
Abstract The two-dimensional case of the famous Jacobian Conjecture of O.-H. Keller
asserts that every unramified polynomial self-map of an affine plane is invertible. Many
geometric approaches to this conjecture involve divisorial valuations of the field C(x,y),
centered outside of the affine plane. Two integer invariants of these valuations naturally ap-
pear in this context. In this paper we study these invariants using combinatorics of weighted
graphs. In particular, we prove that whenever both invariants are fixed, the corresponding
valuations form a finite number of families up to plane automorphisms.
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1 Introduction

The main motivation for this paper comes from one of the oldest unsolved problems in the
algebraic geometry, the Jacobian Conjecture.

Jacobian Conjecture. (O.-H. Keller, 1939) Suppose n is a natural number, and f1, ..., fn
are complex polynomials in x1, ...,xn, such that the Jacobian, det(∂ fi/∂x j), is a non-zero
constant. Then the map

(x1, ...,xn) 7→ ( f1(x1, ...,xn), ..., fn(x1, ...,xn))

is invertible.

This is obvious in dimension one (i.e. for n = 1), but is still open for higher n, even
for n = 2. Many approaches have been proposed, both for the general conjecture and for
its two-dimensional case. The two-dimensional case has been especially well studied, but is
still wide open, in sharp contrast to the remarkable progress of modern algebraic geometry,
and in particular birational geometry.

One natural approach to the two-dimensional Jacobian Conjecture is the following. Sup-
pose a counterexample exists. It gives a rational map from X = P2 to Y = P2. After a se-
quence of blow-ups of points outside of the affine plane A2 , we can get a surface Z with two
morphisms: π : Z→ X (projection onto the origin P2) and ϕ : Z→Y (the lift of the original
rational map).

Note that Z contains a Zariski open subset isomorphic to A2, and its complement,
π∗((∞)), is a tree of smooth rational curves. The structure of this tree is easy to understand
inductively, as it is built from a single curve (∞) on P2 by a sequence of two operations:
blowing up a point on one of the curves or blowing up a point of intersection of two curves.
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Note that each of these curves defines a valuation on C(x,y), centered outside of the affine
plane. We call these valuations the divisorial valuations at infinity. The map on the set of
valuations, induced by ϕ, sends these valuations at infinity to some valuations on the target
field C(x,y). Many geometric approaches to the two-dimensional Jacobian Conjecture use
these valuations, either explicitly or via the language of curves.

In a sense, all discrete invariants of divisorial valuations at infinity come from the above
described graphs. Two such invariants naturally appear in the context of the Jacobian Con-
jecture.

Definition 1.1 Suppose Z is a surface, obtained from X = P2 by a sequence of blowups
outside of A2, and π : Z→ X is the corresponding birational morphism. Suppose Z \A2 =
∪iEi. Then the K̄ label of the divisorial valuation corresponding to Ei is the coefficient ai in
the formula

K̄Z = ∑
i

aiEi,

where the equality is in the Picard group of Z and K̄Z = KZ +∑i Ei is the log-canonical
divisor of the surface Z with the bounday ∑Ei. Note that the curves Ei form a basis of the
Picard group of Z and that ai is not affected by any extra blowups, thus is an invariant of
the divisorial valuation itself, and not of Ei ⊂ Z.

Definition 1.2 Suppose Ei and Z are as above. Then the determinant label of the divisorial
valuation corresponding to Ei is the determinant of the Gram matrix of minus-intersection
form on all curves at infinity of Z, except Ei. That is,

dEi = det(−E j ·Ek) j,k 6=i

We will prove that the determinant label is indeed an invariant of the divisorial valuation,
i.e. it does not depend on the choice of Z. In some sense, these two invariants are comple-
mentary to each other: the first one describes what is going on at Ei, while the second one
describes what is going on outside of it. (This was noticed by Bogdan Ion). We call these
invariants “labels”, because we label the intersection graphs of curves at infinity on Z with
them. The K̄ labels behave very well with respect to the blowups, but for the determinant
labels the theory is more complicated: to keep track of the determinant labels of vertices
under the blowups, one needs to also keep track of the determinant labels of edges of the
intersection graph (i.e. the determinants of the matrix associated to the graph with that edge
removed). Please see section 3 for the details.

The relevance of the K̄ labels to study of potential counterexamples to the Jacobian
Conjecture comes from the following simple observation (cf. [2] for details). If the image of
a divisorial valuation at infinity is again a divisorial valuation at infinity (i.e. ϕ(Ei)∪A2 = /0),
then the K̄ label of the valuation of Ei is the product of the K̄ label of its image and the
ramification index of ϕ at Ei. Also, the curves at infinity that are mapped to curves on A2

must have positive K̄ labels, equal to the ramification index of ϕ there. These conditions
provide significant restrictions on the structure of possible counterexamples to the Jacobian
Conjecture.

The determinant labels also naturally appear as restrictions of the possible counterex-
amples. In particular, the determinant labels of the curves that are mapped to A2 must be
negative. Indeed, if any one of them is positive, the intersection form on the span of the
union of all other curves at infinity on Z must be negative definite, which would contradict
the fact that ϕ∗(∞) has positive self-intersection. For a similar reason, every valuation at
infinity that is mapped to a valuation at infinity with negative determinant label must itself
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have a negative determinant label. Less obviously, one can show that any valuation of a
curve mapped to the line at infinity on Y must have a negative determinant label (cf. [2] or
[3]).

Note that both the K̄ label and the determinant label are invariant under the polynomial
automorphisms of A2, where the automorphisms act on valuations in the natural way.

Our main result is the following theorem.

Theorem 1.1 For any pair of integers (a,b), the divisorial valuations at infinity with K̄ label
a and determinant label b form a bounded family up to the automorphisms of A2. By this we
mean that there is a finite number of weighted graphs Γk, such that every such valuation is
sent by some polynomial automorphism to a valuation given by a curve on a surface Z with
one of the graphs Γk. Equivalently, there exists some constant N depending on a and b only,
such that the curve of every such valuation can be extracted from some P2 compactification
of A2 by no more than N blowups.

We also prove the following interesting concrete result.

Theorem 1.2 Every divisorial valuation at infinity with K̄ label −2 and determinant label
1 is, up to an automorphism of A2, the valuation of the line at infinity on P2.

Finally, we prove the following theorem, also motivated by the author’s work on the
Jacobian Conjecture (cf. [2], [3]).

Theorem 1.3 Suppose X and Z are as above, and the divisorial valuations Ei and E j have
negative K̄ label and negative “common determinant” (the determinant of the the graph of
minus-intersection form on the curves at infinity excluding Ei and E j). Then Ei and E j must
lie in the same irreducible component of the graph obtained by removing the curve π−1

∗ (∞),
the strict pullback of the line at infinity on P2.

While our motivation comes from algebraic geometry, our methods are almost exclu-
sively combinatorial. It would be nice to get a more conceptual, and simpler, proofs of our
results. Divisorial valuations at infinity are classical objects, whose study goes back at least
to Zariski (cf. [Zar44]). Besides having applications to the Jacobian Conjecture, they are
likely to have applications to the dynamics of polynomial maps. Here we should mention
the results of Favre and Jonsson (cf. e.g. [7], [6]) on more general valuations and their ap-
plications. In the spirit of their results, it would be important to extend our work to more
general types of valuations. Obviously, some adjustments will be required. In fact, even the
K̄ labels cannot be defined for non-divisorial valuations. However, for any fixed compacti-
fication P2 of A2, the ratio of the K̄ label and the value of the valuation at the equation of
the line at infinity at its center can be extended to a continuous function on the naturally
metrized tree of valuations. Perhaps, a suitable normalization of the determinant label can
also be extended to the non-divisorial valuations.

The paper is organized as follows. A short section 2 is devoted to the K̄ label. We also
define there the notions of parents and ancestors of the given curves or divisorial valuations.
Most proofs are only sketched for two reasons: they are easy and they can be found in [2]
or [3]. In section 3 we develop the general theory of the determinants of weighted trees and
forests. In section 4 we prove Theorems 1.1 and 1.2. In section 5 we prove Theorem 1.3.

2 The K̄ labeling and some definitions

Suppose X = P2, Z, and a birational map π : Z → X are as in the Introduction. As noted
above, the structure of Z is to a large extent determined by the graph of intersections of
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Ei. The vertices of this graph correspond to Ei-s and are usually labeled by E2
i . The edges

correspond to the points of intersections of two different Ei-s. This graph is a tree. One of
the curves Ei is π−1

∗ (∞), while all others are mapped to points by π . The classes of Ei form
a basis of the Picard group of Z.

This graph is not so easy to deal with because blowing up a point changes the self-
intersections of the curves passing through it. Inspired by the Minimal Model Program, we
consider a different labeling of this graph. We take the augmented canonical class of Z,
K̄Z = KZ +∑i Ei. It can be uniquely written in the Picard group of Z as a linear combination
of Ei, K̄Z = ∑i aiEi. We label the vertices of the intersection graph by these numbers ai.

When a new curve at infinity is created by blowing up a point, it does not change the
labels of the previously constructed curves. Therefore this label is an invariant of the cor-
responding divisorial valuation. One can also easily calculate the K̄ label of the new curve
based on the following Proposition.

Proposition 2.1 When a point is blown up, one of the following two operations is performed
to the graph of the exceptional curves:

1) A new vertex is added to the graph, connected to one of the vertices. It is labeled
ai +1, where ai is the label of the vertex it is connected to.

2) A new vertex is introduced on the edge connecting two vertices, breaking up the edge
into two edges. The new vertex gets labeled with ai + a j, where ai and a j are the labels of
the endpoints of the destroyed edge.

Proof The first case corresponds to blowing up a point on one of the curves. The second
case corresponds to blowing up an intersection of two curves. The augmented canonical
class calculations are straightforward. ut

Note that the K̄ label of the divisorial valuation that corresponds to the line at infinity on
P2 is −2. The following observations are easy to prove by induction. See [2] or [3] for the
details.

Proposition 2.2 1) For any two adjacent vertices Ei, E j of the graph of Z, gcd(ai,a j) = 1.
In particular, no two adjacent vertices have even labels.

2) The subgraph of vertices with negative labels is connected. It is separated from the
“positive” vertices by the “zero” vertices. Moreover, the “zero” vertices are only connected
to vertices with labels (−1) or 1.

If ai is nonzero, then one can recover (−E2
i ) from ai and the K̄ labels of the curves ad-

jacent to Ei, using the adjunction formula for Ei. However when ai = 0, this is not possible.
See [2] or [3] for the details. Note also that the adjunction formula Ei(Ei +K) =−2 can be
rewritten as EiK̄ = (val(E)−2), where val(E), the valency of E, is the number of vertices
adjacent to E (i.e. the number of other curves at infinity that intersect E). Using the adjunc-
tion formula as a definition, one can formally define the K̄ labels for any weighted graph, if
the matrix of that graph (see next section) is invertible. Moreover, when the determinant of
this matrix is ±1, these labels will be integers. In general, they will be rational numbers.

We now introduce some definitions that will be freely used later in the paper. These
notions are totally classical and go back at least to Zariski; we claim no originality except
for the terminology.

Definition 2.1 If a curve is obtained by blowing up the intersection of two curves, we call
these curves its parents. If a curve is obtained by blowing up a point on one of the curves,
this curve is called its parent. The original line at infinity has no parents. Note that other
curves may be created afterwards that separate the curve from one or both of its parents.
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Definition 2.2 For a given boundary curve E on Z, the set of its ancestors A(E) is the
smallest set S of the boundary curves that contains its parent(s) and has the property that it
contains the parents of every curve in S. Note that this set is empty if E is the original line
at infinity. Otherwise, it consists of the original line at infinity and all curves on Z that have
to be created before E.

Note that changing the surface Z above does not change the set of valuations corre-
sponding to the ancestors of Ei, so we can talk about ancestors of valuations. This notion
does depend, however, on the original P2 compactification of A2.

Definition 2.3 A curve Ei on Z is called final if there is a sequence of blow-ups from X to Z
such that Ei is blown up last. Equivalently, a curve is final if it is not a parent to any curve.

Note that there may be more than one final curve on Z, and π−1
∗ (∞) is never final. In

what follows, Ei is one of the exceptional curves on Z. The following easy observations are
proven in [3] (cf. also [2]).

Proposition 2.3 1) Suppose that when Z was created, Ei was created after all of its neigh-
bors in the graph (i.e. all adjacent vertices). Then Ei is a final curve.

2) Suppose ai = a(Ei)≥ 2 and it is the largest label among all its neighbors. Then Ei is
final.

3) If ai = 1, then Ei is final if and only if it either has only one neighbor, with label 0, or
exactly two neighbors, with labels 1 and 0.

Note that for every divisorial valuation there exists Z such that the center of the valuation
is a final curve on Z and all other curves on Z are its ancestors. This can be achieved by
refusing to blow up curves that are not ancestors of Ei or, equivalently, by blowing up a
center of the valuation while it is a point, until it becomes a curve. Note that using this
algorithm one can associate to any divisorial valuation and a P2 compactification of A2 a
unique surface Z.

3 Determinants of Weighted Forests

In this section we will construct and use a more sophisticated labeling on the graph of
exceptional curves, using the determinants of the matrices related to the Gram matrix of the
intersection form. This work is related to the work of Domrina and Orevkov (cf. [5], [4]) and
some of our results can be derived from theirs and/or the work of Walter Neumann ([8]).

In what follows, a weighted tree means a connected graph with no cycles, with weights
attached to the vertices. A weighted forest is any graph with no cycles, with weights attached
to the vertices. To each such graph Γ and any ordering of the vertices we will associate a
matrix Q(Γ ) as follows.

Q(Γ )i, j =


−ai, i f i = j,
−1, i f ith and jth vertices are connected by an edge
0 otherwise

In applications, the forest will be obtained from a tree of exceptional curves on Z by
removing some vertices and edges, with weights being the self-intersection numbers. So the
matrix Q will be related to a Gram matrix of the minus-intersection form. Note that our
choice of a matrix differs slightly from the usual matrix of a weighted graph. This is done
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because the minus-intersection form of the tree of curves on Z is “almost” positive-definite
by the Hodge Index Theorem.

Suppose Γ is a weighted forest. Denote by E(Γ ) and V (Γ ) the sets of edges and vertices
of Γ respectively. Denote by d(Γ ) the determinant of Q(Γ ) (note that it does not depend
on the ordering of the vertices). For every subset S of E(Γ ) denote by Supp(S) the set of
all vertices that are endpoints of some edge from S. A subset of S will be called disjoint if
no two edges share a vertex (i.e. |Supp(S)| = 2|S|). Denote by A(Γ ) the set of all disjoint
subsets of E(Γ ). The following lemma provides a useful formula for the determinant d(Γ ).

Lemma 3.1 In the above notations, if the weight of v ∈V (Γ ) is av,

d(Γ ) = ∑
S∈A(Γ )

(
(−1)|S| · ∏

v∈V (Γ )\Supp(S)
(−av)

)
Proof Using ordering of V (Γ ), we identify it with {1,2, . . . , |V (Γ )|}. The determinant d(Γ )
is the sum of |V (Γ )|! terms corresponding to permutations of V (Γ ). Note that such term is
zero unless the corresponding permutation sends each i to itself or to a vertex j which is
connected to i by an edge. Because Γ is a forest, the cycle decomposition of such permu-
tation consists of fixed points and transpositions (i, j), where (i, j) are edges of the graph.
Obviously, these edges must be disjoint, so the set of such permutations is in one-to one cor-
respondence with A(Γ ). The formula follows, considering that the sign of such permutation
is determined by the parity of the number of transpositions. ut

We will use the following notations and definitions.

Definition 3.1 1) For P ∈ V (Γ ) we denote by ΓP the weighted forest obtained from Γ by
removing P and all edges involving P. We define the determinant label dP of the vertex P as
d(ΓP).

2) For (P,Q)∈ E(Γ ) we denote by ΓPQ the weighted forest obtained from Γ by removing
the edge (P,Q). We define the determinant label dPQ of the edge (P,Q) as d(ΓPQ).

3) For a subset {P, ...,Q} of V (Γ ) we denote by Γ{P,...,Q} the weighted forest obtained
from Γ by removing all vertices in this subset and all edges involving them. We denote by
dP,...,Q the determinant of Γ{P,...,Q}. Note that for an edge (P,Q) the number dP,Q should
not be confused with dPQ.

The following four properties of the determinants will be used extensively later. We will
call them the multiplicativity property, the expansion by vertex formula, the expansion by
edge formula, and the weight increment formula.

Lemma 3.2 Suppose Γ is a disjoint union of Γ1 and Γ2. Then

d(Γ ) = d(Γ1) ·d(Γ2)

Proof With the appropriate ordering of the vertices, the matrix Q(Γ ) is block-diagonal, with
blocks being Q(Γ1) and Q(Γ2). ut

Lemma 3.3 Suppose P ∈V (Γ ). Then

d(Γ ) =−aP ·dP− ∑
(P,Q)∈E(Γ )

dP,Q

Proof This follows from Lemma 4.1 by breaking up the terms in the sum for d(Γ ) into
classes based on the way the vertex P is involved. ut
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Lemma 3.4 Suppose (P,Q) is an edge of Γ . Then

d(Γ ) = dPQ−dP,Q

Proof This follows from Lemma 4.1 by breaking up the terms in the sum for d(Γ ) into two
classes: (P,Q) /∈ S and (P,Q) ∈ S. ut

Lemma 3.5 Suppose Γ ′ is obtained from Γ by decreasing the weight of P by 1. Then

d(Γ ′) = d(Γ )+dP

Proof Expanding and contracting by the vertex P,

d(Γ ′) = (−aP +1) ·dP− ∑
(P,Q)∈E(Γ )

dP,Q =

=
(
−aP ·dP− ∑

(P,Q)∈E(Γ )

dP,Q

)
+dP = d(Γ )+dP

ut

Generalizing the behavior of the weighted graphs of exceptional curves under blow-ups,
we define the blow-up operations on the set of all weighted forests as follows. The blow-
down is defined as the operation opposite to blow-up.

Definition 3.2 1) Suppose P is a vertex of Γ . Then the blow-up of Γ at P is a forest with the
set of vertices V (Γ )∪{R}, the set of edges E(Γ )∪{(PR)}; aR =−1, aP is decreased by 1,
all other weights do not change.

2) Suppose (P,Q) is an edge of Γ . Then the blow-up of Γ at P is a forest with the set of
vertices V (Γ )∪{R}, the set of edges E(Γ )∪{(P,R),(R,Q)} \ {(P,Q)}; aR = −1, aP and
aQ are decreased by 1, all other weights do not change.

Lemma 3.6 The determinant of the graph is preserved by blow-ups and blow-downs.

Proof Obviously, it is enough to prove this for the blow-ups.
Case 1. Suppose P ∈V (Γ ) is blown up, and the new vertex is R. Suppose the new graph

is Γ ′. Expanding by vertex R, we get

d(Γ ′) = d(Γ ′R)−d(Γ ′PR) = d(Γ ′R)−d(ΓP)

By the weight increment formula,

d(Γ ′R) = d(Γ )+d(ΓP),

which implies the result.
Case 2. Suppose (P,Q) ∈ E(Γ ) is blown up, and the new vertex is R. Suppose the new

graph is Γ ′. Because Γ is a forest, ΓPQ is a disjoint union of two forests. We will denote the
one that contains P by PΓ and the one that contains Q by QΓ . Similarly, Γ ′R is a disjoint
union of PΓ ′ and QΓ ′.

Expanding by the vertex R, we get

d(Γ ′) = d(Γ ′R)−d(Γ ′P,R)−d(Γ ′Q,R)

By the multiplicativity property,

d(Γ ′R) = d(PΓ
′) ·d(QΓ

′),



Divisorial Valuations 9

d(Γ ′P,R) = d(PΓ
′

P) ·d(QΓ
′),

d(Γ ′Q,R) = d(QΓ
′

Q) ·d(PΓ
′).

Note that PΓ ′P = PΓP. By the weight increment formula,

d(PΓ
′) = d(PΓ )+d(PΓP).

Likewise, d(QΓ ′) = d(QΓ )+d(QΓQ). Putting this together, we get

d(Γ ′) = (d(PΓ )+d(PΓP))(d(QΓ )+d(QΓQ))−d(PΓP)(d(QΓ )+d(QΓQ))−

−d(QΓQ)(d(PΓ )+d(PΓP)) = d(PΓ )d(QΓ )−d(PΓP)d(QΓQ)

On the other hand, expanding d(Γ ) by the edge (P,Q), we get

d(Γ ) = d(ΓPQ)−d(ΓP,Q).

By the multiplicativity property, this equals the above expression for d(Γ ′), which completes
the proof of the lemma. ut

Corollary 3.1 The determinants of vertices and edges are preserved by blow-ups and blow-
downs that do not destroy them.

Proof Most blow-ups and blow-downs, that do not destroy the corresponding vertex or edge,
do not involve it. For those that do, we note that blowing up an edge (P,Q) and then removing
P is the same as removing P and then blowing up Q. Also, when a vertex P is blown-up and
then removed, the determinant of the resulting graph is the same as the determinant of the
original graph with vertex P removed, because the new vertex has weight −1. ut

The above corollary means that just like the coefficients of the K̄ labels, the determinant
labels on vertices and edges of the graph of exceptional curves on Z do not change once the
point or edge is created (the edge, however, may get destroyed). While we are ultimately
more interested in the labels of vertices, we need to keep track of the edges as well. The
following lemma is very significant, as it describes the determinants of vertices and edges
formed after the blow-up in terms of the nearby determinants and the determinant of the
entire graph. The existence of these formulas is not intuitively obvious, and the formulas
themselves are very important for applications.

Lemma 3.7 Suppose Γ ′ is obtained from Γ by a single blow-up. Suppose d(Γ ′) = d(Γ ) =
d.

Case 1. Suppose P ∈V (Γ ) is blown up, and the new vertex is R. Then dR = dP +d and
dPR = dP +d. Here dR and dPR are the determinants of a vertex and an edge in Γ ′, and dP
is the determinant in Γ or Γ ′ (which are the same by the previous lemma).

Case 2. Suppose (P,Q) ∈ E(Γ ) is blown up, and the new vertex is R. Then

dR = 2dPQ +dP +dQ−d,

dPR = dP +dPQ,

dQR = dQ +dPQ.
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Proof In Case 1, one immediately sees that dPR = dR, because the weight of R is (−1). Then
the weight increment formula implies that dR = d +dP.

In Case 2, using the notation and work from the previous lemma, we have

dR = d(Γ ′R) = d(PΓ
′)d(QΓ

′) = (d(PΓ )+d(PΓP)) · (d(QΓ )+d(QΓQ)) =

dPQ +dP +dQ +d(PΓP)d(QΓQ) = dPQ +dP +dQ +(dPQ−d).

This proves the formula for the vertex. For the edges, it is enough to prove the formula for
dPR.

dPR = d(PΓ
′) ·d(QΓ ) = (d(PΓ )+d(PΓP))d(QΓ ) = dPQ +dP.

ut

4 Two labelings together

The original motivation for the K̄ and the determinant labeling comes from looking for
possible counterexamples to the Jacobian conjecture (cf. [2]). We are especially interested
in the curves for which both the K̄ label and the determinant label are negative. For example,
all curves that are mapped to the line at infinity on P2 (called curves of type 1 in [3]), are of
this kind, as a consequence of the Ample Ramification Theorem of [3].

We begin with a new definition.

Definition 4.1 For a curve P (or a corresponding valuation) we will call the sum of its K̄
label and its determinant label its content, to be denoted cP.

Lemma 4.1 1) In the notation of Lemma 3.7, if a point on one exceptional curve is blown
up, the content of the new curve equals the content of its parent. If the point of intersection
of curves P and Q is blown up into the curve R, then

cR = cP + cQ +(2dPQ +1)

2) The content cP is always odd.

Proof The first statement is a consequence of Lemma 3.7 and Proposition 2.1. The second
statement then follows by induction. ut

The following result is interesting in its own right, and its proof also illustrates a method
that will be used in subsequent theorems.

Theorem 4.1 Every K̄−negative curve P with negative dP has a K̄−0 curve as its ancestor.

Proof For a curve P, we will denote its K̄ label by bP. We will identify the curves with
vertices of the graphs. Suppose we perform any number of blow-ups without creating a
K̄−0 curve. This means that bP ≤−1 for all curves P involved. We will prove by induction
on the number of blow-ups the following two conditions.

1) For all vertices P, cP ≥−1. Note that this implies that dP ≥ 0.
2) For all edges PQ, dPQ ≥ 0.
The base of the induction is easy to check. To prove the step, we need to consider two

cases of blow-ups. Note that d(Γ ) = d =−1.
Case 1. Blowing up a vertex P to get a new vertex R.

cR = cP ≥−1; dPR = dR ≥ 0.
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Case 2. Blowing up an edge PQ to get a new vertex R.

cR = cP + cQ +(2dPQ +1)≥ (−1)+(−1)+(0+1) =−1.

For the edges,
dPR = dP +dPQ ≥ 0+0 = 0.

ut

Example 4.1 Starting from X = P2, we blow up a point at infinity, and then a point on the
new curve. The resulting surface has the following graph of exceptional curves.

◦ ◦ ◦
−2 −1 0

0 −2 −1

1 0 −10 −1

Here the labels above the graph are the edge and vertex determinants, the labels right
below the graph are the K̄−labels, and the labels on the bottom line are the self-intersection
labels. If one blows up the point of intersection of the last two blown-up curves, one gets a
curve with negative K̄−label and negative determinant label. Other such curves could then
be obtained by further blowups.

The following theorem shows that, up to a polynomial automorphism of the original A2,
every curve with negative K̄ and determinant labels has an ancestor as in the example above.

Theorem 4.2 Suppose P⊂ Z \A2. Suppose E is the first K̄−0 curve that has to be created
to create P (the oldest K̄− 0 ancestor of P). Then there exists a sequence of blow-ups and
blow-downs at infinity, that transform Z into Z′, which has the same graph as the example
above, with E being the K̄−0 curve. (Note that the pullback of the line at infinity on Z′ may
differ from the original pullback of infinity on Z).

Proof We will follow the way P was created, changing the pullback of infinity as needed, to
decrease the number of ancestors of E. The key idea is that one can rule out the possibility
of creating P in some choices of blow-ups.

We start with blowing up a point at infinity. If then the new point is blown-up on the last
curve, we are in the situation of the example above, and the result is obviously true. So the
only non-trivial option left is to blow the point of intersection of the two curves, creating the
following graph:

◦ ◦ ◦
−2 −3 −1
−1 −1 −2

1 2 01 0

The next step in the sequence of creation of E must be either blowing up the left edge,
the middle point, or the right edge of the above graph.

If the left edge is blown up, we end up in the part of the graph with all positive edge
labels, and the inequality cQ ≥ 0 satisfied for all the vertices (except the one that used to
be the middle vertex). The induction argument, similar to the one in the proof of the last
theorem, implies that even if we create a K̄−0 curve, its determinant label, and the label of
the edge created with it, will be non-negative. Since we have to go back to the “negative K̄”
territory, we will never get a curve with negative K̄ and determinant labels.
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If the middle point is blown up (which corresponds to blowing up a new point on the
last blown-up curve) then the newly blown-up curve can serve as a new pull-back of infinity,
which is closer to E (i.e. E can be created from it by fewer blowups).

So the only case left is when the right edge is blown up. After that we again have three
possibilities. Blowing up the left edge can be discarded the same way as above. If we blow
up the last vertex, we will be forced to blow up the newly blown-up vertex, creating a new
curve that can serve as a pull-back of infinity.

In general, suppose the creation sequence for E starts with blowing up the right edge
exactly k times. This leads to the following graph:

◦ ◦ ◦ ◦. . .
−2 −3 −(k+3) −1
−1 −2 −1 −(k+2)

1 2 (k+2) 01 2 0

After this, we are forced to blow up the second from the right vertex, and then blow up
the resulting vertex, and so on, until we get a curve with the K̄−label (−2). Notice that this
curve Q can serve as a new pull-back of infinity, because all other curves can be contracted
one after another to a smooth surface, which has to be P2, since the anticanonical class is
−3Q and Q2 = 1. Note that this Q is closer to E that the original pull-back of infinity. ut

We are now going to prove our main theorem. It would be nice to have a conceptual
proof, but at this time we have to resort to a case-by-case analysis of the combinatorics of
weighted graphs.

Theorem 4.3 (Main Theorem) Suppose a,b ∈ Z are arbitrary fixed numbers. Then there
exists a number N ∈ N such that every divisorial valuation at infinity with K̄ label a and
determinant label b is given by a curve on a compactification of A2 that can be obtained
from a P2 by no more than N blowups.

Proof (Proof of Main Theorem) Suppose v is a divisorial valuation at infinity. We compactify
A2 to X = P2 and consider the center of v on X . Unless it is the line at infinity, it is a point
on the line at infinity. We blow it up, and keep blowing it up until it becomes a curve. Since
we are considering the valuations modulo automorphisms of A2, we will choose such P2

compactification of A2 that the valuation v has the fewest possible number of ancestors. We
will only keep track of the K̄ labels and the determinant labels, generally indicated below
and above respectively; the curve blown up last is indicated by “⊗ ” instead of “ ◦ ”. After
the first blow-up, the graph looks as follows.

◦ ⊗
−2 −1

1 00

Depending on the next blowup, we have two cases.
Case 1.

◦ ◦ ⊗
−2 −1 0

1 0 −10 −1

Case 2.
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◦ ◦⊗
−2 −3 −1

1 2 01 0

Lemma 4.2 In Case 1, the following is true for all subsequent blowups.
1) All future determinants of vertices are negative;
2) All future determinants of edges are negative.

Proof (Proof of Lemma) The proof is by induction; the base is obvious, and the step follows
from Lemma 3.7. ut

As a corollary of the above and Lemma 3.7, the determinant of the last vertex strictly
decreases at every step. Thus the number of steps in this case is bounded by |b|.

Case 2 is somewhat more complicated. It can be subdivided into three sub-cases.
Case 2a. A point is blown up on the last curve. In this case the new curve can be taken

as the new line at infinity, contracting all the other curves. This corresponds to an auto-
morphism of A2; because we chose the P2 compactification with the smallest number of
ancestors of v, this case is impossible.

Case 2b. The left edge is blown up:

◦ ◦ ◦⊗
−2 −5 −3 −1

1 6 2 02 3 0

This will be treated below as part of the more general case, for n = 2.
Case 3c. The right edge is blown up:

◦ ◦ ◦⊗
−2 −3 −4 −1

1 2 3 01 2 0

Here we can again either blow up a new point on the last curve, blow up the edge to the
left of the last curve or the edge to the right. In the first case there is a compactification of A2

such that v has smaller number of ancestors (see the end of the proof of Theorem 4.2). This
contradicts our assumption on minimality of the number of ancestors of v. In the second
case, we get the following graph:

◦ ◦ ◦ ◦⊗
−2 −3 −7 −4 −1

1 2 10 3 01 4 5 0

In the last case, we again have three possibilities... ultimately, after a finite number of
blowups of the right edge we will either have found the curve for v or we will have to
blow up a point on the last curve, or the left edge. The first case is again impossible by the
minimality of the number of ancestors of v, and the last case gives the following graph:

◦ ◦ ◦⊗. . .
−n −(2n+1) −(n+1) −1

(n−1) (4n−2) n 02n−2 2n−1 0

Incorporating the previously considered cases, we can have here any n≥ 2. Note that if
we denote the last curve by P, then

cP = (4n−2)− (2n+1) = 2n−3≥ 1
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In the subsequent blowups, the K̄ labels of the blown-up curves are non-positive at first.
If the K̄ label of v is positive, then at some point these labels become positive. By Proposition
2.1, once the K̄ labels become positive, they stay positive. The following lemma describes
what happens while the K̄ labels are negative. The increase or decrease of the labels refers
to the sequences of the labels of the curves blown up during the steps of the process.

Lemma 4.3 In the notations above, we have the following for the subsequent blowups,
while the K̄ labels are non-positive:

1) All determinant labels of the vertices and edges are positive, except for the rightmost
edge and vertex on the above graph;

2) All cP created during these blowups are at least 1;
3) The sequence of cP’s never decreases; at every step when it stays the same, the K̄

label increases.

Proof (Proof of Lemma) The proof is by induction, and the base is obvious. Suppose all
conditions are satisfied after k blowups. Consider the (k+1)-st blown-up curve, R.

If R has one parent, then the condition 3 follows from Lemma 4.1 and Proposition 2.1.
The condition 2 follows from Lemma 4.1 and the induction hypothesis. The condition 1
for R follows from cR being at least 1 and the K̄ label of R being non-positive. Then the
condition 1 for the newly formed edge follows from the determinant label of the edge being
equal to the label of R (see Lemma 3.7).

If R has two parents, P and Q, then by Lemma 4.1 and positivity of dPQ, dP and dQ,

cR = cP + cQ +(2dPQ +1)≥max(cP,cQ)+4,

thus the content of R is strictly greater than that of the previous curve. By induction, this
implies condition 2. The condition 1 follows from the induction hypothesis and Lemma 3.7.

ut

If a ≤ 0, the condition 3 implies that 2n+ 3 ≤ (a+ b), thus for given a and b we have
finitely many possible n. For each of these n, we can perform only a finite number of blowups
without increasing cP, since we have to keep the K̄ label non-positive. So after a bounded
number of steps we have to increase cP. After that we again have only a finite number of
possible graphs, so the number of blowups until cP has to increase twice is also bounded,
and so on. Note that the total number of times cP can increase is bounded as well, by (a+
b−1)/2, thus we have a finite number of possible graphs for given a and b, for a≤ 0.

If a ≥ 1, then at some step of the blowup process we must create for the first time a
vertex with positive K̄ label. Call this vertex Q. Note that its K̄ label must be 1, and it has
one parent, with K̄ label 0. By the above lemma, the content of its parent, which is also its
content, is at least 2n− 3. Therefore, dQ ≥ 2n− 4 ≥ 0. We then blow up m ≥ 0 times the
edge connecting the vertices with the K̄ labels 0 and 1 before creating (if a ≥ 2) a vertex
with the K̄ label 2. The following lemma describes this process.

Lemma 4.4 In the notation above, after m blowups the graph looks as follows, if dQ = c:

◦ ◦ ◦⊗. . . . . .
0 1 1 1

(c+1) ((m+1)2c+m2 +m) (mc2 +m2−m) c(m+1)c+m (m2+m)c+(m2−1)

Proof (Proof of Lemma) The proof is just a calculation, using induction on m and Lemma
3.7. Please note that when m = 0 the above picture degenerates to just two left vertices. ut
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After this the vertex R with K̄ label 2 can be created in two different ways.
If R has one parent, then at the step when R was created the graph looked as below, with

dR = (m+1)2c+m2 +m−1

◦ ⊗. . .
1 2

dR +1 dRdR

If R has two parents, then the graph looked like this:

◦ ◦⊗. . . . . .
1 2 1

(
(m+1)2c+
+m2 +m

) (
(2m+1)2c+
+4m2−1

) (
m2c+

+m2−m

)(
(2m2 +3m+1)c+
+2m2 +m−1

) (
(2m2 +m)c+

+(2m2 −m−1)

)

Note that this can only happen if m≥ 1.
Once R is created, the sequence of K̄ labels will be strictly increasing, so we will have

to get to the curve of v in at most (a− 2) steps. This gives for every a a finite number of
possibilities for the sequence of blowups from R to the vertex of v. Each such sequence cor-
responds to a tree, with vertices and edges labeled by the respective determinants, calculated
from Lemma 3.7.

Lemma 4.5 In both of the situations described above, the following are true both for the
determinants of vertices and the determinants of edges for all subsequent blowups.

1) Each of these determinants is an integer polynomial in c = dQ and m, linear in c and
quadratic in m.

2) For any fixed c ≥ 0 each of these polynomials is a strictly increasing functions of m,
for m≥ 0 in the one-parent situation and m≥ 1 in the two-parent situation.

3) For any fixed m≥ 0 in the one-parent situation and m≥ 1 in the two-parent situation,
each of these polynomials is a strictly increasing function of c, for c≥ 0.

Proof (Proof of Lemma) This follows from Lemma 3.7 by induction on the number of
blowups after creation of R. Note that the operations on polynomials described in Lemma
3.7 preserve properties 2 and 3. ut

Thus, since b is fixed, for each of the finite number of possible blowup sequences after
R we have only finitely many choices for dQ and m. The determinant label of the last curve
with the K̄ label 0 (the parent of Q) is dQ +1, so it is bounded. Therefore n is bounded and
from the above discussion of the a ≤ 0 case the number of steps to create Q is bounded,
which completes the proof of the theorem. ut

Note that the above proof does not provide an effective estimate N(a,b). However, for
some fixed small a and b one can find the moduli space of valuations with labels a and b
explicitly. As an example, we get the following nice characterization of the line at infinity.

Theorem 4.4 Suppose v is a divisorial valuation at infinity, such that its K̄ label is −2 and
its determinant label is 1. Then, up to an automorphism of A2, its center is the line at infinity.

Proof As in the above theorem, consider a P2 compactification of A2 so that v has the
smallest number of ancestors. Suppose this number is positive, that is we have to perform
blowups to get the curve of v. Then Case 1 is impossible because all the curves there have
negative determinant. Case 2 is impossible because for the valuations with negative K̄ labels
the content must be at least 1. ut
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5 Several K̄-negative curves

We are now interested in several K̄−negative curves, with the condition that removing them
all from the graph of exceptional curves produces a graph with negative determinant. This
is motivated by the curves of type 1 of [3] (cf. also [2]).

First, we need to introduce some new notation. Suppose X =P2 is the standard compact-
ification of A2, Z is obtained from X by a sequence of blowups outside A2; Γ is the (dual)
graph of the exceptional curves on Z, E = π−1

∗ (∞), where π : Z → X is the natural map.
Suppose P is an exceptional curve on Z, and a vertex of Γ . We denote by d′P the determinant
of ΓE,P. We denote by uP the coefficient of P in the formula that expresses π∗(∞) in terms
of the exceptional curves on Z: π∗(∞) = E +∑P6=E uPP. Note that uP is a natural number.

Lemma 5.1 In the above notation, u2
P = dP +d′P.

Proof While an inductive argument is possible, the following direct proof is easier. Define
L = E + ...+ uPP+ .., the class of the pullback of (∞) on Z. Note that L intersects by 1
with E and by 0 with all other exceptional curves. If we change a basis of the lattice of the
divisor classes on Z, replacing P by L, the Gram matrix of the minus-intersection form will
be multiplied by u2

P. Thus

(−1) ·u2
P = det

 (−E2) ... −1
...
−1 −1

 ,

where the last row and column of the matrix on the right correspond to L and the first
correspond to E. Note that all the coefficients in the last row and column are zero unless
indicated, and that removing these row and column produces the matrix of ΓP. Using cofactor
expansion w.r.t. the last row, and then (for one of the terms) the first row, we get −u2

P =
−dP−d′P. ut

Lemma 5.2 Suppose P and Q are on the different sides of E (i.e. E belongs to the pass in
the tree Γ that connects P and Q). Then the determinant dP,Q of the graph ΓP,Q is given by
the following formula:

dP,Q = uPuQ−dPdQ

Proof We will denote dP,Q by PdQ. The notation C1C2 dQ will stand for the determinant of
the graph obtained by removing the vertex Q ad the edge C1C2.

We first perform a sequence of blowups to create Q, without producing any ancestors of
P. Then we perform a sequence of blowups that creates P, keeping track of the determinants
of vertices and edges of the new graph with the point Q removed. Note the following:

1) EdQ = d′Q;
2) d(ΓQ) = dQ;
3) For all ancestors C of P and all edges C1C2 involved in creating P, their determinant

labels CdQ and C1C2 dQ are linear combinations of d′Q and dQ. Let us denote the coefficients
of these linear combinations by aC, bC, aC1C2 , bC1C2 so that

CdQ = aC ·d′Q +bC ·dQ, C1C2 dQ = aC1C2 ·d
′
Q +bC1C2 ·dQ

4) From the formulas for the determinants of blowups (Lemma 3.7) the coefficients aC
and aC1C2 behave like dC and dC1C2 for a graph with the determinant d = 0, and initial value
1. By induction, one can easily prove that aC = dC +d′C, which equals u2

C.
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5) From the formulas for the determinants of blowups (Lemma 3.7) the coefficients bC
and bC1C2 behave like dC and dC1C2 for a graph with the determinant d = 1, and initial value
0. By induction, one can easily prove that bC = d′C.

6) So, CdQ = u2
C ·d′Q +d′Q = u2

C(u
2
Q−dQ)+(u2

C−dC)dQ = u2
Cu2

Q−dCdQ ut

Lemma 5.3 In the above notation, for a curve P with K̄ label k̄P < 0 and dP < 0 the follow-
ing inequality is satisfied:

u2
P ≥ |dP|

Proof Because dP < 0, we need to prove that u2
P + dP ≥ 0. Note that u2

P + dP = 2dP + d′P.
For all ancestors C of P, define lC = 2dC +d′C and lC1C2 = 2dC1C2 +d′C1C2

. The labels lC and
lC1C2 behaves like those in the graph with d = −1. Like in the proof of Theorem 4.1., one
can prove by induction the following two statements:

1) lC + k̄C ≥−1
2) lC1C2 ≥ 0
So lP + k̄P ≥−1. Because k̄P < 0, lP ≥ 0. ut

Theorem 5.1 Suppose P and Q have negative k̄ labels and determinant labels and lie on
the different sides of E. Then dP,Q ≥ 0.

Proof This follows directly from Lemma 5.2 and Lemma 5.3. ut

Corollary 5.1 Suppose {E1, ...,Ek} is any collection of exceptional curves of Z with nega-
tive k̄ labels, such that removing them all from the graph of exceptional curves produces a
graph with negative determinant. Then they all lie on the one side of E.

Remark 5.1 The above Corollary can be applied to the set of all curves on any counterex-
ample Z to the two-dimensional Jacobian Conjecture, that are mapped to the (same) line
at infinity on P2 (curves of typ 1 as defined in [3]). As a result, we conclude that all these
curves are on one side of π−1

∗ (∞).
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