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Abstract

In this elementary note we discuss some questions related to the behavior of it-
erations of polynomial maps with integer coefficients modulo primes. In particular,
we introduce three examples of such maps that have interesting dynamical properties.
Several open questions are stated and discussed.

1 Introduction

Polynomial maps with integer coefficients are among the simplest mathematical objects. If
the number of polynomials equals the number of variables, then the map can be iterated.
So for any ring R we get a discrete dynamical system on the set Rn, where n is the number
of variables (polynomials). In spite of the simplicity of this setup, relatively little is known
regarding the dynamical properties of these maps, in particular their periodic points. Gen-
erally, one expects that over a global field there are few periodic points. See the paper of
Fakhruddin for some results and conjectures in this direction [8]. On the other hand, over
an algebraic closure of a finite field there are usually many periodic points. Indeed, if the
reduction of the map is dominant, then the periodic points are Zariski dense, by a result of
the author and Sapir [3]. The dynamics over the local fields received considerable attention,
in particular by Silverman and his school [5, 11]. The primary object of investigation in that
context is the recurrent points, i.e., the points that lie in the limit set of their iterated images.
The one-dimensional case has been especially well studied, in particular by Benedetto [1].
Independently, interesting results were obtained by Khrennikov and Nilsson [9].

Modulo primes, some special cases, most notably monomial maps and quadratic maps
in one variable, were studied in great detail. The early works include those of Chassé [6],
motivated by the Pollard’s rho factorization algorithm. More recently, very precise results
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were obtained by Vasiga and Shallit [12], Chou and Shparlinski [7], and Sha [10]. This list is
very incomplete, and you should consult the above mentioned papers, especially the paper
of Vasiga and Shallit, for more references.

This short note is devoted to comparison of the dynamical properties of the map at a
generic point (i.e., over Z) and its reductions modulo primes p. The author and Sapir [4]
obtained some very general results of this kind and used them to prove that the mapping
tori of free group endomorphisms are virtually residually (finite p)-groups for all but finitely
many primes p. Importantly, we used the maps over the extensions of of Z/pZ, and the
corresponding extensions of the p-adic numbers. This note grew from an observation that
there exist integer polynomial maps which are dominant over Z, but “nilpotent” modulo all
primes (see Example 1 below).

The paper is organized as follows. In section 2 we introduce three particular polynomial
maps and prove their properties. In section 3 we discuss some natural open questions.

2 Examples and Theorems

The first map is the simplest. We discovered it, while working with Mark Sapir [3].

Example 1. (Additive Trap) Define Fat(x, y) = (u, v), where

(u, v) = (x2y, x2y + xy2)

Theorem 2. (a) Fat and its reductions modulo p for all primes p are dominant.

(b) The only fixed point over the algebraic closure of the ground field of Fat, and any
reduction of it modulo p, is (0, 0).

(c) For every (x, y) ∈ F2
p some multiple of the reduction of Fat modulo p sends it to (0, 0).

Proof. (a) We need to show that for a Zariski open subset of pairs (u, v) there exists (x, y)
such that F (x, y) = (u.v). For u 6= 0, u 6= v, take x such that x3 = u2

v−u
and take y = u

x2 .
(b) Suppose x2y = x and x2y + xy2 = y. If x = 0, then from the second equation y = 0.

If x 6= 0, then from the first equation xy = 1. Plugging this into the second equation, we get
x + y = y, so x = 0.

(c) We will prove that modulo any prime p the p-th iteration of Fat sends everything to
(0, 0). Indeed, if x 6= 0, then v

u
= y

x
+ 1. So after no more than p−1 iterations, we get y = 0,

which forces x and y to become zero at the next step and forever afterwards.

Note that these properties are in sharp contrast with the result of the author and Sapir
that implies that periodic orbits of Fat over the algebraic closure of Fp are Zariski dense [3].

Example 3. (Multiplicative Trap) Suppose n ≥ 2 is a natural number. Define Fmt(n)(x, y) =
(u, v), where

(u, v) = (x2y(x− y), nxy2(x− y))

Theorem 4. (a) Fmt(n) and its reductions modulo p for all primes p - n are dominant.
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(b) The only fixed point over the algebraic closure of the ground field of Fmt(n), and its
reductions modulo p - n − 1, is (0, 0). For p|n − 1, the fixed points of the reduction of
Fmt(n) are (0, 0) and such (x, y) that xy(x− y) = 1.

(c) The following two statements are equivalent:

1. Either p|n or n is a multiplicative generator modulo p.

2. For every (x, y) ∈ F2
p, some multiple of the reduction of Fmt(n) modulo p sends it

to (0, 0).

Proof. (a) For generic u and v, take x so that x4 = n2u3

v(nu−v)
and y = v

nu
x. One can check that

Fmt(n)(x, y) = (u, v).
(b) Suppose Fmt(n)(x, y) = (x, y). If x = 0, then y = 0 and vice versa. If x and y are

non-zero, then from the first equation we get xy(x − y) = 1, after which from the second
equation we get n = 1. If p - n− 1, this is impossible; if p|n− 1, it is true, which implies the
result.

(c) For p|n two iterations are enough to send everything to (0, 0). Modulo any prime
p - n, if x 6= 0 and y

x
6= 1, then u

v
= n y

x
. If n is a generator of (Z/pZ)∗, then iterations of

this map eventually send everything to (0, 0). Otherwise, if y
x

is not a power of n, then no
iteration will send (x,y) to (0, 0).

Example 5. (Power Trap) Suppose n ≥ 2 is a natural number. Define Fpt(n)(x, y) = (u, v),
where

(u, v) = (xn+1y(x− y), xyn+1(x− y))

Theorem 6. (a) Fpt(n) and its reductions modulo p for all primes p are dominant.

(b) For a prime p the following two statements are equivalent.

1. (p− 1)|nk for some k.

2. For every (x, y) ∈ F2
p, some multiple of the reduction of Fpt(n) modulo p sends it

to (0, 0).

Proof. (a) For generic u and v, take t such that tn = v
u
. Then take x such that xn+3 = u

t−t2

and y = tx. One can check that Fpt(n)(x, y) = (u, v).
(b) Modulo any prime p if x 6= 0 and y

x
6= 1, then u

v
= ( y

x
)n. If (p−1)|nk for some k, then

k + 1 iterations of this map send everything to (0, 0). For general p a high enough iteration
of Fpt(n) sends to (0, 0) all pairs (x, y) such that at least one of the coordinates is zero or the
order of y

x
in (Z/pZ)∗ divides nk for some k.

These examples inspire the following definition.

Definition 7. Suppose F is an integer polynomial map. Then its nilpotency locus Nil(F )
is the set of all primes p such that some iteration of F is constant on Z/pZ. We denote by
NIL the set of all subsets of the set of primes that can be realized as a nilpotency locus for
some integer polynomial map F .
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Theorem 8. Suppose S1 ∈ NIL and S2 ∈ NIL. Then S1 ∩ S2 ∈ NIL.

Proof. Suppose S1 = Nil(F1) and S2 = Nil(F2), where F1 has n variables and F2 has m
variables. Consider the direct sum of F1 and F2, which is the polynomial map on (n + m)
variables defined as follows:

(F1 ⊕ F2)(x1, ..., xn;xn+1, ..., xn+m) = (F1(x1, ..., xn);F2(xn+1, ..., xn+m))

Clearly, Nil(F1 ⊕ F2) = S1 ∩ S2.

The definition of the nilpotency locus admits an interesting variation.

Definition 9. Suppose F is an integer polynomial map. Then its zero nilpotency locus
Nil0(F ) is the set of all primes p such that some iteration of F is the constant 0 on Z/pZ.
We denote by NIL0 the set of all subsets of the set of primes that can be realized as a
nilpotency locus for some integer polynomial map F .

It is unclear if NIL0 = NIL. In fact, it is possible that neither NIL0 ⊆ NIL nor
NIL ⊆ NIL0. A construction similar to the theorem above shows that NIL0 is also closed
under finite intersections.

3 Open Questions and Conjectures

Obviously, with more variables one can create more complicated maps. However, it is unclear
how much can be actually “programmed” using integer polynomial maps. The following
question is very natural in this regard.

Question 10. Does there exist an integer polynomial map with two different fixed points
such that modulo every prime its sufficiently high iteration will send any initial point to one
of the fixed points, depending on whether or not the initial first coordinate is zero?

Another interesting question is related to the notion of the nilpotency locus.

Question 11. Which subsets of the set of all primes can be realized as a nilpotency locus
of some F?

Note that the nilpotency locus of Fmt(n) is the set of all primes p for which n is a generator
modulo p, which is a very tricky arithmetic condition. The nilpotency locus of Fpt(2) is the
set of the Fermat primes, so we don’t even know if it is finite or infinite. Definitely, not all
subsets of the set of all primes are in NIL, because there are uncountably many of them
and only countably many integer polynomial maps.

It would also be very interesting to study “random” polynomial maps, and their dynam-
ical properties on the finite sets of points over Fp. The following quantities are of particular
interest: the size of the intersection of the images of all iterations, the length of the longest
cycle, the length of the shortest cycle, the number of cycles, and the distribution of lengths
of the cycles. At this time, it is absolutely unclear what to expect in general, so one should
do some computer experiments to formulate any conjectures in this direction. Some results
of this kind are contained in a very recent paper by Benedetto, Ghioca, Hutz, Kurlberg,
Scanlon, and Tucker [2].
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[6] G. Chassé, Combinatorial cycles of a polynomial map over a commutative field, Discrete
Math. 61 (1986), 21–26.

[7] W.-S. Chou and I. Shparlinski, On the cycle structure of repeated exponentiation mod-
ulo a prime, J. Number Theory 107 (2004), no. 2, 345–356.

[8] N. Fakhruddin, Questions on self maps of algebraic varieties, J. Ramanujan Math. Soc.
18 (2003), 109–122.

[9] A. Khrennikov and M. Nilsson, On the number of cycles of p-adic dynamical systems,
J. Number Theory 90 (2001), 255–264.

[10] M. Sha, On the cycle structure of repeated exponentiation modulo a prime power,
Fibonacci Quart. 49 (2011), no. 4, 340–347.

[11] J. Silverman, The arithmetic of dynamical systems, Graduate Texts in Mathematics,
241, Springer, 2007.

[12] T. Vasiga and J. Shallit, On the iteration of certain quadratic maps over GF(p). Discrete
Math. 277(2004), no. 1-3, 219–240.

2010 Mathematics Subject Classification: Primary 37P05; Secondary 37P25, 37P35, 11A07.
Keywords: polynomial map, reduction, iteration

5


	Introduction
	Examples and Theorems
	Open Questions and Conjectures
	Acknowledgments

