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1. Introduction

In the beginning of 1998 Gerard van der Geer and Ren�e Schoof posted
a beautiful preprint (cf. [2]). Among other things in this preprint they
de�ned exactly h0(L) for Arakelov line bundles L on an \arithmetic
curve", i.e. a number �eld. The main advantage of their de�nition was
that they got an exact analog of the Riemann-Roch formula h0(L)�
h0(K�L) = degL+1� g: Before that h0(L) was de�ned as an integer
and the Riemann-Roch formula above was only true approximately
(cf. [6]). However van der Geer and Schoof gave no interpretation for
h1(L) except via duality. They indicated this as one of the missing
blocks of their theory. In this paper we go even further to develop the
interpretations for H0(L) and H1(L) as well as their dimensions. The
main features of our theory are the following.
1) H1 is de�ned by a procedure very similar to Ĉech cohomology.
2) We get separately Serre's duality and Riemann-Roch formula

without duality.
3) We get the duality of H0(L) and H1(K�L) as Pontryagin duality

of convolution structures.
4) The Riemann-Roch formula of van der Geer and Schoof follows

automatically from our construction by an appropriate dimension func-
tion.
The paper is organized as follows. In section 2 we de�ne our basic

objects (ghost-spaces) and their dimensions. In section 3 we introduce
some short exact sequences of ghost-spaces. In section 4 we develop
the duality theory of ghost-spaces. In section 5 we apply the theory to
arithmetic and obtain our main results. In section 6 we discuss possible
directions in which the theory can grow.
Acknowledgments. The author thanks Adrian Ocneanu and Yuri

Zarhin for their interest and stimulating discussions. The author is
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especially thankful to Michael Voit for the expert's advises on convolu-
tion structures. The author also thanks Je� Lagarias for the numerous
helpful comments on the preliminary draft of the paper.

2. Ghost-spaces and their dimensions

Here we de�ne objects that will play the major role in the rest of
this paper. We will call them ghost-spaces. Please see Remark 2.4 for
some justi�cation of the term.
Basically, ghost-space is a pair (G; �) where G is a locally compact

commutative group and � is some commutative and associative con-
volution of measures structure on it. By the convolution of measures
structure we mean the map from G�G to the space of bounded mea-
sures on G;

� : (x; y)! �x � �y
We call a convolution associative if it comes from some convolution al-
gebra of measures which contains the space of bounded measures. The
convolution above will always be weakly separately continuous, where
weak topology is de�ned using the functions with compact support.

Remark 2.1. The reader primarily interested in the arithmetic appli-
cations can completely disregard the analytic part of our theory. In
fact, our convolution structures will always be given by explicit formu-
las, and the fact that they extend to some measure algebras will never
be used.

For the purpose of this paper, we only need ghost-spaces of two kinds,
cf. De�nitions below. In order to extend the theory to higher dimen-
sions one would need to allow more complicated convolution structures.
Please refer to the Example in section 6. This more general theory will
hopefully unify the two kinds of ghost-spaces we currently have. Un-
fortunately, it is not fully developed yet.
In what follows, we will use the notion of functions and measures

of positive type (positive de�nite functions and measures). This is a
standard and pretty well understood notion in harmonic analysis (cf.
[1]). Roughly speaking, it means having nonnegative Fourier transform.
But if you are primarily interested in arithmetic applications and are
not comfortable with this notion, don't worry about it. In applications
it will be automatically satis�ed.

Lemma 2.1. Suppose G is a locally compact abelian group. Suppose
u : G ! R+ is a positive symmetric continuous function of positive
type on it such that u(0) = 1: Consider the convolution of measures �
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on G such that

�x � �y = u(x)u(y)

u(x+ y)
�x+y

Then this convolution is commutative and associative.

Proof. Consider the space of all Radon measures � with the prop-
erty that u� is bounded Them we can make it a convolution algebra
by setting

�1 � �2 = (u�1)� (u�2)

u
;

where � is the standard convolution of measures on G: This convo-
lution � extends the convolution �x � �y: It is obviously commutative,
and associative. It is also weakly separately continuous, where the
weak topology is de�ned using the continuous functions with compact
support.

Remark 2.2. Function u being of positive type or positive is not really
necessary for the above theorem, being bounded is. Please also cf. Voit
([8]) for a related much more general theory. We just stated the above
lemma in the case that we are going to need in this paper.

Remark 2.3. In fact, any continuous real-valued function of positive
type is symmetric (cf. [1], prop. 3.22). Also, in many other sources,
functions of positive type are called positive-de�nite functions. In the
terminology of Folland [1] positive-de�nite is a bit weaker condition.
Though for the continuous functions there is no di�erence anyway.

De�nition 2.1. We will call the pair (G; �) as above the ghost-space
of the �rst kind, to be denoted Gu: We also de�ne the dimension of Gu

which depends on the choice of a Haar measure m on G. Namely,

dimmGu = log

Z
G

u(x)dm(x)

When G is discrete, it has a distinguished Haar measure, the counting
measure mc. In this case we will say that the dimension of Gu

dimGu = dimmc Gu:

Examples.
1) Suppose G is a locally compact abelian group. Then G1 is just

G itself with the standard convolution of measures. We will therefore
identify G1 with G:
2) Suppose G = Zn and Q is a positive-de�nite quadratic form on

it. Then one can check that u(x) = e�Q(x;x) is of positive type. (This
follows from the positivity of its Fourier transform (cf. Theorem 5.2
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of this paper). So one can de�ne the ghost space Gu: Its dimension,
in the above sense, is equal to log

P
x2Z

e�Q(x;x). This is exactly the kind

of formula van der Geer and Schoof used to de�ne h0(D); and u(x) is
their e�ectivity function. So the �nite-dimensional ghost-space of the
�rst kind Gu is going to be, in our interpretation, H0(D):

Remark 2.4. The above example justi�es somewhat the word \ghost-
space". Indeed, one can think of Gu as a space whose elements do
not exactly belong to the real world. So they come with the \e�ectivity
function" that measures how real they are. In the above example the
only 100% real element is 0: Also, the following theorem shows that
e�ectivity is always at most 1:

Theorem 2.1. Suppose Gu is a ghost-space of the �rst kind. Then for
all x 2 G u(x) � 1. Also, those x that u(x) = 1 form a closed subgroup
H of G: Moreover, u(x) comes from a function on G=H:

Proof. The �rst claim is contained in Folland [1], cor. 3.32. To
prove the second and third claims we note that by [1], prop. 3.35 the
following matrix is positive de�nite.2

64
1 u(x) u(x+y)

u(x) 1 u(y)

u(x+y) u(y) 1

3
75

If u(x) = 1, it implies that (u(x+ y)� u(y))2 � 0; so u(x+ y) = u(y):
This implies the theorem.

Now we de�ne the ghost-spaces of the second kind. While the ghost-
spaces of the �rst kind are intuitively the abelian groups with \partially
existent" elements, the ghost-spaces of the second kind have di�erent
nature. They are the abelian groups with good elements but bad addi-
tion. Namely the addition is in general faulty with the error probability
being \translation invariant".

Lemma 2.2. Suppose G is a locally compact abelian group. Suppose
� is a symmetric positive probability measure of positive type on G:
Consider the convolution of measures � on G such that

�x � �y = Tx+y�;

where Tx+y is the usual shift by (x + y). Then this convolution is
commutative and associative.

Proof. We will show that � extends to the space of bounded mea-
sures. We will use for that the canonical continuation formula of Pym
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(cf. [3]). For any two bounded Radon measures �1 and �2; and a con-
tinuous function with compact support f on G; the following formula
makes sense.

(�1 � �2)(f) =
Z Z

(Tx+y�)(f)d�1(x)d�2(y)

One can use it to de�ne the Radon measure �1 � �2. This obviously
generalizes the convolution � from the statement of the lemma. One
can easily check that �1 � �2 is bounded. Moreover, the convolution of
two probability measures is a probability measure, and the convolution
is weakly separately continuous. We now need to check that it is asso-
ciative. If �1; �2; �3 are bounded Radon measures and f is a continuous
function with compact support on G then one can check the following.�
(�1 � �2) � �3

�
(f) =

Z Z Z �
Tx+y+z(� � �)

�
(f)d�1(x)d�2(y)d�3(z);

where � is the standard convolution of measures on G: The associativ-
ity follows.

De�nition 2.2. We will call the pair (G; �) as above the ghost-space
of the second kind, to be denoted G�:

We also de�ne the dimension ofG� in some particular case. Although
this is the only case we will need in this paper, a more general de�nition
would be desirable.

De�nition 2.3. Suppose G is compact, and � = u(x) �m; where u(x)
is a continuous function on G and m is the Haar probability measure
on it. Then we de�ne dimension of G� as

dimG� = log u(0)

Some justi�cation of the above de�nition is provided by Lemma 2.3.
The real justi�cation, however, is in Proposition 3.1 and Theorem 4.1.
Example. Suppose G is a locally compact abelian group, and � = �0

is the point measure at 0 on it. Then the convolution on G� is just the
standard convolution on G:
Because of the above observation, one can choose to consider G both

as a ghost-space of the �rst and of the second kind. In fact, one can
see immediately that this is the only case when a convolution structure
can be interpreted in these two ways. Since we want the dimension
to be determined by the convolution structure itself, and not by its
interpretation, we have to check that dimG does not depend on the
above choice. Because of the strict restrictions in the De�nition 2.3 the
only case we really need to consider is when G is �nite. The following
lemma does just that.
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Lemma 2.3. Suppose G is a �nite abelian group. Then its dimension
as a ghost-space of the �rst or the second kind is equal to log jGj:
Proof. We will denote by M the counting measure on G:
1) As a ghost-space of the �rst kind G = G1: So dimG = dimM G =

log jGj:
2) As a ghost-space of the second kind G = G�0: If m is the probabil-

ity Haar measure on G; thenm = 1
jGj
M: So �0 = h�m;where h(0) = jGj;

h(x) = 0 for x 6= 0: Therefore dimG = dimG�0 = log h(0) = log jGj:

3. Short exact sequences of ghost-spaces

In this section we will de�ne two kinds of short exact sequences of
ghost-spaces. We will check that the dimension is additive, whenever
de�ned. We must note that this is probably just a little piece of the
more general theory which is yet to be developed.

De�nition 3.1. Suppose Gu is a ghost-space of the �rst kind. Then
we say that Gu is a subspace of G: If dimGu < 1 we also say that
the quotient G=Gu is the ghost-space of the second kind G�; where � is
the probability measure on G proportional to u(x) �m. Here m is some
(any) Haar measure on G:

Remark 3.1. The above de�nition is valid because u(x) �m is of pos-
itive type. We should also note that it is rather reasonable. Basically
we just de�ne the convolution on the quotient space by an averaging
procedure using the measure u(x) �m on a \subspace" Gu: This is very
similar to taking usual quotient of groups, though formally not a gen-
eralization of it.

Proposition 3.1. The dimension is additive in the above short exact
sequence, provided we use the same Haar measure for G and Gu to
de�ne it. That is, whenever de�ned,

dimmG = dimmGu + dimG�:

Proof. Because of the De�nition 2.3 we only need to consider the
case when G is compact. Since changing the Haar measure m has no
e�ect on the validity of the above identity, we can choose m to be the
probability measure. If dimmGu = logA then � = 1

A
� u �m: Therefore

dimmG = 0; dimmGu = logA; and dimG� = log(u(0)
A
) = � logA: The

last identity is because u(0) = 1 by the de�nition.

Now we de�ne another kind of short exact sequences. This time all
objects are ghost-spaces of the �rst kind.
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De�nition 3.2. Suppose G is a locally compact abelian group and H
is its closed subgroup. Suppose u : G! R+ is a symmetric continuous
function of positive type on G such that u(0) = 1: Abusing notation a
little bit, we will call the restriction of u to H also u: Then we will say
that Hu is a subspace of Gu. If we can de�ne a continuous function of
positive type v on G=H as below we will also say that (G=H)v is the
quotient Gu=Hu.

v(xH) =

R
y2H

u(x+ y)dm(y)R
y2H

u(y)dm(y)
;

where m is a Haar measure on H:

Remark 3.2. In fact, v is probably always of positive type, whenever
it is de�ned and continuous. At least it is true if both dimG and dimH
are �nite, as the following proposition shows.

Proposition 3.2. Suppose u and v are continuous functions de�ned
as in De�nition 3.2. Suppose that

R
G

u(x)dmG(x) and
R
H

u(x)dmH(x)

are both �nite. Then v is of positive type.

Proof. Since v 2 L1(G=H) it is enough to show (cf. [1], 4.17) thatZ
G=H

�(y)v(y)dmG=H(y) � 0

for any character � on G=H. By the de�nition of v it is equivalent to
saying that Z

G

�(x)v(x)dmG(x) � 0

for all characters � on G that come from G=H: This now follows from
u being of positive type (cf. [1], 4.23).

Remark 3.3. The dimension is obviously additive in the above short
exact sequence if one chooses the measure on the quotient space as the
quotient of measures on G and H:

Remark 3.4. Pretty obviously, G1=H1 = (G=H)1 whenever de�ned
(i.e. when H is compact). So our de�nition really is compatible with
the usual group quotients.

Remark 3.5. One can also de�ne similarly some short exact sequences
of the ghost-spaces of second kind. They will be dual to the above short
exact sequences in the sense of the next section.
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4. Duality theory of ghost-spaces

Here we develop the duality theory of ghost-spaces. Basically, the
dual of Gu is bGû; where bG is the Pontryagin dual of G and û is the
Fourier transform of u: To be precise, û is such measure that

u(x) =

Z
y2 bG

y(x)dû(x):

The existence of such measure is the Bochner theorem on G (cf., e.g.
Folland [1], prop. 4.18). We could have taken this as a de�nition, of
course. But we already had a lot of ad hoc de�nitions in the previous
two sections. So we claim that this duality really is the Pontryagin
duality of convolution structures.
We should mention here that a lot of work has been done by re-

searchers in harmonic analysis to extend Pontryagin duality of locally
compact abelian groups to the more general convolution structures.
We should mention here for reference the survey of Vainerman [7]. It
looks like the particular case we need is new. But it is very similar alge-
braically to the more general case of commutative signed hypergroups,
as introduced by Margit R�osler ( [4], [5] ). To be precise, for any Gu

one can de�ne an involution by sending x to �x; and a measure ! = m
u2
;

where m is some Haar measure on G: Then the triple (G;!; �) satis�es
the algebraic part of the axioms of a commutative signed hypergroup.
So we will construct the dual of Gu following the construction of

R�osler. We are only interested in the algebraic part of the construction,
and our convolutions are given by explicit formulas. So we will basically
ignore the analytic part of the theory.
First, let us consider all quasi-characters on G: These are the func-

tions ' : G! C with the following property.

'(x) � '(y) =
Z
G

'(�)(�x � �y)(�)

In our case this means that

'(x) � '(y) = '(x+ y)
u(x)u(y)

u(x+ y)

So '(x)
u(x) is a multiplicative function on G: This implies that '(x) =

�(x)u(x) for some multiplicative function � : G! C .
Now we should consider only the symmetric quasi-characters, i.e.

those ' that '(�x) = '(x): One can see from the above description of
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quasi-characters that these are '�(x) = �(x)u(x) for some � : G! S1;

i.e. for � 2 bG:
So we established the natural set-wise isomorphism of[(Gu) and bG:

We can therefore transfer the group structure of bG onto[(Gu):What we
really need to do though is to �gure out the convolution structure on
[(Gu). First we can de�ne the Fourier transform and the inverse Fourier
transform as in R�osler [4].
Since '�(x) = �(x)u(x), for all x 2 G, we have that

���(x) = �(x)u(x);

where �� is a point measure at '�.

The convolution of measures in[(Gu) should correspond via the in-
verse Fourier transform to the multiplication of functions on Gu; i.e.
to the usual multiplication of functions on G. The only thing we really
need to prove is the following proposition.

Proposition 4.1. Suppose �1; �2 2 bG; x 2 G. Then

(�1(x)u(x)) � (�2(x)u(x)) =

Z
�2bG

�(x)u(x)d(T�1+�2û)(�)

Proof. The above equality is equivalent to the following.

u(x) =

Z
�2bG

�(x)

�1(x)�2(x)
d(T�1+�2 û)(�)

The right hand side can be rewritten asZ
�2 bG

(�� �1 � �2)(x)d(T�1+�2û)(�)

Using the substitution � = �� �1 � �2; it is equal toZ
�2bG

�(x)dû(�)

Then the desired equality is just the de�nition of û:
One can also check that the natural involution of quasi-characters

' 7! �' corresponds to � 7! ��: To complete the picture we need to

show that
[[(Gu) is naturally isomorphic to Gu: This means that all the

symmetric quasi-characters of the convolution structure bGû are of the
form �(x)u(x) for some x 2 G: The following proposition does just
that.
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Proposition 4.2. Suppose f : G! C is a symmetric quasi-character
on bGû: Then f(x) = �(x)u(x) for some x 2 G:

Proof. Being a quasi-character here means that for all �1; �2 2 bG
f(�1) � f(�2) = T�1+�2û(f):

Therefore

f(�1) � f(�2) = f(0) � f(�1 + �2):

This implies that f(�) = v(�) � f(0); where v is a character on bG:
Also, since f is symmetric, f(0) = �f(0); so f(0) 2 R:As a result, the

condition f(��) = �f(�) implies that v(��) = �v(�) so v takes values
in the unit circle S1: By the Pontryagin duality theorem, v(�) = �(x)
for some x 2 G:
Finally, f(0) � f(0) = û(v � f(0): So f(0) = û(v): By the de�nition of

û; f(0) = u(x); the proposition is proven.

Remark 4.1. If we take duals in a short exact sequence of De�nition
3.2 we get again a short exact sequence, going in the opposite direc-
tion. So the situation is completely parallel to the case of usual locally
compact abelian groups.

Now let's discuss what happens with the dimension when the dual

is taken. First of all, dim bGû only makes sense if bG is compact, and û
is absolutely continuous with respect to a Haar measure. This means
that G is discrete. Then we have the following theorem.

Theorem 4.1. Suppose G is discrete, Gu is a �nite-dimensional ghost-
space of the �rst kind. Then

dimGu = dimcGu

Proof. Consider the counting measure m on G: Its dual measure m̂
is a probability Haar measure on bG (cf., e.g. Folland [1], Prop. 4.24).
Then û = f(�) � m̂ where f is the Fourier transform of u relative to the
above measures (cf. Folland, [1], prop. 4.21). By de�nition,

dim bGû = log f(0) = dimGu

Remark 4.2. Even though it might be possible to extend the de�nition
of the dimension of the ghost-spaces of the second kind, the above the-
orem is not likely to have any generalizations. The following example
highlights the major obstacle.
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Example. Suppose u = e��x
2

is a function on R; and m is the
standard measure on R: Then Ru is the ghost-space of the �rst kind
and Rum is the ghost-space of the second kind. We have the following
short exact sequence of ghost-spaces.

0! Ru! R! Rum! 0

We have that dimR = 1. For any measure M dimM Ru is �nite
(equal to zero if M = m). By the nature of dimension, we expect that

dimRum = 1: On the other hand, one can check that cRu = Rum: So
we have a duality between a �nite-dimensional ghost-space Ru and an
in�nite-dimensional ghost-space Rum:

5. Arithmetic cohomology via ghost-spaces

First of all, let us �x the same notations as in [2], section 3. For the
convenience of a reader we reproduce most of them below.
Our main object is an \arithmetic curve", i.e. a number �eld F: An

Arakelov divisor D on it is a formal sum
P
P

xPP +
P
�

x��; where P

runs over the maximal prime ideals of the ring of integers OF and �
runs over the in�nite, or archimedean places of the number �eld F .
The coe�cients xP are in Zwhile the coe�cients x� are in R. The
degree deg(D) =

P
P

log(N(P ))xP +
P
�

x�.

An Arakelov divisor D is determined by the associated fractional
ideal I =

Q
P�xp and by r1 + r2 coe�cients x� 2 R. We can de�ne a

hermitian metric on I; and on I 
 R = F 
 R as in [2]. That is, for
z = (z�)

jj(z�)jj2D =
X
�

jz�j2 � jj1jj2�;

where jj1jj2� = e�2x� for real � and jj1jj2� = 2e�x� for complex �. Ac-
cording to van der Geer and Schoof,

h0(D) =
X
x2I

e��jjxjj
2

D

In accordance with this, we make the following de�nition.

De�nition 5.1. In the above notations, H0(D) is the ghost-space of
the �rst kind Iu; where u(x) = e��jjxjj

2

D.

Remark 5.1. To make the above de�nition valid, we need to check
that u is of positive type. This basically follows from the positivity
of its Fourier dual, which will be calculated in Theorem 5.2 (cf., e.g.
Folland [1]). Clearly, dimIu = h0(D):
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Now we are going to de�ne H1(D). First, let us look at how it can
be done in the geometric situation. We have the curve C with the
map � : C ! P 1: Probably the easiest way to calculate H1(D) in

this situation is by Ĉech cohomology. For this we need to cover the
curve by a�ne open sets. One way to do it is to choose two points on
P 1, say � and 1, and consider the open sets U0 = ��1(P 1 �1) and
U1 = ��1(P 1 � �). Then we have the following four spaces.

V00 = H0(D;U0 \ U1)

V10 = H0(D;U0)

V01 = H0(D;U1)

V11 = H0(D)

Here V10 and V01 are subspaces of V00 and V10 \ V01 = V11: By the
de�nition of Ĉech cohomology, and since U0 and U1 are a�ne,

H1(D) = V00=(V01 + V10) = (V00=V10)=(V01=V11)

Now we try something similar in the arithmetic case. Let us choose
U0 = ��1(1) and U1 = ��1(p) where p is some prime number. Let us
denote by J the localization of I in p. Then the natural analog of V11
above is the ghost space Iu for u(x) = e��jjxjj

2

D . The analog of V10 is I.
The analog of V00 is J . The analog of V01 would have been Ju, if we
managed to de�ne ghost-spaces for the groups like J . Then the Ĉech
cohomology of this covering should be

(J=I)=(Ju=Iu):

Now we have some problems. It looks like the di�erent choices of p
should lead to di�erent answers, unless we are willing to complete J to
I
R. So this is what we do. Please note that I
R is a locally compact
group, and we have no problems in de�ning the ghost-space V01. We
also have no problems to de�ne other ingredients in the formula using
the short exact sequences from section 3. So this is our de�nition.

De�nition 5.2. For an Arakelov divisor D as above

H1(D) = ((I 
R)=I)=((I 
R)u=Iu)
Also, h1(D) = dimH1(D); as the dimension of the ghost-space of the
second kind.

We will see that this de�nition yields a beautiful theory with such
attributes of the geometric case as Serre's duality and Riemann-Roch.
For this we just need to do some calculations.
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Proposition 5.1. We have that

(I 
R)u=Iu = ((I 
R)=I)v;
where for every x 2 (I 
R)=I

v(x) =

P
y2I

e��jjx+yjj
2

D

P
y2I

e��jjyjj
2

D

Proof. This is just the de�nition of the quotient from section 3,
De�nition 3.2.

Theorem 5.1. Suppose � is the absolute value of the discriminant of
the number �eld F: Then the �rst cohomology of an Arakelov divisor D
is the following ghost-space of the second kind.

H1(D) = ((I 
R)=I)!;
where

! =

p
�

edegD
�
X
y2I

e��jjx+yjj
2

D �m;

where m is the Haar probability measure on (I 
R)=I.
Proof. Obviously ! should be proportional to

P
y2I

e��jjx+yjj
2

D �m:We

just have to scale it to make it a probability measure. We have the
following. Z

x2(I
R)=I

X
y2I

e��jjx+yjj
2

D � dm(x) =

Z
x2I
R

e��jjxjj
2

DdM(x);

where M is the measure on I 
R such that I has covolume 1: If MD

is the measure that corresponds to the hermitian metric D; the above
integral is equal to

edegDp
�

�
Z

x2I
R

e��jjxjj
2

DdMD(x)

Now we just need to show thatZ
x2I
R

e��jjxjj
2

DdMD(x) = 1:

This is a pretty standard calculation. It can be done, e.g. by splitting
up into the pieces that correspond to the in�nite places of F and using
the following two identities.
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1) (real factor)

�

Z
x2R

e���
2x2dx = 1

2) (complex factor)

�

Z
x+iy2C

e���
2(x2+y2)dxdy = 1

These are very standard identities. The second one follows from the
direct calculation in polar coordinates. The �rst one is essentially the
square root of the second one.

Now we are ready for the Serre's duality theorem. For this we need
to recall the de�nition of the canonical Arakelov divisor K on F: It is
de�ned (cf., e.g. [2]) as having associated fractional ideal @�1 and zero
in�nite components. Here @ is the di�erent of F:

Theorem 5.2. (Serre's duality) For any Arakelov divisor D we have
the following duality of ghost-spaces.

H1(D) = \H0(K �D)

Proof. First we need to establish duality on the level of underlining
locally compact groups. Suppose I is the fractional ideal associated
with D: It follows from the de�nition of K that (I 
R)=I=(F 
R)=I
is dual to @�1I�1; where @ is the di�erent of F: The duality is given by
the following pairing (x 2 (F 
R)=I; y 2 @�1I�1).

(x; y) = e2�iTr(xy);

where x 2 F 
R is some representative of x and Tr(xy) is taken in the
algebra F 
R:
Now in order to prove the theorem we just need to show that for

every y 2 @�1I�1

e��jjyjj
2

K�D =

Z
x2(I
R)=I

e2�iTr(xy)d!(x);

where ! is the probability measure from Theorem 5.1. Let's just sim-
plify the right hand side.Z
x2(I
R)=I

p
�

edegD

X
z2I

e��jjx+zjj
2

De2�iTr(xy)dm(x)=

Z
x2I
R

e��jjxjj
2

De2�iTr(xy)dMD(x)

This is a pretty standard integral. For the convenience of a reader, we
reproduce the calculations in some details below.
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Let us suppose that the in�nite part of D is given by the real num-
bers (�1; :::�r1; �r1+1; :::�r1+r2): Splitting up the above integral, and

e��jjyjj
2

K�D into the product of r1+ r2 factors corresponding to di�erent
�i; it is enough to prove the following two lemmas.

Lemma 5.1. (real factor) For any real � and y the following identity
is true. Z

x2R

e��e
�2�x2+2�ixy � e��dx = e��e

2�y2

Proof. First of all, multiplying x by e�� and y by e� we can get rid
of �: So we just need to prove thatZ

x2R

e��x
2+2�ixy � dx = e��y

2

:

The left hand side can be rewritten asZ
x2R

e��(x+iy)
2 � e��y2dx

By contour integration, it is equal toZ
x2R

e��x
2 � e��y2dx = e��y

2

;

the lemma is proven.

Lemma 5.2. (complex factor) For any � 2 R and y = y1 + iy2 2 C
the following identity is true.Z

x1+ix22C

e�2�e
��(x2

1
+x2

2
)e4�i(x1y1�x2y2) � 2e��dx1dx2 = e���2e

�(y2
1
+y2

2
)

Proof. First of all, multiplying x1 and x2 by e��=2; and y1 and y2
by e��=2; we can get rid of �: So we just need to prove thatZ

x1+ix22C

e�2�(x
2

1
+x2

2
)e4�i(x1y1�x2y2) � 2dx1dx2 = e���2(y

2

1
+y2

2
)

The left hand side can be rewritten asZ
x1

Z
x2

2e�2�(x1�iy1)
2�2�(x2+iy2)2 � e�2�(y21+y22 )dx1dx2

This is equal to e�2�(y
2

1
+y2

2
) by splitting up the above integral and then

proceeding like in the previous lemma.
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So, we established the Serre's duality as the duality of ghost-spaces.
The obvious corollary of it, and Theorem 4.1 is the following.

Corollary 5.2. In the above notations,

h1(D) = h0(K �D)

Now we obtain the Riemann-Roch formula using the additivity of
dimension in the short exact sequences of ghost-spaces from section 3.

Theorem 5.3. (Riemann-Roch formula)

h0(D)� h1(D) = dimD � 1

2
log �

Proof. We use the notations of Theorem 5.1. By Proposition 3.1
and Remark 3.3,

h1(D) = dimH1(D) = dimm(I 
R)=I � dimm((I 
R)=I)v =
= �dimm((I 
R)=I)v = �(dimM (I 
R)u� dimIu) =

= h0(D) � dimM(I 
R)u
So we have that

h0(D)�h1(D) = dimM(I 
R)u = log

Z
x2I
R

e��jjxjj
2

DdM(x) = log
edegDp

�

as in the proof of Theorem 5.1. This proves the theorem.
So, we recovered the Riemann-Roch theorem of van der Geer and

Schoof (�rst proven by Tate in his thesis). Our approach, of course,
gives much more structure. We should also note that instead of using
the Poisson summation formula, we basically reproved it along the lines
of the usual proof of the Riemann-Roch theorem in the geometric case.

6. Further remarks and open problems

There are many directions in which the theory can be developed
further. We list below the most interesting possibilities.
1) We believe that the theory can be extended to the higher-dimen-

sional case, at least to the case of curves over number �elds. There we
have H0(D); H1(D); and H2(D): We believe that H0(D) should be a
discrete �nite-dimensional ghost-space of the �rst kind. H2(D) should
be a compact ghost-space of the second kind, dual to H0(K � D):
The most troublesome part is H1(D): If D has geometric degree at
least 2g � 1 (for the curves of genus g) then H2(D) should be trivial,
and H1(D) should be a compact ghost-space of the second kind. If D
has negative geometric degree then H0(D) is trivial, and H1(D) is a
discrete ghost-space of the �rst kind. However the most interesting case
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of 0 � degD � 2g � 2 is not covered above. In this case we conjecture
that there still exists a ghost-space interpretation of H1(D); which is a
locally compact group with the convolution structure that generalizes
the structures of the ghost-spaces of the �rst and second kind as in is
the following example.
Example. Suppose G is a locally compact abelian group, u is a

symmetric continuous function on it, such that u(0) = 1. Suppose also
that � is a symmetric probability measure on G. Then the following
convolution structure is commutative and associative.

�x � �y = u(x)u(y)

u(x+ y)
Tx+y�

This higher-dimensional generalization is clearly very important. Ul-
timately, one would like to translate from geometry such things as
Kodaira-Spencer map to get a shot at the abc-type results. This will
be the subject of the author's future work.
2) It is of some interest to extend the theory from the Arakelov

divisors to the more general \coherent ghost-sheaves", whatever this
should mean. In particular, there are no serious di�culties in extend-
ing the theory to the higher rank locally free sheaves, parallel to the
construction of van der Geer and Schoof.
3) As noted in [2], prop. 6, zeta function of F is kind of given by the

following integral.

Z
Pic(F)

esh
0(D)+(1�s)h1(D)d[D]

In particular, Riemann zeta function is related to the family of ghost-
spaces Zu; where u(x) = e���x

2

for positive �: This extra structure
of the ghost-space could be of some interest, as it relates arithmetic
to harmonic analysis, which is coherent with some of the recent ap-
proaches to the Riemann Hypothesis. For example, the functions of
positive type on G are related to the so-called cyclic representations of
G (cf. [1], Theorem 3.20). This link deserves to be explored. We leave
it to the RH specialists to �gure out if it could be of any use.
4) The abstract theory of ghost-spaces, especially its analytic aspects

are yet to be fully developed. First of all, one would like to develop
the theory of \mixed ghost-spaces" i.e. groups with the convolution
structures like in the Example above. One would also like to have a
theory which is more symmetric with respect to duality.
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