to classify toric Fano varieties. We have obtained a classification
of three-dimensional toric Fano varieties with canonical and terminal singularities
and Picard number 1.
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Three-dimensional toric Fano varieties with terminal singularities and Picard num-
ber 1 are the weighted projective spaces with weights

( 1 , 1 , 1 , 1 ) , ( 2 , 1 , 1 , 1 ) , ( 3 , 2 , 1 , 1 ) , ( 5 , 3 , 2 , 1 ) ,

( 5 , 4 , 3 , 1 ) , ( 7 , 5 , 3 , 2 ) , ( 7 , 5 , 4 , 3 )

and the toric variety that is given in Ν by the simplex with vertices

( 1 , 0 , 1 ) , ( - 2 , 1 , 1 ) , ( 1 , - 2 , 0 ) , ( 0 , 1 , - 2 ) .

There are 225 types of three-dimensional toric Fano varieties with canonical sin-
gularities and Picard number 1.

The problem of whether the number of types of toric Fano varieties with given
constraints on the singularities is of interest because of the minimal model program.
In 1982, V. V. Batyrev proved that there exists a constant C(n, d) which bounds
the degree of all «-dimensional toric Fano varieties with the condition that dKx is
a Cartier divisor (see [2]).

Similar results were obtained by V. A. Alekseev and V. V. Nikulin (see [1], [6],
and [7]) for arbitrary (not necessarily toric) surfaces. There are reasons to believe
that the theorem proved in this paper also has an analog for surfaces.

A classification of all three-dimensional toric Fano varieties in the smooth case
was obtained by Batyrev [3] and by K. Watanabe and M. Watanabe [8]. See also [4].

The authors are grateful to V. V. Batyrev for posing the problem and for his help.

§ 1. A REFORMULATION OF THE THEOREM

Without loss of generality we may assume that ε < 1 .

Proposition 1. Let X be a toric Fano variety given by a fan Σ in N®Q, and A[ the
closest integral points to 0 of the one-dimensional cones of the fan Σ. Let Ρ be the
convex polyhedron with vertices Λ,. If for any resolution of singularities π: Υ —» Χ
all the αι in (1) are bigger than — 1 + ε, then the polyhedron εΡ obtained from Ρ
by the homothety with center at zero and coefficient ε contains no integral points (an
integral point in Ν <g> Q is just a point of the lattice N).

Proof. Consider the toric resolution of singularities π: Υ = Y^ —* X = ΧΣ (see
[5]). Suppose that the one-dimensional cones /, of the fan Σ' correspond to the
exceptional divisors Ei. Let Bt denote the closest integral points of the rays /, to
0.

Invariant divisors on a toric variety correspond to functions linear on each of the
cones of the fan (see [5]).

Let Κχ be an invariant canonical divisor on X such that ψκχ(Α{) = -1 . Then
Κγ — π*Κχ + ΣίΟίΕί is an invariant canonical divisor on Υ, and φκγ(Α{) = — 1 . It
is now easy to see that <pKr(Bj) = — 1 for all /. Notice that

- 1 = φΚγ{ΒΪ) = φΚχ(Βι)

j

= <pKx(Bi) + αχ > φΚχ(
Β>) - 1 + β.

Therefore φκχ(Βι) < —ε. Since φκχ(Αϊ) = - 1 , we conclude that /?, is not contained
in εΡ.

Suppose now that there is an integral point Α Φ 0 inside ε Ρ. Since the variety
Υ is smooth, we have

aJ > β] e Ν, Ο = 0,
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where Aj and Bj lie on the rays bounding the cone from Σ' that contains A .
This, however, is impossible because Bj and Aj are not contained in εΡ. The

proposition is proved.

Thus to prove the theorem it will suffice to prove the following assertion: up to
the action of GLn{Z), in Z" there are only a finite number of convex polyhedra Ρ
containing 0 and such that εΡ contains no nonzero points of the lattice Z" . It is
this assertion that will be proved in the remaining four sections.

§2. SIMPLICES GENERATING THE LATTICE

We fix a lattice Z" with zero element Ο. When speaking of points and sim-
plices we shall always assume that the points and the vertices of the simplices under
consideration are contained in Z" .

Proposition 2. For any set λ = {Λ.,-}, where i = \, ... , η + \, λ\, ... , λη+ι e N, and
GCD(Ai, ... , λη+ι) = 1, there exists a unique {up to transformations from GLn(Z))
simplex A\··· An+\ such that (a) 0 = ΣΊ=! hAi, and (b) the vectors A\, ... , Αη+ί

generate the whole lattice Z" .

Proof. Existence. In Q" we choose a simplex B\ • • • Bn+i such that ΣΊ=\ ^Bi = 0.
The lattice generated by B\, ... , Bn+\ will be denoted by D. The isomorphism
φ: D —• Z" sends the simplex B\ • • • Bn+l to the desired one.

Uniqueness. Suppose simplices A[l) • --A^y and Af* •• -A^y both satisfy the
condition of the proposition. It follows from (a) that there exists a transformation
φ e GLn(Q) that sends A\1] to A\2) for all /, 1 < i < η + 1 . It now follows from
(b) that φ e GLn(Z). The proposition is proved.

Thus to each set λ there corresponds a simplex determined uniquely up to trans-
formations from GLn(Z). We denote it by Sx . It is clear that each simplex A\··· An

containing Ο and such that A\, ... , An generate Z" is Si for some λ.
Now we fix a set λ — (A,·) and the corresponding simplex Ξχ = A\··· An+\ . The

point 0 = Σ"=ι AiAj is contained in that simplex. In the coordinates (x,) relative
to the basis An+i (At - An+l), ... , (An - An+i) the simplex S^ can be described by
the inequalities x, > 0 (i = 1, ... , n) and £ " = 1 x, < 1 . Let h = Σ"+Ι λ,.

Notice that

1=1

F o r k e { l , ... , h } l e t

Ok = An+l +

In particular, O\ = 0 and Oh = An+\ . All the Ok are different from each other and
lie in the parallelepiped given, in the coordinates (χ,), by the inequalities 0 < x, < 1 ,
i =\, ... , n. Indeed, if Okl = Okl, then k\Xi = k2it (mod h) for all / = 1, ... , η ,
and therefore also kiAn+\ = kiXn+\ (mod h). Since GCD(Ai , . . . , λη+\) = 1 we
have k\ = ki (mod h). Hence k\ = k2 .

Any integral point in the parallelepiped 0 < JC, < 1, / = 1, . . . ,«, is 0/ for some
/, since the vectors Λ, generate Z" .

Let Me<n (0 < ε < 1) denote the set of convex polyhedra Ρ in Z" containing Ο
and such that Ο is the only point of the lattice contained in εΡ .
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Proposition 3. The following conditions on λ — (λ,-) are equivalent':
(a) SxeME,n.
(b) Ok i sSxforall k e {2, 3, ... , h - 1}.
(c) For all k e {2, 3, . . . , h - 1}, either £?+,'i(h/h)k} e {2, 3, ... , η}, or else

YH=i{(hlh)k} = 1 and there exists an i such that {(Xt/h)k} < (1 - e)A,//z.

Proof, (a) ·» (b). This is obvious. It suffices to remark that of all the points of the
lattice only the Ok , k e {2, 3, . . . , h - 1} may lie in eSx and be different from
zero.

(b) <& (c) Notice that YHll{(Xi/h)k} e Ζ for all k, and, if k £ 0 (mod h),
then Σ"=ι'{(^/Λ)Α:} 6 {1, 2, . . . , « } . If Ok e eSi, then Σ"=.{(^/^)^} < 1, and
therefore J2"={{(Xi/h)k} = 1. Here {(Xi/h)k} are the barycentric coordinates of Ok

in Sx and {Xi/h} are the barycentric coordinates of (9. We assume that Ok e sSx .
Then for all / = 1, ... ,n + 1 we have {(A,-/A)A:} > (1 - e)Xj/h . Thus (c) implies
(b). The converse is equally simple.

§3. MAIN LEMMA

Proposition 4. Suppose m, η e Ζ are given, with m, η > 0, and let 0 < ε < 1. Then
there exists a sufficiently large number H{n, m, ε) such that for any (n + \)-tuple
(αϊ, ... , an+l) 6 R1+l of positive numbers there exists a k e {2, 3, ... , H(n, m, ε)}
such that either dk(a) £ {1,2, ... , m}, or else dk{a) = 1 and, for all i,

( n+l \ n+l

(=1

(It is clear that dkeZ.)

Proof. We use induction on η with m and ε fixed.

Suppose η = 0. If 1/(1 + ε) < α < 1, then even for k = 2 we have

d2(a) = 2(1 -a) + 2a- 1 = 1 and {2a} = 2a - 1 > a(l - ε).

If a > 1 then even for /c = 2 we have ά2(α) < 0 .

If α < 1/(1 + ε), then ί4(α) > ke/(l + ε). This means that we can take

and take k = 2 when a > 1/(1 +e) and k = [(m+l)(m + 3)/e] when a < 1/(1 + e ) .
Induction step (n - 1) -> « . We say that the (« + l)-tuple [ai, ... , an+i) e /?++1

satisfies condition W™'K if for all A: e {2, 3,...,/} we have dk(a) e {1, ... , m} ,
and if dk(a) = 1 then there exists an i such that {/ca,} < (1 - ε){α,}.

Suppose that for all natural / > H(n-\, m, ε) there exist (n + l)-tuples (α{, ... ,
a'n+l) satisfying conditions W/

/

m>£. It is clear that a\ < 1 , because (aj·) satis-
fies W2

m·". It follows from the induction hypothesis applied to the (n + l)-tuple
(a[, ... , al

n+i) with a\ omitted that a\ > \/H(n - 1, m, ε) for all i and /. In-
deed, otherwise for k < H(n - 1, m, ε) we would have

(\ - ε)α\
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and

dk(a[,..., al

n+l) = dk{{a[,...,«'„+,) with a\ omitted).

Therefore the (« +1 )-tuples (a\, ... , al

n+l) have an accumulation point in R"+ 1.
Let a = {a\, ... , an+l) be that point. Replacing the sequence (a') of («+ l)-tuples
with a subsequence converging to a , we may assume that a, = lim/_oo a | for all /.

For all / > H(n - 1, m, ε) we have

n+l
I f . . , 1 I

1)·

Passing to the limit, we get Σ"*/ a,· = 1.
Now we shall prove that there exists a k e Ν, k>2, such that Σ"=Ι {̂ α/} = 1 >

and for all i = 1, . . . , η + 1 the inequality {fca,} > (1 - ε)α, holds. To this
end we choose a small δ > 0 such that for all / the equalities δ < εα,, δ <
1 - α, and δ < 1/(« + 1) are satisfied. Consider the infinite set of (n + l)-tuples
({fcai} , ... , {kan+i}), k = 1 ,2 , . . . . It has an accumulation point, and so there
exist k\ and k2, ki < k2, such that |{fcia,} - {&2α;}| < δ for all i.

It is not difficult to check that k = 1 + k2 - k\ satisfies all the requirements.
We now have that d^a) = 1 . Since {ka>j} > 0, the function ί4(α) is continuous

in some neighborhood of a. The condition {fca,} > (1 — ε){α,} for all i is also
satisfied in some neighborhood of a. Because dk takes on integral values, it is equal
to 1 in some neighborhood of a and therefore condition W™ ·ε cannot be satisfied
for all a' close enough to a. But this contradicts the choice of a as the limit of
a1. Thus there exists an /0 > H{n - 1, m , ε) such that for all a € /?"+1 condition
Wt

m'e is not satisfied. This IQ is the desired value for H(n, m, ε). The proposition
is proved.

§4. ARBITRARY SIMPLICES

Applying Propositions 3 and 4, we have

Sx € M^n => h - 1 < H{n, η, ε) = Ν (η, ε).

It follows that there are only finitely many λ such that S^ e Με<η .
The case of arbitrary simplices reduces to the case of simplices Ξχ by applying

Minkowski's lemma on a centrally symmetric convex body. It is easy to see that any
simplex can be obtained from a simplex generating the lattice by replacing that lattice
with an overlattice of finite index k. For each simplex Si there exists kx<e such
that εΞλ contains a point (different from O) of the overlattice of index k whenever
k > kx ε . Indeed, consider a centrally symmetric (with respect to O) convex body
Ρ inscribed in Ξχ , and apply Minkowski's lemma to εΡ and the new overlattice.

Since any simplex S G MSiH can be obtained in that way from the simplex Sx e
Afe>n and the volume of S does not exceed kx ε χ (the volume of Sx), there exists
a constant c(n , ε) such that no 51 from Με>η has volume greater than c(n , ε).

From this it follows that, up to the action of GLn (Ζ), there are only finitely many
simplices in Με „ .

§5. CONCLUSION OF THE PROOF

Propositions. Up to the action of GLn(Z), in Z" there exist only finitely many convex
polyhedra Ρ belonging to Με > „ .
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Proof. Step 1. For each line / passing through Ο let A/ and B\ denote the points
of intersection of / and dP. Consider the function

ffl,SlV
\\Bi\ \A,\)

For each point X belonging to d Ρ let d imZ denote the dimension of the face on
which that point lies. It is clear that dim X e {0, 1,...,« — 1}.

Step 2. The function /(/) : RPn~l —> R is continuous. Therefore there exists a
line / such that /(/) is the maximum value. From all such lines we choose one for
which the value dim At + dim 5/ is the smallest.

Step 3. Now we shall prove that, with the above choice of the line /,

dim A/ + dim Bj < η - 1.

Indeed, let σ A be the face containing A/ and σ# the face containing Bj. If dim A\ +
dim Β/ > η , then there exists a two-dimensional subspace π containing / such that
π Π σ Α φ Αι and π Π σΒ φ Β{.

Now we take a closer look at that plane. Let /ι = π Π σΑ and lj = π Π σΒ . If
/ι |f h, then in a neighborhood of / there exists a line /' such that /(/') > / ( / ) .
If li\\h, then by moving At along l\ and Β ι along l2 we would change / in some
way and eventually reach some /' such that dim A\< < dim At or dim Bv < dim Bj.
In both cases

dim A}· + dim 5// < dim A/ + dim Bj.

Step 4. Thus dim Αι + dim Bt <n-\. It is easy to see that, although the face aA

need not be a simplex, we can find some of its vertices A\, ... , A^, k < dim Aj + 1,
such that A\ • • • Ak 3 At. Similarly we choose B\-Bm 3 Β ι, m < dim Β ι + 1 . An
argument similar to that in Step 3 shows that the points A\, ... , A^ and B\, ... , Bm

are in general position and the point Ο lies in the simplex A\ • • • A^B\ • • • Bm . Notice
also that k + m < η + 1. Since for each η there exist only finitely many (up to
the action of GLn(Z)) «-dimensional simplices belonging to Με,η , on taking into
account the inequality k + m < η + 1 we conclude that /(/) < c, where c = c(n, ε)
is some constant.

Step 5. Now we shall prove that (volume of P) — Vp < c\ (η, e). Indeed, consider
the polyhedra P\ and Pj obtained from Ρ by the homotheties with center Ο and
coefficients \/c(n, ε) and -l/c(n, ε). Then P$ — conv(P\ U Pi) · ε is a centrally
symmetric convex body. The polyhedron P^ is contained in εΡ, and so one can
apply Minkowski's lemma to it. As a result we have VP} < C2{n). But

VP = cn(n, e)VPl < ^ c n ( n , ε ) ν Ρ ί < cx{n , ε).

Step 6. Thus VP < C\{n , ε). Now let us take some vertices A\ , ... , An+\ of that
polyhedron which are in general position. It is obvious that VAl...An+l < c\(n, ε).

Up to the action of GLn(Z), there are only finite many simplices of the form
A\ • • • An+i . Clearly, for each such simplex there are only finitely many points χ e Z"
such that

VcoM*,A1,...,An+i) <c\(n, E).

Indeed, inscribe in A\ • • • An+i a ball of radius r with center at some point Υ: KY(r)
C Αι •• -An+l . Then

Konv(X ,A,-An+l) > Kom{X ,Kr(r)) > Ci(lt , r)\XY\,
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and therefore \XY\ < c4(«, ε). It now follows that X is contained in a bounded
domain, and therefore the number of the desired polyhedra is finite.
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