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We continue our study of residual properties of mapping tori of free group endomor-

phisms. In this paper, we prove that each of these groups are virtually residually (finite

p)-groups for all but finitely many primes p. The method involves further studies of

polynomial maps over finite fields and p-adic completions of number fields.

1 Introduction

This paper is a continuation of paper [1] where we proved that for every linear finitely

generated group G and any injective endomorphism φ of G, the mapping torus of φ is

residually finite. The mapping torus of φ is the following ascending HNN extension of G:

HNNφ (G) = 〈G, t | txt−1 = φ(x)〉 where x runs over a (finite) generating set of G.

Probably, the most important mapping tori are mapping tori of endomorphisms

of free groups Fk. These groups appear frequently as fundamental groups of hyperbolic

3-manifolds (in fact there is a conjecture that all fundamental groups of hyperbolic 3-

manifolds are virtually mapping tori of free group automorphisms). Also it is proved

in [8], that with probability tending to 1 as n → ∞, every 1-related group with three or

more generators and relator of length n is embeddable into the mapping torus of a free

group endomorphism (and so it is residually finite by [1, Theorem 1.6] and coherent by
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[6]). For 1-related groups with two generators, it is not known whether they are almost

surely inside mapping tori of free group endomorphisms, but the computer experiments

from [1] and [4] show that the probability of that should be at least 0.94.

A fairly comprehensive survey of our knowledge about mapping tori of free group

endomorphisms before [1, 3] is in [7]. The paper [7] ends with several open problems. The

first problem asks whether HNNφ (Fk) is residually finite or linear [1] answers positively

the first part of the question and [3] answers negatively the second part: it turned out

that the group 〈a, b, t | tat−1 = a2, tbt−1 = b2〉 is not linear. After [1] and [3], a natural

question arises: do groups HNNφ (Fk) possess stronger residual properties than simple

residual finiteness? For example, are they residually finite nilpotent groups, etc.? The

answer to that question is “no”: consider any endomorphism φ of Fk that maps Fk into

the derived subgroup [Fk, Fk]. Then every solvable homomorphic image of H = HNNφ (Fk)

is cyclic.

Indeed, let H = 〈x1, . . . , xk, t | txit−1 = φ(xi), i = 1, . . . , k〉. Then φ(xi) is a product of

commutators in Fk for every i = 1, . . . , k. Let H ′ be a noncyclic solvable homomorphic

image of H . Let x̄i be the image of xi and t̄ be the image of t in H ′. Then for every i,

the element t̄ x̄i t̄−1 is a product of commutators in the subgroup X of H ′ generated by

tnx̄1t−n, . . . , tnx̄kt−n, n ∈ Z. Note that H ′ is an extension of X by a cyclic group 〈t̄〉. Hence,

t̄nx̄i t̄−n is in the derived subgroup of X for every n, i. Hence, X coincides with [X, X].

Since X is solvable, X must be trivial, and H ′ must be cyclic, which is a contradiction.

Note that many linear groups (for example, SLn(Z) for n > 2) are also not resid-

ually solvable (by Margulis’ normal subgroup theorem), but all finitely generated linear

groups are virtually residually solvable and even virtually residually (finite p)-groups

for all but finitely many primes p [9]. That means they have finite index subgroups that

are residually (finite p)-groups. In this paper, we shall prove that all mapping tori of

finitely generated free group endomorphisms also enjoy this property.

Theorem 1.1. Every mapping torus of a finitely generated free group endomorphism is

virtually residually (finite p)-group for every sufficiently large p.

We shall illustrate the ideas of the proof by the following example (which was

the motivating example for our work).

Let H = 〈a, b, t | tat−1 = ab, tbt−1 = ba〉. It is not difficult to prove (almost as

above) that this group is not residually nilpotent. We shall prove that it has a subgroup of

finite index which is residually (finite 5)-group. Consider two matrices A = ( 5 2
2 1 ), B = ( 1 2

2 5 ).

These two matrices generate a free subgroup of SL2(Z) (which can be easily proved
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either by noticing that it is a subgroup of Sanov’s free subgroup of P SL2(Z), or by just

looking at the subgroup generated by the corresponding Frobenius transformations and

using the ping-pong argument). For every group G, consider the map φG : G × G → G × G

given by φ(U , V ) = (U V , VU ). It is easy to check that if G1 = SL2(Z/5Z), then the pair

(A mod 5, B mod 5) is a periodic point for φG1 with period 6. Replacing 5 by 52 = 25,

and considering the group G2 = SL2(Z/25Z), one can compute that (A mod 25, B mod 25)

is a periodic point of φG2 with period 5 × 6 = 30. By induction or by using Theorem

2.12 below, one can prove that for Gn = SL2(Z/5nZ), the pair (A mod 5n , B mod 5n ) is

a periodic point for φGn with period qn = 6 × 5n−1. It is observed in [1, Lemma 2.2],

that HNNφ (Fk) has homomorphisms νn into the wreath product Gn 	 Z/qnZ which is the

semidirect product of Gqn
n and the cyclic group Z/qnZ where the cyclic group acts on the

direct power by the cyclic shift. The homomorphism νm takes t to the generator tn of

Z/qnZ, a maps to an = (A mod 5n , φGn(A mod 5n ), . . . , φqn−1
Gn

(A mod 5n )), and b maps to bn =
(B mod 5n , φGn

(B mod 5n ), . . . , φqn−1
Gn

(B mod 5n )). There exists a natural homomorphism

μn : Gn → G1. The image 〈an, bn〉 of F2 = 〈a, b〉 under νnμn is inside the direct power

Gqn
1 ; hence, νnμn(F2) is a 2-generated group in the variety of groups generated by the

finite group G1. (The creators of the theory of varieties of groups (G. Birkhoff mostly)

did not anticipate in the 1930s the situation when the word “variety” would be used

in the same paper in two different senses: as an algebraic variety and as a variety

of algebraic systems, i.e., a class of algebraic systems closed undertaking cartesian

products, subsystems, and homomorphic images. This is one of the very few papers (if

not the only paper) where the term is used in both senses.) It is well known that νnμn(F2)

has order bounded by some constant M. Then the centralizer of μnνn(Fk) in μnνn(H ) has

index at most M1 = MM in μnνn(H ). Since Z/qnZ has a 5-subgroup of index 6, μnνn(H ) has

a 5-subgroup of index at most some constant M2 (independent of n). Since by [1, Lemma

2.2], all elements of the group H are separated by homomorphisms νn, H has a subgroup

of index at most M2 which is residually (finite 5)-group.

One can follow the proof of Theorem 1.1 below (see Section 3) in order to show

that H is virtually residually (finite p)-group for almost all p 
= 5. The differences with

the proof above are the following:

• a pair of matrices (A, B) such that (A mod p, B mod p) is periodic for φG1

is found not in G1 = SL2(Z/5Z), but in G1 = SL2(O/pO) where O is the ring

of integers of some finite extension of Q unramified at p (we use the main

algebro-geometric result [1, Theorem 3.2] for this); and

• in order to find such a pair of matrices with the additional property that

(A, B) generate a free subgroup, we use a strong result of Breuillard and
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Gelander [2] about dense free subgroups of Lie groups; the matrices A, B

are found not in SL2(O) but in the p-adic completion of that group. Here we

use a new result about polynomial maps over p-adics proved in Section 2 (see

Theorem 2.12).

2 Polynomial Maps over p-Adics

For a prime power q = pk, denote by Fq the field of q elements. Denote by F
alg
q its algebraic

closure (Falg
q = F

alg
p ).

An affine algebraic variety over F
alg
q is a subset of (Falg

q )n consisting of all common

roots of some ideal I ⊂ F
alg
q [x1, . . . , xn]. By Hilbert’s Nullstellensatz, we can assume that

I is radical: for every f ∈ F
alg
q [x1, . . . , xn] and N ∈ N, if f N ∈ I then f ∈ I.

If X is an affine algebraic variety over F
alg
q , its field of definition is the smallest

subfield of F
alg
q containing all coefficients of some set of generators of I. An affine al-

gebraic variety over Fq is a variety with the field of definition Fq or its proper subfield.

Equivalently, X is defined over Fpk if and only if Frk(X) = X, where Fr is the geometric

Frobenius self-map of the affine space: Fr(x1, x2, . . . , xn) = (xp
1 , xp

2 , . . . , xp
n ).

Note that in algebraic geometry one usually wants to understand the structure

of X independent of its embedding into the affine space, as the affine scheme associ-

ated to the ring Fq[x1, . . . , xn]/I. However, all varieties in this paper naturally appear as

subvarieties of the fixed affine space. We will not be dealing with scheme points of X,

but rather with its geometric points, which are just the points (x1, x2, . . . , xn) of the affine

n-space over F
alg
q , contained in X (or, more precisely, its base change to F

alg
q .

Let, as usual, Zp, Qp be the p-adic completion of the ring of integers and rational

numbers, respectively. For q = pk, let Qq be the unrafimied extension of Qp such that the

residue field Zq/pZq of its ring of integers Zq is isomorphic to Fq (see, e.g. [10, p. 143,

Example 4.18]). Let An be the affine space over Z of dimension n, that is SpecZ[x1, . . . , xn].

Definition 2.1. The following are standard terms in algebraic geometry, adapted for

our purposes:

• An algebraic variety is called geometrically irreducible if its base change to

the variety over the algebraic closure of the ground field is irreducible. This

means that the ring F
alg
q [x1, . . . , xn]/I is a domain.

• For a variety X as above, a polynomial self-map � of X is a polynomial self-

map of an ambient affine space that preserves X. In coordinates, � is given
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by polynomials

�(x1, x2, . . . , xn) = ( f1(x1, . . . , xn), f2(x1, . . . , xn), . . . , fn(x1, . . . , xn)).

The field of definition of � is the subfield of F
alg
q , generated by the coefficients

of fi. � preserves X when for every g ∈ F
alg
q [x1, . . . , xn] that belongs to I , the

formal composition g ◦ � also belongs to I (I is assumed to be radical). We

will only consider the polynomial self-maps.

The self-map � is called dominant if its image (over F
alg
q ) is Zariski dense in V .

• A dominant self-map � is called separable if the corresponding extension of

the fields of rational function is separable.

• Zariski tangent space at a point (x1, x2, . . . , xn) ∈ X, defined over FQ, is the FQ-

vector space, dual to the space m/m2, where m is the ideal in FQ[x1.x2, . . . , xn],

consisting of polynomials that vanish on (x1, x2, . . . , xn).

• A self-map � : V (Fq) → V (Fq) is called unramified at a point x ∈ V if the map

�∗ on Zariski tangent space of x is invertible. (Note that a separable dominant

self-map is unramified at all x in some Zariski open subset of V .)

• A geometric point x of an algebraic variety V is called smooth if the local ring

is regular. Alternatively, the point is smooth if the Zariski tangent space at it

has the same dimension as the variety.

• The degree of � is the number of geometric points in the preimage of a generic

point of V .

The following statement is proved in [1].

Lemma 2.2 ([1], p. 349). Suppose that � : An → An is a polynomial map defined over

any algebraically closed field. Denote by V the Zariski closure of �n(An). Then V is

geometrically irreducible and the map �|V : V → V is dominant.

Suppose now that we have a polynomial map � from An to itself, defined over Z.

Applying the above lemma to the map over Qalg, we get some subvariety V of An. Even

though it is a priori defined only over Qalg, its field of definition is Q, because it is fixed

by the absolute Galois group of Q. Reducing � modulo p, we get a polynomial self-map

of An over Fp, and thus over F
alg
p , the algebraic closure of Fp. This in turn produces a

subvariety Vp of An(Falg
p ). Naturally, we would like to relate Vp to V for large enough p. In

order to do this, we need to construct a model of V , that is a scheme over SpecZ, such that
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V (Q) is its generic fiber. Fortunately, a natural model exists in our situation. To describe

it, let us consider V , and Vp, from a commutative algebra perspective.

Suppose � = (�1, �2, . . . , �n) is an ordered set of polynomials in Z[x1, x2, . . . , xn],

and the varieties V and Vp are defined as above. Abusing the notation a little bit, denote

by �∗ the corresponding ring homomorphism, for n-variable polynomials over any ring.

Then the prime ideal I (V ) of Qalg[x1, x2, . . . , xn], defining V , consists of polynomials f ∈
Qalg[x1, x2, . . . , xn] such that f (�n) = 0, where �n is the nth composition power of �.

This is, in other words, the pullback of the prime ideal {0} of Qalg[x1, x2, . . . , xn] by the

homomorphism (�n)∗ = (�∗)n. As a pullback of a prime ideal, it is also prime, in particular

radical. Similarly, the ideal I (Vp) of Vp in Fp
alg[x1, x2, . . . , xn] consists of polynomials f ∈

Fp
alg[x1, x2, . . . , xn] that f ((�p)n) = 0, where �p is the reduction of � modulo p.

Now we define a model of V as an affine scheme over Z, which is a subscheme of

SpecZn defined by the ideal I (V (Z)) ∈ Z[x1, x2, . . . , xn], consisting of all f that f (�n) = 0 in

I ∈ Z[x1, x2, . . . , xn].

Lemma 2.3. The ideal I (V (Z)) is prime. It is finitely generated and its generators when

considered over Qalg generate the ideal I (V ).

Proof. The ideal I (V (Z)) is prime because it is a pullback of the prime ideal {0}, like in the

argument above. It is finitely generated because the ring Z[x1, x2, . . . , xn] is Noetherian.

For the last statement, it is obvious that all elements of I (V (Z)) belong to I (V ). Suppose

f is any element of I (V ) ⊂ Qalg[x1, . . . , xn]. Because all coefficients of � are integers, all

conjugates of f also belong to I (V ) ⊂ Qalg[x1, . . . , xn]. Consider a Qalg-vector subspace of a

space of n-variable polynomials of large enough degree, generated by all these conjugates

of f . This subspace is invariant under the natural action of the absolute Galois group

of Q, thus it has a basis consisting of polynomials with rational coefficients. For every

element in this basis, some nonzero integer multiple of it belongs to Zalg[x1, x2, . . . , xn]. It

is obvious that it must belong to I (V (Z)), which implies that f is a linear combination

with algebraic coefficients of elements from I (V (Z)).

We would like to say that for all p the reductions of the generators of I (V (Z))

modulo p generate the ideal I (V (Z/pZ)), but this is in general not true, as the following

example shows.

Example. Suppose n = 2, denote the coordinates by x and y. Suppose �(x, y) = (x, 5y).

Then �2(x, y) = (x, 25y). In characteristic zero this is an invertible linear map, so the

ideal I (V (Z)) is zero. However, as modulo p = 5, this map is not invertible and I (V (Z/pZ))

is the principal ideal, generated by the polynomial x.
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The following theorem is very important. It shows that for all sufficiently

large primes p the reductions of the generators of I (V (Z)) modulo p generate the ideal

I (V (Z/pZ)).

Theorem 2.4. Suppose � ∈ (Z[x1, . . . , xn])n is a polynomial automorphism in n variable

with integer coefficients. Define I (V (Z)) and I (V (Z/pZ)) are as above. Then there exists

some natural number B, such that for all p > B the reductions of the generators of I (V (Z))

modulo p do generate the ideal I (V (Z/pZ)).

Proof. For every p we have the inclusion of the ideals in Fp[x1, x2, . . . , xn]: I (V (Fp)) con-

tains the reduction modulo p of the ideal I (V (Z)), to be denoted by Ip. By a very general

result on fibers of algebraic morphisms of schemes (see [5], Theorem 14.8), all irre-

ducible components of Spec(Fp[x1, . . . , xn]/Ip) have the dimension equal to the dimension

of Q[x1, . . . , xn]/I (V (Q)). Because I (V (Fp)) is prime, it is enough to show that the dimension

of SpecFp[x1, . . . , xn]/I (V (Fp)) is also the same for all sufficiently large p. The key idea of

this argument is the following construction.

Suppose F is any field, and M is a polynomial self-map of the affine space

SpecF[x1, x2, . . . , xn]. The map M is given in coordinates by its components Mi, which

are polynomials in F[x1, x2, . . . , xn]. Consider its formal Jacobian matrix. J = ( ∂Mi
∂xj

)i, j=1,...n.

The entries are in F[x1, x2, . . . , xn], so the matrix is well defined as an n × n matrix T over

the field F(x1, . . . , xn). We define the ideal I in F[x1, . . . , xn] as a pullback of the zero ideal

by M.

Lemma 2.5. In the above notation, if the map M is separable, then the dimension of

SpecF[x1, . . . , xn]/I equals the rank of the matrix T .

Proof. This is (the algebraic version of) the classical inverse function theorem, see e.g.

[5], Chapter 16 for the reference. �

We now apply the above lemma to M = �n for various fields F. For F = Q the rank

of T is the dimension of V (Q), let us denote it by r. The entries of T over Q are actually

polynomials with integer coefficients. For some r × r minor of T the determinant is

a nonzero polynomial with integer coefficients. For all sufficiently large primes p, its

reduction modulo p is also nonzero. So for these p, the rank of the Jacobian matrix

for F = Fp is at least r. Thus, the dimension of SpecFp[x1, . . . , xn]/I (V (Fp)) is at least r.

On the other hand, any (r + 1) rows of T over Q are linearly dependent over Q(x1, . . . , xn).

Multiplying by a suitable polynomial in Z[x1, . . . , xn], we get nontrivial linear combination



8 A. Borisov and M. Sapir

of rows of T with coefficients in Z[x1, . . . , xn] that equals to zero. Since T for F = Fp is

just the reduction of T for Z modulo p, for all sufficiently large p all of these linear

combinations are still nontrivial. So the rank of T is exactly r for all sufficiently large

p. For such p, we have SpecIp, a possibly reducible subvariety of an irreducible variety

V (Fp), and every component of SpecIp has the same dimension r as V (Fp). This implies

that the varieties are the same, so the ideals I (V (p)) and Ip are equal, for any sufficiently

large p. �

From now on, the prime p will always be sufficiently large so that the conclusion

of Theorem 2.4 holds. Let us denote by πp (or just π ,) when p is the reduction map from Z

to Z/pZ and, abusing the notation a bit, all other reduction modulo p maps. Recall, that

for any q = pk we denoted by Zq the unramified extension of the p-adic integers Zp with

the residue field Fq. With the above convention, we will denote by πp the reduction map

from Zq to Fq, as well as the reduction map from Zq[x1, . . . , xn] to Fq[x1, . . . , xn].

In what follows, unless otherwise specified, we will denote by upper case letters

objects in characteristic zero, and by corresponding lower case letters the objects in

characteristic p. For example, if T ∈ Zq[x1, . . . , xn], then t ∈ Fq[x1, . . . , xn] is its reduction

modulo p : t = πp(T ).

Lemma 2.6. For p as above, for any q = pk define I (V (Zq)) ⊂ Zq[x1, . . . , xn] and I (V (Fq)) ⊂
Fq[x1, . . . , xn] as before. Then

I (V (Fq)) = πp(I (V (Zq))).

Proof. We need to prove two inclusions, one of which is easy. Indeed, if g = πp(G),

G ∈ I (V (Zq)), then G(�n) = 0, so G(�n) = 0 mod p, so g ∈ I (V (Fq)).

Now we would like to prove that if g ∈ I (V (Fq)), there exists G ∈ I (V (Zq)) such that

g = πp(G). Choose a set of generators {G1, G2, . . . , Gm} of the ideal I (V (Z)), as the ideal

in Z[x1, . . . , xn]. By assumption, gi = πp(Gi) generate I (V (Fp)) as the ideal in Fp[x1, . . . , xn].

By the same argument as in the Lemma 2.3, this implies that they generate I (V (Fq)) in

Fq[x1, . . . , xn].

So, modulo p, πp(G) = ∑
(α,β)

c(α,β)g
α1
1 · · · · · gαm

m · xβ1
1 · · · · · xβn

n , where α and β are multi-

indices. Lifting c(α,β) to C (α,β), we get
G =

∑

(α,β)

C (α,β)G
α1
1 · · · · · Gαm

m · xβ1
1 · · · · · xβn

n + p · G1,

for some G1 ∈ Zq[x1, . . . , xn].
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Clearly, G1(�n) = 0, so G1 ∈ Zq[x1, . . . , xn]. Repeating the above procedure, we get

G1 as a linear combination of gα
1 xβ plus pG2, and so on. Combining all these together

and using the completeness of Zq in p-adic topology, we prove the lemma. �

From [1, Theorem 3.2], for some q = pτ there is a point x = (x1, . . . , xn) ∈ V (Fn
q ) such

that �(x) = xQ for some Q = pl . Additionally, we can choose x to lie outside of any fixed

Zariski closed subset. So we choose x to be a smooth point of V , where the restriction

of the tangent map �∗ to the Zariski tangent space TxV is injective. This implies that

�∗|TxQ (V ), �∗|T
xQ2 (V ), ... are all injective. Suppose N ∈ N is such that �N (x) = x. Then �N

∗ |Tx(V )

is injective as a composition of injective linear operators. So it is invertible.

By our choice of notation, Tx(V ) is a vector space over F
alg
p . But it has an Fq-basis,

because x is defined over Fq and V is defined over Fp. In this basis, the matrix of �N has

coefficients in the finite field Fq. It is invertible, so some power of it, �M
∗ is identity.

By Theorem 2.4, there exists a point X ∈ V (Zq) such that π (X) = x. By definition

of M, �M(X) ≡ X mod p.

The following general observation is very important.

Lemma 2.7. Suppose P = P (x1, x2, . . . , xn) ∈ Zq[x1, . . . , xn]. Suppose A = (A1, . . . , An) ∈ Zn
q .

Suppose l ∈ N. Denote by ∇ P (A) the formal gradient of P , evaluated at A. Then for every

Y = (Y1, . . . , Yn) ∈ Zn
q , we have the following:

P (A+ Y · pl ) ≡ P (A) + (∇ P (A) · Y)pl mod pl+1.

Proof. We rewrite the polynomial P as a linear combination of products of powers of

(xi − Ai). When evaluated at A+ Y · pl , the terms of degree at least two are zero modulo

p2l , so are zero modulo pl+1. The linear term is exactly the dot product of the gradient

and Y · pl . �

An immediate corollary is the following.

Lemma 2.8. Suppose 
 is an n-variable polynomial automorphism, with coefficients

from Zq, and X ∈ Zn
q is a point such that ω(x) = x, where x = π (X) and ω is a reduction

of 
 modulo p. Denote the induced map on the tangent space at x by ω∗. Then for any

Y ∈ Zn
q with y = π (Y), we have


(X + plY) = 
 + pl · ω∗(y) mod pl+1.

(Note that ω∗(y) is only defined modulo p, but its product with pl makes sense modulo

pl+1.)
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Proof. Apply the previous lemma to each component of 
, with A = X. �

Now we go back to our map � that fixes the subvariety V . By the choice of M and

X, �M(X) ≡ X mod p. Also, φM
∗ restricted to the tangent space of V (Fq) at x is the identity.

Denote by α(1) ∈ Fn
q the divided difference �M (X)−X

p ( mod p).

Lemma 2.9. For any X′ ≡ X mod p with X′ ∈ V (Zq),

�M(X′) ≡ X′ + α(1) · p mod p2.

Proof. First of all, X′ = X + pY for some Y. We are going to show that π (Y) ∈ T∗(V )(x).

This is equivalent to showing that any polynomial in Fq[x1, . . . , xn] that vanishes on V

has its gradient, evaluated at x, vanishing at π (y). Suppose g is such a polynomial. By

Lemma 2.6 there exists G ∈ I (V (Zq)) such that g = π (G). By Lemma 2.7,

G(X′) = G(X + pY) ≡ G(X) + p(∇G)(X) · Y mod p2.

Since G(X′) = G(X) = 0, this implies that ∇G(X) · Y ≡ 0 mod p, so ∇g(x) · y = 0 in Fq.

Now we apply Lemma 2.8. to the map 
 = �M.

�M(X′) ≡ �M(X) + p�M
∗ (X)(Y) ≡ (X + pα(1)) + pY ≡ X′ + α(1) · p mod p2. �

As an immediate corollary, we have the following.

Lemma 2.10. For any X′ ≡ X mod p with X′ ∈ V (Zq),

�pM(X′) ≡ X′ mod p2.

Proof. We know that �M fixes V . So, by induction, for all natural j

� jM(X′) ≡ X′ + α(1) · p · j mod p2. �
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Now we denote by α(2) ∈ Fn
q the divided difference �pM (X)−X

p2 ( mod p). We have the

following lemma.

Lemma 2.11. For any X′ ≡ X mod p2 with X′ ∈ V (Zq),

�pM(X′) ≡ X′ + α(2) · p2 mod p3.

Proof. The proof is analogous to that of Lemma 9, using Lemmas 2.7 and 2.8. The details

are left to the reader. �

As a corollary of Lemma 2.11, we get that �p2 M(X′) ≡ X′ mod p3, and so on. Putting

it all together, we get the following theorem.

Theorem 2.12. Suppose � is an n-variable polynomial map with integer coefficients,

and V is the Zariski closure of the image of �n (over Z). Suppose W is a proper subscheme

of V . Then for every sufficiently large prime p there exist q = pl and a point x ∈ V (Fq) \
W(Fq) such that for every X ∈ V (Zq) with π (X) = x we have

�ap(k−1) − 1 ≡ X( mod pk ),

where a is fixed and k is arbitrary.

In particular, the point X is uniformly recurrent for � in the p-adic topology on

V (Zq).

3 Residually Finite Groups

In this section, we shall prove the following theorem.

Theorem 3.1. Let φ be any injective endomorphism of a free group Fk. Then for every

sufficiently large prime p, the HNN extension HNNφ (Fk) has a subgroup of finite index

that is residually (finite p-group) and also is an ascending HNN-extension of a free

group.

Proof. Let Fk = 〈x1, . . . , xk〉. The endomorphism φ is defined by k words

w1(x1, . . . , xk), . . . , wk(x1, . . . , xk),
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the images of x1, . . . , xk. For every finite group G, consider the map φG : Gk → Gk defined

as follows:

(g1, . . . , gk) → (w1(g1, . . . , gk), . . . , wk(g1, . . . , gk)).

Let H = HNNφ (Fk).

Suppose that a point (g1, . . . , gk) ∈ Gk is periodic with respect to the map φG and

l is the length of the period. Consider the wreath product P of G and the cyclic group

Cl = 〈c〉 of order l, i.e. P is the semidirect product of Gl and Cl where the elements of Cl

cyclically permute the factors of Gl . Let t be the free letter of HNNφ (Fk). It was observed

in [1, p. 346] that the map

t → c, xi → (
gi, φG (gi), φ

2
G (gi), . . . , φl−1

G (gi)
)

(3.1)

extends to a homomorphism from H into P .

Consider the ring of 2 × 2-matrices M = M(2, F̄p) over the algebraic closure of Fp

as a copy of the affine space of dimension 4. Replacing the inverses x−1 in the words

wi by symbols adj(x) interpreted as the adjoint matrix, we turn φM into a polynomial

map φ̄ : Mk → Mk. Assume that p is large enough (as in Theorem 2.12). Choose a point

x = (x1, . . . , xk) as in Theorem 2.12 (here xk are 2 × 2 matrices). It belongs to the Zariski

closure of φ4k(Mk), over some extension Fq of Fp, and all matrices xi are invertible.

Adjoining to Fq the square roots of the determinants of xi, we can write each xi as

ai · ui, where ai ∈ Fq and ui ∈ SL(2, Fq). Clearly, the point u = (u1, . . . , uk) satisfies the

same properties with respect to the map φ̄ as the point x. Note that on the orbit of u, the

map φ̄ coincides with the map φSL(2,Fq ).

Consider an unramified at p finite extension K of Q with the ring of integers O
and a maximal ideal (p) of O with the quotient field Fq. Let, as before, Zq be the p-adic

completion of O. Then the group SL(2,O) naturally embeds into SL(2, Zq). By [2, Theorem

4.3], there exists a free nonabelian subgroup � in SL(2,O) that is dense in the profinite

topology induced by the congruence subgroups of SL(2,O) modulo pk, k ≥ 0. Hence, the

homomorphism μ : SL(2,O) → SL(2,O/(p)) is surjective on �. Again by [2, Theorem 4.3] (see

also [2, Corollary 4.4]), there exist preimages ū1, . . . , ūk of u1, . . . , uk that freely generate a

free subgroup F of SL(2,O) which we shall identify with Fk. Consider the p-adic variety

V (Zq). It contains the subset φm
F (F ) for all m ≥ 4k. Since the point (u1, . . . , uk) is periodic,

the point u = φm
H (ū1, . . . , ūk) for a divisible enough m also is a preimage of (u1, . . . , uk)

under μ. The coordinates of u also freely generate a free subgroup since φ is injective.

Hence, we can assume that (ū1, . . . , ūk) belongs to V (Zq).
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Consider the sequence of congruence subgroups of F corresponding to powers

of p:

F > F (1) > F (2) > · · · > · · · .

The intersection ∩F (i) is {1} and factor-groups F (i)/F (i+1) are p-groups for every i ≥ 1. Let

γi be the natural homomorphisms of F onto �i = F/Fi. By Theorem 2.12, for every i ≥ 1,

the point (γi(ū1), . . . , γi(ūk)) in �k
i is periodic with respect to φ�i with period li = api−1 for

some integer constant a (the length of the period of the point (u1, . . . , uk) from �k
1 ).

For every i let Cli be the cyclic group of order li. Consider the homomorphism νi

from H into the wreath product Pi = �i 	 Cli defined as in (3.1). These homomorphisms

separate all elements of HNNφ (Fk). Indeed, every nonidentity element in HNNφ (Fk) can

be represented as tnwtn′
for some n, n′ ∈ Z and some word w ∈ Fk where either w 
= 1 or

n + n′ 
= 0. If w 
∈ Hi for some i, then this element is not in the kernel of νi. If w = 1 and

n + n′ 
= 0, then it is not in the kernel of any νi with i > |n + n′|.
For every i ≥ 1, consider the natural homomorphism μi from �

li
i to �

li
1 . Note that

μiνi(F ) is a k-generated subgroup of the direct power of �1, and that the kernel Ki of νi is

a p-group. Hence, μiνi(F ) belongs to the variety of groups generated by the finite group

�1. Since a variety generated by a finite group is locally finite [11], there exists a constant

M such that |μiνi(F )| ≤ M for every i. The subgroup Ki is normal in Pi, so Ki ∩ νi(F ) is

normal in νi(H ). The group νi(H )/(Ki ∩ νi(F ) is an extension of a group Ei of order at

most M by a cyclic group of order li = api−1 for some constant a. The centralizer of E in

νi(H )/(Ki ∩ νi(F )) has index at most MM; hence, there exists a constant M1 such that the

group μiνi(H ) contains a p-subgroup of index at most M1. Since the kernel Ki is a p-group,

the group μi(H ) has a p-subgroup of index ≤ M1. Hence, H has a subgroup N of index at

most M1 that is residually (finite p)-group. We can assume that N is a normal subgroup.

It remains to note that N is generated by the intersection Fk ∩ N and t1 = taps
for

some s. Moreover, t1(Fk ∩ N)t−1
1 ⊆ Fk ∩ N since t1 Fkt−1

1 ⊆ Fk and t1 ∈ N. Hence, N is an

ascending HNN-extension of a free group (see, for instance, [3]). �
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