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Abstract. It was conjectured by McKernan and Shokurov that for all Mori

contractions from X to Y of given dimensions, for any positive ε there is a

positive δ such that if X is ε-log terminal, then Y is δ-log terminal. We prove
this conjecture in the toric case and discuss the dependence of δ on ε, which

seems mysterious.
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1. Introduction

The main subject of this paper is the following 2003 conjecture of James McKernan:

Conjecture 1 (McKernan). For fixed positive integers m,n and a real number
ε > 0 there exists a δ = δm,n(ε) > 0 such that the following holds: Let X be a
Q-factorial variety, and f : X → Y be a Mori fiber space with dimY = n, dimX =
m+ n. Assume that X is ε-log terminal. Then Y is δ-log terminal.

A related stronger conjecture was suggested by V.V. Shokurov. Let f : X → Y
be a proper surjective morphism with connected fibers of normal varieties, so that
X/Y is of relative Fano type (see definitions below) and let ∆ be a Q-divisor on X
such that KX + ∆ = f∗L for some Q-divisor L on Y .

By Kawamata’s subadjunction formula [Kaw97, Kaw98], see also [Amb05], one
has KX + ∆ = f∗(KY + R + B), where R is the discriminant part, and B is the
“moduli” part, a Q-divisor defined only up to Q-linear equivalence.

Conjecture 2 (Shokurov). In the above settings, assume that (X,∆) is ε-log ter-
minal. Then there exists δ = δm,n(ε) > 0 and an effective moduli part B, such that
(Y,R+B) is δ-log terminal.

Conjecture 2 clearly implies Conjecture 1: for a Mori fiber space consider a large
integer N � 0 and a generic element D of a very ample linear system −NKX+f∗M
for some M on Y , and let ∆ = 1

ND. Then KX + ∆ = f∗L and for the minimal log
discrepancies one has

mld(X,∆) = mld(X) +
1

N
and mld(Y,R+B) ≤ mld(Y ).
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Taking the limit N →∞ gives the implication.
We refer the reader to [KM98] for basic definitions and results of the Minimal

Model Program, some of which we briefly recall below. For any normal variety X
for which some positive multiple of the canonical class KX is Cartier, one defines
discrepancies ai ∈ Q by the formula

KX′ = π∗KX +
∑

aiEi, Exc(π) = ∪Ei,

in which π : X ′ → X is a resolution of singularities, and Ei are the irreducible

exceptional divisors of π. The log discrepancies are the numbers alogi = ai + 1. The
minimal log discrepancy mld(X) is the minimum of log discrepancies, going over
all resolutions of singularities (equivalently for one resolution X ′ → X such that
Exc(π) is a normal crossing divisor).

A variety is said to be ε-log terminal (abbreviated below to ε-lt) if its log dis-
crepancies are > ε, i.e. if for ordinary discrepancies one has ai > −1 + ε. Similarly,
a variety is ε-log canonical if the log discrepancies are ≥ ε. In particular, 0-log
terminal is the same as Kawamata log terminal (klt), and 0-log canonical is the
same as log canonical.

We recall that f : X → Y is a Mori fiber space if f is projective, −KX is f -
ample, and the relative Picard number is ρ(X/Y ) = 1. The assumption that X is
Q-factorial implies that so is Y (cf. [KMM87, Lemma 5-1-5]).

Finally, a variety X is called a variety of Fano type (FT) if there exists an
effective Q-divisor D such that the pair (X,D) is klt and −(KX + D) is nef and
big.

There are numerous motivations for the above conjectures. The case ε = δ = 0
of Conjecture 1, i.e. “X is klt implies Y is klt” follows easily by cutting X with
m general hyperplanes and reducing to a finite surjective morphism. Even if X is
not Q-factorial, the implication “X is klt implies (Y,∆) is klt for an appropriate
divisor ∆” is true, as proved by Fujino [Fuj99].

The first nontrivial case with ε > 0 appears when dimX = 3 and dimY = 2, i.e.
when f : X → Y is a singular conic bundle. Mori and Prokhorov [MP08] considered
the case when X is terminal. In this case, they proved Iskovskikh conjecture which
says that Y must have at worst Du Val singularities. This proves that one can take
δ1,2(1) = 1 − c for any c > 0. Yuri Prokhorov also showed us several examples of
conic bundles of the form (P1×A2)/G→ A2/G for a cyclic group G which indicate
that Conjecture 1 is plausible.

Conjecture 1 may also be viewed as the local analogue of Borisov-Alexeev-Borisov
(BAB) boundedness conjecture [BB92, Ale94] which says that for fixed n and ε > 0
the family of n-dimensional ε-lt Fano varieties is bounded.

Indeed, if X happen to be Fano varieties, then the family of possible ε-lt vari-
eties X is bounded by the BAB conjecture. Then the family of possible varieties Y
must be bounded, so some δ(ε) > 0 must exist. Vice versa, when trying to prove
BAB conjecture by induction, Conjecture 1 naturally appears as one of the steps.
In this sense, it can be considered to be “the local BAB conjecture”.

The main result of the present paper is the following

Theorem 1. Conjecture 1 holds in the toric case, i.e. when f : X → Y is a
morphism of toric varieties corresponding to a map of fans (Nx,ΣX)→ (NY ,ΣY ).
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Note that in the toric case, if one denotes by ∆ the sum of torus invariant divisors
with coefficients 1, then one has KX + ∆ = 0 and the pair (X,∆) is log canonical
with mld(X,∆) = 0. Thus, the more general Conjecture 2 does not fit the toric
case very well.

A very interesting question is to find the asymptotic of the function δ(ε) as
ε→ 0. Concerning this, we prove the following:

Theorem 2. In the conditions of Theorem 1, suppose additionally that the generic
fiber of f is a finite, unramified in codimension one, toric quotient of a fixed toric
Fano variety P . Then there exists a constant C such that δ ≥ C · εm+1.

On the other hand, we prove:

Theorem 3. There exist a sequence of toric Mori fiber spaces with m = n = 2
such that mld(X)→ 0 and mld(Y ) ≈ C ·mld(X)4.

Acknowledgments. This research originated in a discussion at the ACC workshop
at the American Institute of Mathematics in May of 2012, as an attempt to answer a
question brought up by Yuri Prokhorov. The authors wish to thank Yu. Prokhorov,
V.V. Shokurov and other participants of this workshop for many fruitful discussions.

2. Proofs of the main results

We continue with the notation of the Introduction. We first need to examine the
combinatorics of the fans of X and Y . We refer to [Ful93] or [Oda88] for the general
theory of toric varieties. We work over C for simplicity, although, as usual in toric
geometry, the results remain true over a field of positive characteristic as well.

Recall that a toric variety X is given by a pair (NX ,ΣX) where NX is a lattice
(called the lattice of valuations) and ΣX is a rational polyhedral fan in NX ⊗ R.
A toric map from a toric variety X to a toric variety Y is given by a linear map
F : NX → NY such that its extension FR : NX ⊗ R→ NY ⊗ R sends every cone in
the fan ΣX to a cone in the fan ΣY .

We denote by NZ the lattice Ker(F ), and by ΣZ the restriction of ΣX to Ker(FR).
We recall the following basic facts:

Fact 1. The morphism f : X → Y is proper iff F−1R (Supp ΣY ) = Supp ΣX .

Fact 2. A general fiber of f : X → Y is a product of a torus of dimension dimNZ

with the finite part, the product of finitely many copies of the group schemes µri =
Spec k[z]/(zri − 1). The character group of the finite part is the torsion subgroup
of coker(F : NX → NY ).

A Mori fiber space f : X → Y is a surjective proper morphism with connected
fibers, and a general fiber is connected and reduced. Therefore, in our situation
one has F−1R (Supp ΣY ) = Supp ΣX , and the morphism of lattices F : NX → NY is
surjective.

Fact 3. A toric variety X is Q-Gorenstein, i.e. the canonical divisor KX is Q-
Cartier iff there exists a function ` = `−KX

: Supp ΣX → R which is linear on each
cone σ ∈ ΣX and such that `(Pi) = 1 for each shortest integral generator Pi of each
ray Ri of σ.
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Fact 4. A toric variety X is Q-factorial, i.e. every Weil divisor is Q-Cartier iff
the fan Σ is simplicial, i.e. every cone is a simplex.

Fact 5. The mld(X) is computed as the minimum of the piece-wise function ` =
`−KX

on Supp ΣX ∩NX \ {0}.

Obviously, our problem is local on Y , so we can assume that Y is affine. Since
X and Y are Q-factorial, Y is a quotient of An by a finite abelian group. Combi-
natorially, it is obtained from the standard cone C = {(x1, ..., xn|∀xi ≥ 0} in Rn,
with the lattice being a finite extension of the standard lattice Zn. Thus, the fan
ΣY consists of the cone C and its faces.

If the shortest integral generators of the cone C are the standard basis vectors
ei then the linear function computing mld(Y ) is simply `−KY

=
∑
xi.

Proposition 4. Suppose that f : X → Y is a toric Mori fiber space, with Q−factorial
X and affine Y as above. Denote by F : NX → NY the map of the corresponding
lattices, and extend it to the linear map FR from NX ⊗R = Rn+m to NY ⊗R = Rn.
We choose the basis of NX ⊗ R so that the map FR is the projection of Rn+m to
the last n coordinates. Then the following is true about the fan of X in NX ⊗ R.

1) It has exactly (n+m+ 1) one-dimensional cones (rays) Ri, i = 0, 1, ...,m+n
of which R0, . . . , Rm are in Ker(FR) and for all i = m+ 1, ...,m+ n the ray Ri is
mapped by FR to the ray of C, which is the span of the standard basis vector ei−m.

2) Any generators of Ri for i = 0, ...,m, form a simplex that contains 0.
3) The cones in the fan of X are precisely the simplicial cones generated by Ri

for i ∈ S ⊂ {0, 1, ..., n+m}, where S does not contain {0, 1, ...,m}.

Proof. The condition F−1R (C) = Supp ΣX implies that

(1) The fan ΣZ is complete, i.e. Supp ΣZ = NZ ⊗ R. In particular, ΣX has at
least m+ 1 rays in kerFR.

(2) For each of the n rays of C, there exists at least one ray of ΣX lying over
it.

Recall that the Picard group of R−Cartier divisors on a toric variety X is the
quotient of the space of piece-wise linear functions modulo the space of linear func-
tions on ΣX . Since both fans are simplicial (because X,Y are both Q-factorial)
and full-dimensional, the relative Picard number ρ(X/Y ) is the difference between
the number of rays of X and Y minus the relative dimension, m.

Therefore, ΣX has m+ n+ 1 rays. Thus, ΣX has no other rays other than the
(m + 1) + n rays listed above, and over each ray of C there exists a unique ray of
ΣX . This proves (1).

Finally, for this set of n+m+1 rays there is only one simplicial fan with support
F−1R (C): the one described in (3). This proves (2) and (3). �

We now choose a basis in NX ⊗ R so that the last n coordinate vectors are the
primitive elements of NX on the rays Ri, i ≥ m+ 1, denoted by Pi. For i = 0, ...,m
we also denote by Pi the primitive elements of NZ = ker(NX → NY ) on the rays Ri.

By the above Proposition, the fan ΣX is isomorphic to the Cartesian product
ΣY × ΣZ . Since a general fiber of X → Y is connected, the map F : NX → NY

is surjective. Therefore, one has NX ' NY × NZ . However, one need not have
(NX ,ΣX) ' (NY ,ΣY )× (NZ ,ΣZ). In particular, it is possible that F (Pi) are not
primitive in the lattice NY .
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Denote by ∆ the simplex with vertices Pi in Ker(F ). This structure defines the
toric Fano variety Z of Picard number one, which is the generic fiber of f. We
choose the coordinates in NX ⊗ R = Rn+m so that the lattice generated by Pi is
the standard Zm ⊂ Rm = Ker(FR); the lattice NZ is a finite extension of it.

We now describe our basic strategy for the proof of Theorem 1. Recall that
mld(Y ) of a toric variety Y is computed as the minimum of the linear function
n∑

i=1

xi over the non-zero points of NY ∩ C.

According to Fact 5, the mld of a toric singularity is the minimum of the log
discrepancies of the non-zero points of the corresponding cone, where the log dis-
crepancy of a point is the value on it of the linear function that equals 1 on the
rays of the cone. Suppose that for Y this minimum is achieved at some point A.
We want to prove that if the log discrepancy of A is very small, there must exist
a point in NX , in one of the cones of ΣX , for which the log discrepancy is also
small (less than the given ε). To look for this point, we take a preimage P of A
in NX (it is possible, because NX → NY is surjective), and consider its multiples
P, 2P, ..., tP modulo the lattice Zn+m, for some t to be specified later. If the log
discrepancy of A is really small, then we can choose a fairly large t such that for
all these points the sum of the last n coordinates is still small. By Dirichlet Box
Principle, we can choose two of these points to be close to each other, and take
their difference. If we subtract in the correct order, this produces a point Q in NX

with the last n coordinates nonnegative and with small sum; and the projection to
the first m coordinates being near the origin. Because the union of the cones for Z
is the whole Rm, this projection must belong to some cone, which implies that Q
lies in some cone for X and has a small log discrepancy there.

To illustrate the method, we first establish Theorem 1 in the particular case
when Z is an unramified in codimension one quotient of the usual projective
space Pm. This means that the barycentric coordinates of 0 in the simplex ∆
are ( 1

m+1 , ...,
1

m+1 ).

Proposition 5. In the above notation, suppose additionally that the points Pi for
1 ≤ i ≤ m are the standard ei ∈ Rn+m, and P0 = (−1, ... − 1; 0, ..., 0) (Here the
semicolon separates the first m coordinates from the last n). Then for any ε > 0,
if mld(X) > ε, then mld(Y ) > δ = ( ε

2m )m+1.

Proof. Suppose that mld(Y ) ≤ δ. Denote the point in NY on which the mld is
achieved, by A. In other words, A = (a1, ...an), where ai are nonnegative, not
all zero, and

∑
ai ≤ δ. Because F is surjective, A = F (P ) for some P ∈ NX .

Suppose P = (b1, ..., bm; a1, ...an). We may additionally assume that all bi are in
[0, 1), because Zm ⊆ NZ .

Choose t = δ−
m

m+1 . For all integers k ∈ [0, t) consider the points Pk = kP
mod Zn+m = (bkb1c, ..., bkbmc; ka1, ..., kan) and their projections to Rm: P̄k =
(bkb1c, ..., bkbmc).

Lemma 6. Suppose for all integer k ∈ [0, t), Qk = (b1,k, ..., bm,k) are arbitrary
points in [0, 1)m. Then there exist i and j so that for all l = 1, ...,m we have
|bl,i − bl,j | ≤ t−1/m.

Proof of Lemma. Identify [0, 1)m with the quotient Rm/Zm, with the usual Haar
probability measure. For each Qi consider a closed box neighborhood of it defined



6 VALERY ALEXEEV AND ALEXANDER BORISOV

by the conditions xl ∈ [bl,i − 1
2 t
−1/m, bi + 1

2 t
−1/m] mod Z. The volume (i.e. the

Haar measure) of each such box is t−1. Note that the total number of points is
btc > t, so the total sum of the volumes is greater than 1. Thus there exist i and j
such that the corresponding boxes intersect. The triangle inequality in R/Z implies
the result. �

We apply the above Lemma to the points Qk = P̄k. Without loss of generality,
we can assume that i < j. Consider the point Q = Pj − Pi ∈ NX . In coordinates,
Q = (bjb1c−bib1c, ..., bjbmc−bibmc; (j−i)a1, ..., (j−i)an). Note that 0 < j−i ≤ t,
so the sum of the last n coordinates of Q is at most tδ. Suppose that for l ≥ m+ 1
we have F (Pl) = cl · el−m. Then the contribution to the log discrepancy of Q from
the last n coordinates is

k

n+m∑
l=m+1

al−m
cl
≤ k(al + ...+ an) ≤ k · δ.

The first m coordinates of Q are less than t−1/m in absolute value. Denote by
Q̄ the natural projection of Q to NZ ⊗ R:

Q̄ = (bjb1c − bib1c, ..., bjbmc − bibmc) = (q1, ..., qm).

Then Q̄ belongs to one of the cones of the fan for Z as follows.
Case 1. All ql are nonnegative. Then Q̄ belongs to the cone xi ≥ 0, which is the

span of Pi, for 1 ≤ i ≤ m. The contribution to the log discrepancy from the first m
coordinates is at most m · t−1/m.

Case 2. At least one of the numbers ql is negative. Without loss of generality, we
can assume that q1 is the smallest (i.e. the most negative) of ql. Then Q̄ lies in the
span of P0;P2, ..., Pm. Its coordinates in that basis are (−q1; q2 − q1, ..., qm − q1).
The contribution to the log discrepancy from the first m coordinates is at most
(2m− 1) · t−1/m.

Putting it together, the log discrepancy of Q is at most (2m−1)t−1/m+tδ. Since

we chose t = δ−
m

m+1 , we get the log discrepancy of Q to be at most 2mδ
1

m+1 ≤ ε,
which contradicts mld(X) > ε.

This completes the proof of Proposition 5. �

Remark 7. One can improve the above estimate slightly by choosing t to be a

suitable constant times δ−
1

m+1 , and by a more “projectively symmetric” estimates
for Q̄. But it will still give the result of the form δ ≥ const(m) · εm+1, and would
make the exposition considerably more muddled.

Proof of Theorems 1 and 2. A slight generalization of the above argument yields
Theorem 2. Indeed, suppose Z is an arbitrary toric Fano variety of dimension m
with the corresponding simplex ∆, and suppose that the barycentric coordinates
of 0 in ∆ are y1, y2, ..., ym+1. We can fix the vertices Pi, i ≤ m + 1, in Zm. As

before, we can take t to be δ−
1

m+1 . We apply the same Lemma (though one can
get a somewhat better estimate by generalizing scaling the boxes, keeping the same
volume). As a result, the absolute values of all coordinates of the point Q̄ are again

at most t−
1
m = δ

1
m+1 . So for each of the (m + 1) linear functions corresponding

to the m−dimensional cones of the fan for Z, the log discrepancy for Q̄ will be

bounded by constant multiple of δ
1

m+1 . The same estimate as above proves that for
the fixed y1, y2, ..., ym+1 one can choose δ = const · εm+1, thus proving Theorem 2.
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Finally, Theorem 1 follows from Theorem 2 by a simple observation that if
mld(X) > ε, then also mld(Z) > ε. By the main result of [BB92] (BAB Conjec-
ture for toric varieties) there are only finitely many possible Fano varieties Z with
mld(Z) > ε. �

While the above argument may seem to imply the existence of a general estimate
for the mld(Y ) in terms of mld(X) in the form const(m)·εm+1, the constant depends
implicitly on ε. In fact, one simply cannot hope for the estimate above, in light of
the following example which proves Theorem 3.

Example 8. We fix n = m = 2. Suppose l is a natural number. Consider a
triangle in Z2 with vertices (1, 0), (−(l−1), 1), (−(l−1),−1). This gives a weighted
projective space; we multiply it by A2, and consider the quotient by the group µr,
where r = l4 + 1, given by the weights 1

r (l, l2; 1, 1). In other words, we take a lattice

Z2 ⊂ Z4, and enlarge the latter by adjoining the point 1
r (l, l2; 1, 1). The rays are

(1, 0, 0, 0), (−(l − 1), 1, 0, 0), (−(l − 1),−1, 0, 0); (0, 0, 1, 0), (0, 0, 0, 1). The map F is
just the projection to the last two coordinates. The variety Y is a cyclic quotient
singularity of type 1

r (1, 1).

We claim that for the above Example the mld(Y ) is asymptotically 1
l4 , while

mld(X) is asymptotically at least 1
2l . This would obviously imply Theorem 3.

The first part is easy: mld(Y ) = 2/r, which is asymptotically 2/l4.
For the estimate on mld(X), consider the point N = 1

r (l, l2; 1, 1) in R4. We need

to prove that no sums kN and points of Z4 have small log discrepancy, in any of
the cones of X. Consider such point Q = kP +B, where k is an integer from 1 to
r − 1 and B ∈ Z4. Clearly, we can assume that the last two coordinates of B are
zero, thus B ∈ Z2 ⊂ Z4. Note the following.

1) If k > (l3)/2, then the contribution from the last two coordinates is already
too big. So we are only concerned with k ≤ (l3)/2.

2) Since k ≤ (l3)/2, the first coordinate in kN is between 0 and 1/2. Therefore
the points in the left cone are of no concern: they would have log discrepancy
contribution from the first two coordinates at least (1/2)/(l − 1). For the points
in the upper or lower cone, if k > l2/2, then the log discrepancy is at least kl/r >
(l3)/(2r), which is about 1/(2l). So we only need to consider k ≤ l2/2.

3) Since k ≤ l2/2, the second coordinate of kN is between 0 and about 1/2. This
rules out points in the lower cone. For the upper cone, we clearly only need to be
concerned with the points kN + (0, 0). And there the smallest (x1 + lx2) value is
at least 1× l2/r = l3/r, which is about 1/l.

3. Miscellaneous remarks

It may seem like one cannot avoid using the BAB conjecture to prove Theorem 1.
However, there is an explicit version of the toric BAB theorem (proved by Lagarias
and Ziegler [LZ91], and originally by Hensley [Hen83], before [BB92]) which may
probably be used to get an explicit bound of the form δ = C(m)εd(m). However
this is by no means automatic, and the correct power d(m) is highly mysterious.
Probably, for m = 2 it is 4, but in higher dimensions the answer is not obvious.

By a more careful generalization of the argument for Pm, one can get an estimate
for δ in terms of m, ε and the Tian’s alpha invariant of Z (that essentially measures
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“asymmetry” of the simplex ∆). Perhaps a generalization of this argument to non-
toric case will naturally use this invariant as well.
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